Properties

Label 29.3.f.a.2.2
Level 29
Weight 3
Character 29.2
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 2.2
Character \(\chi\) = 29.2
Dual form 29.3.f.a.15.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-1.68783 - 0.190173i) q^{2}\) \(+(-3.78594 - 2.37886i) q^{3}\) \(+(-1.08711 - 0.248126i) q^{4}\) \(+(0.141728 - 0.113024i) q^{5}\) \(+(5.93762 + 4.73509i) q^{6}\) \(+(-1.55116 - 6.79606i) q^{7}\) \(+(8.20045 + 2.86946i) q^{8}\) \(+(4.76938 + 9.90371i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-1.68783 - 0.190173i) q^{2}\) \(+(-3.78594 - 2.37886i) q^{3}\) \(+(-1.08711 - 0.248126i) q^{4}\) \(+(0.141728 - 0.113024i) q^{5}\) \(+(5.93762 + 4.73509i) q^{6}\) \(+(-1.55116 - 6.79606i) q^{7}\) \(+(8.20045 + 2.86946i) q^{8}\) \(+(4.76938 + 9.90371i) q^{9}\) \(+(-0.260707 + 0.163813i) q^{10}\) \(+(-12.2566 + 4.28875i) q^{11}\) \(+(3.52547 + 3.52547i) q^{12}\) \(+(9.66173 - 20.0628i) q^{13}\) \(+(1.32566 + 11.7656i) q^{14}\) \(+(-0.805444 + 0.0907517i) q^{15}\) \(+(-9.27670 - 4.46742i) q^{16}\) \(+(-5.90660 + 5.90660i) q^{17}\) \(+(-6.16648 - 17.6228i) q^{18}\) \(+(-10.7431 - 17.0975i) q^{19}\) \(+(-0.182118 + 0.0877036i) q^{20}\) \(+(-10.2943 + 29.4194i) q^{21}\) \(+(21.5026 - 4.90782i) q^{22}\) \(+(15.0384 - 18.8575i) q^{23}\) \(+(-24.2203 - 30.3713i) q^{24}\) \(+(-5.55571 + 24.3412i) q^{25}\) \(+(-20.1228 + 32.0252i) q^{26}\) \(+(0.997389 - 8.85208i) q^{27}\) \(+7.77294i q^{28}\) \(+(28.5764 + 4.93832i) q^{29}\) \(+1.37671 q^{30}\) \(+(35.5909 + 4.01014i) q^{31}\) \(+(-14.6174 - 9.18473i) q^{32}\) \(+(56.6049 + 12.9197i) q^{33}\) \(+(11.0926 - 8.84605i) q^{34}\) \(+(-0.987964 - 0.787875i) q^{35}\) \(+(-2.72747 - 11.9498i) q^{36}\) \(+(-23.0925 - 8.08043i) q^{37}\) \(+(14.8810 + 30.9007i) q^{38}\) \(+(-84.3053 + 52.9725i) q^{39}\) \(+(1.48655 - 0.520168i) q^{40}\) \(+(-14.1288 - 14.1288i) q^{41}\) \(+(22.9698 - 47.6973i) q^{42}\) \(+(-4.31425 - 38.2901i) q^{43}\) \(+(14.3884 - 1.62118i) q^{44}\) \(+(1.79532 + 0.864579i) q^{45}\) \(+(-28.9684 + 28.9684i) q^{46}\) \(+(1.53295 + 4.38091i) q^{47}\) \(+(24.4936 + 38.9814i) q^{48}\) \(+(0.367152 - 0.176811i) q^{49}\) \(+(14.0061 - 40.0272i) q^{50}\) \(+(36.4130 - 8.31102i) q^{51}\) \(+(-15.4815 + 19.4131i) q^{52}\) \(+(-51.0246 - 63.9828i) q^{53}\) \(+(-3.36685 + 14.7511i) q^{54}\) \(+(-1.25237 + 1.99313i) q^{55}\) \(+(6.78085 - 60.1817i) q^{56}\) \(+90.2863i q^{57}\) \(+(-47.2930 - 13.7695i) q^{58}\) \(+28.0326 q^{59}\) \(+(0.898124 + 0.101194i) q^{60}\) \(+(-3.26475 - 2.05138i) q^{61}\) \(+(-59.3088 - 13.5368i) q^{62}\) \(+(59.9082 - 47.7752i) q^{63}\) \(+(55.1251 + 43.9608i) q^{64}\) \(+(-0.898247 - 3.93548i) q^{65}\) \(+(-93.0824 - 32.5709i) q^{66}\) \(+(-2.88318 - 5.98698i) q^{67}\) \(+(7.88670 - 4.95554i) q^{68}\) \(+(-101.794 + 35.6192i) q^{69}\) \(+(1.51768 + 1.51768i) q^{70}\) \(+(-15.5711 + 32.3337i) q^{71}\) \(+(10.6927 + 94.9004i) q^{72}\) \(+(103.524 - 11.6644i) q^{73}\) \(+(37.4396 + 18.0300i) q^{74}\) \(+(78.9378 - 78.9378i) q^{75}\) \(+(7.43657 + 21.2525i) q^{76}\) \(+(48.1585 + 76.6437i) q^{77}\) \(+(152.367 - 73.3760i) q^{78}\) \(+(-28.1618 + 80.4819i) q^{79}\) \(+(-1.81970 + 0.415334i) q^{80}\) \(+(36.8483 - 46.2063i) q^{81}\) \(+(21.1601 + 26.5339i) q^{82}\) \(+(-6.13681 + 26.8871i) q^{83}\) \(+(18.4908 - 29.4279i) q^{84}\) \(+(-0.169541 + 1.50472i) q^{85}\) \(+65.4475i q^{86}\) \(+(-96.4410 - 86.6755i) q^{87}\) \(-112.816 q^{88}\) \(+(26.8243 + 3.02237i) q^{89}\) \(+(-2.86577 - 1.80068i) q^{90}\) \(+(-151.335 - 34.5412i) q^{91}\) \(+(-21.0274 + 16.7688i) q^{92}\) \(+(-125.205 - 99.8480i) q^{93}\) \(+(-1.75422 - 7.68575i) q^{94}\) \(+(-3.45503 - 1.20897i) q^{95}\) \(+(33.4914 + 69.5456i) q^{96}\) \(+(-6.09419 + 3.82923i) q^{97}\) \(+(-0.653314 + 0.228604i) q^{98}\) \(+(-100.931 - 100.931i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.68783 0.190173i −0.843915 0.0950863i −0.320588 0.947219i \(-0.603881\pi\)
−0.523326 + 0.852132i \(0.675309\pi\)
\(3\) −3.78594 2.37886i −1.26198 0.792954i −0.276216 0.961096i \(-0.589080\pi\)
−0.985763 + 0.168142i \(0.946223\pi\)
\(4\) −1.08711 0.248126i −0.271777 0.0620314i
\(5\) 0.141728 0.113024i 0.0283456 0.0226049i −0.609215 0.793005i \(-0.708515\pi\)
0.637560 + 0.770401i \(0.279944\pi\)
\(6\) 5.93762 + 4.73509i 0.989603 + 0.789182i
\(7\) −1.55116 6.79606i −0.221594 0.970865i −0.956279 0.292457i \(-0.905527\pi\)
0.734685 0.678408i \(-0.237330\pi\)
\(8\) 8.20045 + 2.86946i 1.02506 + 0.358683i
\(9\) 4.76938 + 9.90371i 0.529931 + 1.10041i
\(10\) −0.260707 + 0.163813i −0.0260707 + 0.0163813i
\(11\) −12.2566 + 4.28875i −1.11423 + 0.389887i −0.823727 0.566987i \(-0.808109\pi\)
−0.290505 + 0.956873i \(0.593823\pi\)
\(12\) 3.52547 + 3.52547i 0.293789 + 0.293789i
\(13\) 9.66173 20.0628i 0.743210 1.54329i −0.0934833 0.995621i \(-0.529800\pi\)
0.836694 0.547671i \(-0.184486\pi\)
\(14\) 1.32566 + 11.7656i 0.0946901 + 0.840398i
\(15\) −0.805444 + 0.0907517i −0.0536962 + 0.00605011i
\(16\) −9.27670 4.46742i −0.579794 0.279214i
\(17\) −5.90660 + 5.90660i −0.347447 + 0.347447i −0.859158 0.511711i \(-0.829012\pi\)
0.511711 + 0.859158i \(0.329012\pi\)
\(18\) −6.16648 17.6228i −0.342582 0.979043i
\(19\) −10.7431 17.0975i −0.565425 0.899868i 0.434575 0.900636i \(-0.356899\pi\)
−1.00000 0.000767373i \(0.999756\pi\)
\(20\) −0.182118 + 0.0877036i −0.00910592 + 0.00438518i
\(21\) −10.2943 + 29.4194i −0.490205 + 1.40093i
\(22\) 21.5026 4.90782i 0.977390 0.223083i
\(23\) 15.0384 18.8575i 0.653843 0.819893i −0.338814 0.940853i \(-0.610026\pi\)
0.992657 + 0.120960i \(0.0385973\pi\)
\(24\) −24.2203 30.3713i −1.00918 1.26547i
\(25\) −5.55571 + 24.3412i −0.222228 + 0.973646i
\(26\) −20.1228 + 32.0252i −0.773952 + 1.23174i
\(27\) 0.997389 8.85208i 0.0369403 0.327855i
\(28\) 7.77294i 0.277605i
\(29\) 28.5764 + 4.93832i 0.985395 + 0.170287i
\(30\) 1.37671 0.0458903
\(31\) 35.5909 + 4.01014i 1.14809 + 0.129359i 0.665440 0.746451i \(-0.268244\pi\)
0.482655 + 0.875811i \(0.339673\pi\)
\(32\) −14.6174 9.18473i −0.456794 0.287023i
\(33\) 56.6049 + 12.9197i 1.71530 + 0.391506i
\(34\) 11.0926 8.84605i 0.326253 0.260178i
\(35\) −0.987964 0.787875i −0.0282275 0.0225107i
\(36\) −2.72747 11.9498i −0.0757631 0.331940i
\(37\) −23.0925 8.08043i −0.624123 0.218390i −0.000355153 1.00000i \(-0.500113\pi\)
−0.623767 + 0.781610i \(0.714399\pi\)
\(38\) 14.8810 + 30.9007i 0.391605 + 0.813176i
\(39\) −84.3053 + 52.9725i −2.16167 + 1.35827i
\(40\) 1.48655 0.520168i 0.0371639 0.0130042i
\(41\) −14.1288 14.1288i −0.344605 0.344605i 0.513490 0.858095i \(-0.328352\pi\)
−0.858095 + 0.513490i \(0.828352\pi\)
\(42\) 22.9698 47.6973i 0.546900 1.13565i
\(43\) −4.31425 38.2901i −0.100331 0.890466i −0.938553 0.345136i \(-0.887833\pi\)
0.838221 0.545330i \(-0.183596\pi\)
\(44\) 14.3884 1.62118i 0.327008 0.0368450i
\(45\) 1.79532 + 0.864579i 0.0398959 + 0.0192129i
\(46\) −28.9684 + 28.9684i −0.629748 + 0.629748i
\(47\) 1.53295 + 4.38091i 0.0326159 + 0.0932108i 0.959040 0.283271i \(-0.0914195\pi\)
−0.926424 + 0.376482i \(0.877134\pi\)
\(48\) 24.4936 + 38.9814i 0.510284 + 0.812112i
\(49\) 0.367152 0.176811i 0.00749289 0.00360839i
\(50\) 14.0061 40.0272i 0.280122 0.800544i
\(51\) 36.4130 8.31102i 0.713980 0.162961i
\(52\) −15.4815 + 19.4131i −0.297720 + 0.373330i
\(53\) −51.0246 63.9828i −0.962728 1.20722i −0.978268 0.207343i \(-0.933518\pi\)
0.0155405 0.999879i \(-0.495053\pi\)
\(54\) −3.36685 + 14.7511i −0.0623490 + 0.273169i
\(55\) −1.25237 + 1.99313i −0.0227703 + 0.0362387i
\(56\) 6.78085 60.1817i 0.121087 1.07467i
\(57\) 90.2863i 1.58397i
\(58\) −47.2930 13.7695i −0.815397 0.237405i
\(59\) 28.0326 0.475129 0.237564 0.971372i \(-0.423651\pi\)
0.237564 + 0.971372i \(0.423651\pi\)
\(60\) 0.898124 + 0.101194i 0.0149687 + 0.00168657i
\(61\) −3.26475 2.05138i −0.0535205 0.0336292i 0.505006 0.863116i \(-0.331490\pi\)
−0.558527 + 0.829487i \(0.688633\pi\)
\(62\) −59.3088 13.5368i −0.956594 0.218336i
\(63\) 59.9082 47.7752i 0.950923 0.758336i
\(64\) 55.1251 + 43.9608i 0.861329 + 0.686887i
\(65\) −0.898247 3.93548i −0.0138192 0.0605458i
\(66\) −93.0824 32.5709i −1.41034 0.493499i
\(67\) −2.88318 5.98698i −0.0430325 0.0893579i 0.878344 0.478029i \(-0.158649\pi\)
−0.921377 + 0.388671i \(0.872934\pi\)
\(68\) 7.88670 4.95554i 0.115981 0.0728756i
\(69\) −101.794 + 35.6192i −1.47527 + 0.516221i
\(70\) 1.51768 + 1.51768i 0.0216812 + 0.0216812i
\(71\) −15.5711 + 32.3337i −0.219311 + 0.455404i −0.981376 0.192096i \(-0.938471\pi\)
0.762065 + 0.647501i \(0.224186\pi\)
\(72\) 10.6927 + 94.9004i 0.148510 + 1.31806i
\(73\) 103.524 11.6644i 1.41814 0.159786i 0.630626 0.776087i \(-0.282798\pi\)
0.787511 + 0.616301i \(0.211370\pi\)
\(74\) 37.4396 + 18.0300i 0.505940 + 0.243648i
\(75\) 78.9378 78.9378i 1.05250 1.05250i
\(76\) 7.43657 + 21.2525i 0.0978496 + 0.279638i
\(77\) 48.1585 + 76.6437i 0.625434 + 0.995373i
\(78\) 152.367 73.3760i 1.95342 0.940718i
\(79\) −28.1618 + 80.4819i −0.356479 + 1.01876i 0.616398 + 0.787435i \(0.288591\pi\)
−0.972877 + 0.231323i \(0.925694\pi\)
\(80\) −1.81970 + 0.415334i −0.0227462 + 0.00519168i
\(81\) 36.8483 46.2063i 0.454918 0.570449i
\(82\) 21.1601 + 26.5339i 0.258050 + 0.323584i
\(83\) −6.13681 + 26.8871i −0.0739375 + 0.323941i −0.998348 0.0574578i \(-0.981701\pi\)
0.924410 + 0.381399i \(0.124558\pi\)
\(84\) 18.4908 29.4279i 0.220128 0.350332i
\(85\) −0.169541 + 1.50472i −0.00199461 + 0.0177026i
\(86\) 65.4475i 0.761018i
\(87\) −96.4410 86.6755i −1.10852 0.996271i
\(88\) −112.816 −1.28200
\(89\) 26.8243 + 3.02237i 0.301397 + 0.0339592i 0.261368 0.965239i \(-0.415826\pi\)
0.0400288 + 0.999199i \(0.487255\pi\)
\(90\) −2.86577 1.80068i −0.0318419 0.0200076i
\(91\) −151.335 34.5412i −1.66302 0.379573i
\(92\) −21.0274 + 16.7688i −0.228559 + 0.182270i
\(93\) −125.205 99.8480i −1.34630 1.07363i
\(94\) −1.75422 7.68575i −0.0186619 0.0817633i
\(95\) −3.45503 1.20897i −0.0363688 0.0127260i
\(96\) 33.4914 + 69.5456i 0.348869 + 0.724433i
\(97\) −6.09419 + 3.82923i −0.0628267 + 0.0394766i −0.563079 0.826403i \(-0.690383\pi\)
0.500252 + 0.865880i \(0.333241\pi\)
\(98\) −0.653314 + 0.228604i −0.00666647 + 0.00233270i
\(99\) −100.931 100.931i −1.01950 1.01950i
\(100\) 12.0793 25.0830i 0.120793 0.250830i
\(101\) −12.4952 110.898i −0.123715 1.09800i −0.890148 0.455672i \(-0.849399\pi\)
0.766433 0.642324i \(-0.222030\pi\)
\(102\) −63.0394 + 7.10284i −0.618033 + 0.0696356i
\(103\) 108.481 + 52.2416i 1.05321 + 0.507200i 0.878660 0.477448i \(-0.158438\pi\)
0.174552 + 0.984648i \(0.444152\pi\)
\(104\) 136.800 136.800i 1.31538 1.31538i
\(105\) 1.86612 + 5.33307i 0.0177726 + 0.0507912i
\(106\) 73.9530 + 117.696i 0.697670 + 1.11033i
\(107\) −127.998 + 61.6404i −1.19624 + 0.576079i −0.922602 0.385754i \(-0.873941\pi\)
−0.273638 + 0.961833i \(0.588227\pi\)
\(108\) −3.28070 + 9.37570i −0.0303768 + 0.0868120i
\(109\) 30.7554 7.01972i 0.282160 0.0644011i −0.0790990 0.996867i \(-0.525204\pi\)
0.361259 + 0.932466i \(0.382347\pi\)
\(110\) 2.49282 3.12590i 0.0226620 0.0284172i
\(111\) 68.2046 + 85.5259i 0.614456 + 0.770504i
\(112\) −15.9713 + 69.9747i −0.142601 + 0.624774i
\(113\) −51.3355 + 81.7000i −0.454297 + 0.723009i −0.992822 0.119600i \(-0.961839\pi\)
0.538526 + 0.842609i \(0.318982\pi\)
\(114\) 17.1700 152.388i 0.150614 1.33674i
\(115\) 4.37235i 0.0380205i
\(116\) −29.8404 12.4590i −0.257245 0.107406i
\(117\) 244.777 2.09211
\(118\) −47.3143 5.33104i −0.400968 0.0451783i
\(119\) 49.3036 + 30.9795i 0.414316 + 0.260332i
\(120\) −6.86541 1.56698i −0.0572117 0.0130582i
\(121\) 37.2281 29.6884i 0.307671 0.245359i
\(122\) 5.12023 + 4.08324i 0.0419691 + 0.0334692i
\(123\) 19.8803 + 87.1012i 0.161628 + 0.708140i
\(124\) −37.6962 13.1905i −0.304002 0.106375i
\(125\) 3.93008 + 8.16089i 0.0314406 + 0.0652871i
\(126\) −110.200 + 69.2434i −0.874605 + 0.549551i
\(127\) 95.5607 33.4381i 0.752446 0.263292i 0.0733147 0.997309i \(-0.476642\pi\)
0.679132 + 0.734017i \(0.262357\pi\)
\(128\) −35.8531 35.8531i −0.280102 0.280102i
\(129\) −74.7533 + 155.227i −0.579483 + 1.20331i
\(130\) 0.767667 + 6.81324i 0.00590513 + 0.0524095i
\(131\) 95.6113 10.7728i 0.729857 0.0822352i 0.260787 0.965396i \(-0.416018\pi\)
0.469070 + 0.883161i \(0.344589\pi\)
\(132\) −58.3300 28.0903i −0.441894 0.212805i
\(133\) −99.5314 + 99.5314i −0.748356 + 0.748356i
\(134\) 3.72775 + 10.6533i 0.0278190 + 0.0795022i
\(135\) −0.859143 1.36732i −0.00636402 0.0101283i
\(136\) −65.3855 + 31.4880i −0.480776 + 0.231529i
\(137\) 60.7818 173.704i 0.443662 1.26791i −0.477464 0.878651i \(-0.658444\pi\)
0.921127 0.389263i \(-0.127270\pi\)
\(138\) 178.584 40.7607i 1.29409 0.295368i
\(139\) 116.483 146.065i 0.838009 1.05083i −0.159960 0.987124i \(-0.551136\pi\)
0.997969 0.0637063i \(-0.0202921\pi\)
\(140\) 0.878533 + 1.10165i 0.00627524 + 0.00786890i
\(141\) 4.61794 20.2325i 0.0327513 0.143493i
\(142\) 32.4303 51.6126i 0.228383 0.363469i
\(143\) −32.3752 + 287.338i −0.226400 + 2.00935i
\(144\) 113.181i 0.785976i
\(145\) 4.60824 2.52994i 0.0317810 0.0174479i
\(146\) −176.949 −1.21198
\(147\) −1.81062 0.204008i −0.0123172 0.00138781i
\(148\) 23.0992 + 14.5142i 0.156075 + 0.0980687i
\(149\) 112.412 + 25.6572i 0.754440 + 0.172196i 0.582410 0.812896i \(-0.302110\pi\)
0.172031 + 0.985092i \(0.444967\pi\)
\(150\) −148.245 + 118.222i −0.988302 + 0.788145i
\(151\) −7.95750 6.34590i −0.0526987 0.0420258i 0.596786 0.802400i \(-0.296444\pi\)
−0.649485 + 0.760374i \(0.725015\pi\)
\(152\) −39.0374 171.034i −0.256825 1.12522i
\(153\) −86.6680 30.3265i −0.566458 0.198212i
\(154\) −66.7077 138.520i −0.433167 0.899480i
\(155\) 5.49748 3.45430i 0.0354676 0.0222858i
\(156\) 104.793 36.6687i 0.671750 0.235055i
\(157\) −54.2399 54.2399i −0.345477 0.345477i 0.512945 0.858422i \(-0.328555\pi\)
−0.858422 + 0.512945i \(0.828555\pi\)
\(158\) 62.8378 130.484i 0.397708 0.825849i
\(159\) 40.9696 + 363.615i 0.257670 + 2.28689i
\(160\) −3.10980 + 0.350390i −0.0194363 + 0.00218994i
\(161\) −151.484 72.9508i −0.940894 0.453111i
\(162\) −70.9809 + 70.9809i −0.438154 + 0.438154i
\(163\) −9.39776 26.8573i −0.0576550 0.164768i 0.911454 0.411403i \(-0.134961\pi\)
−0.969109 + 0.246634i \(0.920675\pi\)
\(164\) 11.8538 + 18.8653i 0.0722795 + 0.115032i
\(165\) 9.48275 4.56665i 0.0574712 0.0276767i
\(166\) 15.4711 44.2138i 0.0931994 0.266348i
\(167\) −41.1889 + 9.40109i −0.246640 + 0.0562939i −0.344053 0.938950i \(-0.611800\pi\)
0.0974137 + 0.995244i \(0.468943\pi\)
\(168\) −168.836 + 211.713i −1.00497 + 1.26020i
\(169\) −203.797 255.553i −1.20590 1.51215i
\(170\) 0.572314 2.50747i 0.00336655 0.0147498i
\(171\) 118.091 187.941i 0.690590 1.09907i
\(172\) −4.81068 + 42.6960i −0.0279691 + 0.248232i
\(173\) 127.036i 0.734309i −0.930160 0.367155i \(-0.880332\pi\)
0.930160 0.367155i \(-0.119668\pi\)
\(174\) 146.293 + 164.634i 0.840762 + 0.946172i
\(175\) 174.042 0.994524
\(176\) 132.860 + 14.9697i 0.754887 + 0.0850553i
\(177\) −106.130 66.6857i −0.599603 0.376755i
\(178\) −44.7001 10.2025i −0.251124 0.0573174i
\(179\) −114.042 + 90.9455i −0.637106 + 0.508075i −0.887943 0.459954i \(-0.847866\pi\)
0.250836 + 0.968030i \(0.419294\pi\)
\(180\) −1.73718 1.38536i −0.00965102 0.00769643i
\(181\) 48.4132 + 212.112i 0.267476 + 1.17189i 0.912938 + 0.408098i \(0.133808\pi\)
−0.645462 + 0.763792i \(0.723335\pi\)
\(182\) 248.859 + 87.0794i 1.36735 + 0.478458i
\(183\) 7.48019 + 15.5328i 0.0408754 + 0.0848786i
\(184\) 177.433 111.488i 0.964307 0.605914i
\(185\) −4.18615 + 1.46480i −0.0226278 + 0.00791782i
\(186\) 192.337 + 192.337i 1.03407 + 1.03407i
\(187\) 47.0626 97.7265i 0.251672 0.522602i
\(188\) −0.579465 5.14289i −0.00308226 0.0273558i
\(189\) −61.7063 + 6.95263i −0.326489 + 0.0367864i
\(190\) 5.60159 + 2.69758i 0.0294821 + 0.0141978i
\(191\) −140.809 + 140.809i −0.737221 + 0.737221i −0.972039 0.234818i \(-0.924550\pi\)
0.234818 + 0.972039i \(0.424550\pi\)
\(192\) −104.123 297.568i −0.542310 1.54983i
\(193\) −170.596 271.502i −0.883916 1.40674i −0.913349 0.407177i \(-0.866513\pi\)
0.0294336 0.999567i \(-0.490630\pi\)
\(194\) 11.0142 5.30414i 0.0567740 0.0273409i
\(195\) −5.96125 + 17.0363i −0.0305705 + 0.0873655i
\(196\) −0.443006 + 0.101113i −0.00226023 + 0.000515883i
\(197\) −35.3554 + 44.3343i −0.179469 + 0.225047i −0.863426 0.504475i \(-0.831686\pi\)
0.683957 + 0.729522i \(0.260258\pi\)
\(198\) 151.160 + 189.548i 0.763432 + 0.957314i
\(199\) −6.42619 + 28.1550i −0.0322924 + 0.141482i −0.988504 0.151193i \(-0.951688\pi\)
0.956212 + 0.292676i \(0.0945456\pi\)
\(200\) −115.405 + 183.666i −0.577027 + 0.918332i
\(201\) −3.32667 + 29.5250i −0.0165506 + 0.146890i
\(202\) 189.553i 0.938379i
\(203\) −10.7654 201.867i −0.0530317 0.994420i
\(204\) −41.6471 −0.204152
\(205\) −3.59935 0.405549i −0.0175578 0.00197829i
\(206\) −173.162 108.805i −0.840593 0.528179i
\(207\) 258.484 + 58.9972i 1.24871 + 0.285011i
\(208\) −179.258 + 142.953i −0.861817 + 0.687276i
\(209\) 205.000 + 163.482i 0.980861 + 0.782211i
\(210\) −2.13549 9.35620i −0.0101690 0.0445533i
\(211\) 281.518 + 98.5074i 1.33421 + 0.466860i 0.900759 0.434318i \(-0.143011\pi\)
0.433449 + 0.901178i \(0.357296\pi\)
\(212\) 39.5935 + 82.2168i 0.186762 + 0.387815i
\(213\) 135.869 85.3719i 0.637881 0.400807i
\(214\) 227.761 79.6969i 1.06430 0.372415i
\(215\) −4.93917 4.93917i −0.0229729 0.0229729i
\(216\) 33.5797 69.7290i 0.155462 0.322819i
\(217\) −27.9540 248.098i −0.128820 1.14331i
\(218\) −53.2448 + 5.99925i −0.244242 + 0.0275195i
\(219\) −419.683 202.109i −1.91636 0.922871i
\(220\) 1.85601 1.85601i 0.00843639 0.00843639i
\(221\) 61.4349 + 175.571i 0.277986 + 0.794438i
\(222\) −98.8531 157.324i −0.445284 0.708666i
\(223\) −61.9105 + 29.8145i −0.277625 + 0.133697i −0.567516 0.823363i \(-0.692095\pi\)
0.289890 + 0.957060i \(0.406381\pi\)
\(224\) −39.7461 + 113.588i −0.177438 + 0.507088i
\(225\) −267.565 + 61.0700i −1.18918 + 0.271422i
\(226\) 102.183 128.133i 0.452136 0.566960i
\(227\) 275.667 + 345.675i 1.21439 + 1.52280i 0.784766 + 0.619792i \(0.212783\pi\)
0.429625 + 0.903007i \(0.358646\pi\)
\(228\) 22.4024 98.1511i 0.0982559 0.430487i
\(229\) −48.7472 + 77.5808i −0.212870 + 0.338781i −0.936043 0.351887i \(-0.885540\pi\)
0.723173 + 0.690667i \(0.242683\pi\)
\(230\) −0.831502 + 7.37979i −0.00361523 + 0.0320860i
\(231\) 404.731i 1.75208i
\(232\) 220.169 + 122.495i 0.949006 + 0.527997i
\(233\) −115.705 −0.496587 −0.248294 0.968685i \(-0.579870\pi\)
−0.248294 + 0.968685i \(0.579870\pi\)
\(234\) −413.141 46.5498i −1.76556 0.198931i
\(235\) 0.712412 + 0.447638i 0.00303154 + 0.00190484i
\(236\) −30.4745 6.95561i −0.129129 0.0294729i
\(237\) 298.074 237.706i 1.25770 1.00298i
\(238\) −77.3247 61.6644i −0.324893 0.259094i
\(239\) −39.0003 170.872i −0.163181 0.714944i −0.988618 0.150449i \(-0.951928\pi\)
0.825436 0.564495i \(-0.190929\pi\)
\(240\) 7.87728 + 2.75638i 0.0328220 + 0.0114849i
\(241\) 1.62503 + 3.37442i 0.00674288 + 0.0140017i 0.904313 0.426870i \(-0.140384\pi\)
−0.897570 + 0.440872i \(0.854669\pi\)
\(242\) −68.4807 + 43.0293i −0.282978 + 0.177807i
\(243\) −325.098 + 113.757i −1.33785 + 0.468134i
\(244\) 3.04014 + 3.04014i 0.0124596 + 0.0124596i
\(245\) 0.0320518 0.0665563i 0.000130824 0.000271658i
\(246\) −16.9902 150.793i −0.0690660 0.612978i
\(247\) −446.820 + 50.3446i −1.80899 + 0.203824i
\(248\) 280.355 + 135.012i 1.13046 + 0.544402i
\(249\) 87.1944 87.1944i 0.350178 0.350178i
\(250\) −5.08132 14.5216i −0.0203253 0.0580863i
\(251\) −101.330 161.266i −0.403705 0.642493i 0.581565 0.813500i \(-0.302441\pi\)
−0.985270 + 0.171007i \(0.945298\pi\)
\(252\) −76.9810 + 37.0721i −0.305480 + 0.147112i
\(253\) −103.444 + 295.625i −0.408868 + 1.16848i
\(254\) −167.649 + 38.2648i −0.660036 + 0.150649i
\(255\) 4.22140 5.29347i 0.0165545 0.0207587i
\(256\) −122.148 153.168i −0.477139 0.598313i
\(257\) 31.9955 140.182i 0.124496 0.545454i −0.873756 0.486364i \(-0.838323\pi\)
0.998253 0.0590900i \(-0.0188199\pi\)
\(258\) 155.691 247.780i 0.603452 0.960388i
\(259\) −19.0949 + 169.472i −0.0737256 + 0.654333i
\(260\) 4.50117i 0.0173122i
\(261\) 87.3842 + 306.566i 0.334805 + 1.17458i
\(262\) −163.424 −0.623757
\(263\) −14.2134 1.60147i −0.0540434 0.00608923i 0.0849014 0.996389i \(-0.472942\pi\)
−0.138945 + 0.990300i \(0.544371\pi\)
\(264\) 427.113 + 268.373i 1.61785 + 1.01656i
\(265\) −14.4632 3.30114i −0.0545783 0.0124571i
\(266\) 186.920 149.064i 0.702707 0.560390i
\(267\) −94.3653 75.2538i −0.353428 0.281849i
\(268\) 1.64881 + 7.22389i 0.00615226 + 0.0269548i
\(269\) 115.482 + 40.4089i 0.429301 + 0.150219i 0.536276 0.844043i \(-0.319831\pi\)
−0.106975 + 0.994262i \(0.534116\pi\)
\(270\) 1.19006 + 2.47119i 0.00440763 + 0.00915254i
\(271\) 364.109 228.785i 1.34358 0.844225i 0.347938 0.937518i \(-0.386882\pi\)
0.995639 + 0.0932924i \(0.0297391\pi\)
\(272\) 81.1810 28.4065i 0.298460 0.104435i
\(273\) 490.775 + 490.775i 1.79771 + 1.79771i
\(274\) −135.623 + 281.624i −0.494975 + 1.02783i
\(275\) −36.2994 322.166i −0.131998 1.17151i
\(276\) 119.499 13.4643i 0.432968 0.0487838i
\(277\) 363.232 + 174.923i 1.31131 + 0.631492i 0.953243 0.302205i \(-0.0977227\pi\)
0.358064 + 0.933697i \(0.383437\pi\)
\(278\) −224.381 + 224.381i −0.807127 + 0.807127i
\(279\) 130.031 + 371.608i 0.466062 + 1.33193i
\(280\) −5.84097 9.29585i −0.0208606 0.0331995i
\(281\) 55.4249 26.6912i 0.197242 0.0949865i −0.332656 0.943048i \(-0.607945\pi\)
0.529897 + 0.848062i \(0.322230\pi\)
\(282\) −11.6420 + 33.2708i −0.0412835 + 0.117982i
\(283\) 172.772 39.4340i 0.610501 0.139343i 0.0939179 0.995580i \(-0.470061\pi\)
0.516583 + 0.856237i \(0.327204\pi\)
\(284\) 24.9503 31.2867i 0.0878532 0.110164i
\(285\) 10.2046 + 12.7961i 0.0358055 + 0.0448987i
\(286\) 109.288 478.820i 0.382124 1.67420i
\(287\) −74.1042 + 117.936i −0.258203 + 0.410927i
\(288\) 21.2470 188.572i 0.0737742 0.654764i
\(289\) 219.224i 0.758561i
\(290\) −8.25905 + 3.39374i −0.0284795 + 0.0117026i
\(291\) 32.1814 0.110589
\(292\) −115.436 13.0065i −0.395329 0.0445429i
\(293\) −42.8502 26.9246i −0.146246 0.0918927i 0.456921 0.889507i \(-0.348952\pi\)
−0.603168 + 0.797614i \(0.706095\pi\)
\(294\) 3.01722 + 0.688662i 0.0102627 + 0.00234239i
\(295\) 3.97301 3.16837i 0.0134678 0.0107402i
\(296\) −166.183 132.526i −0.561428 0.447724i
\(297\) 25.7398 + 112.774i 0.0866661 + 0.379709i
\(298\) −184.852 64.6826i −0.620310 0.217056i
\(299\) −233.038 483.909i −0.779392 1.61842i
\(300\) −105.401 + 66.2276i −0.351335 + 0.220759i
\(301\) −253.529 + 88.7138i −0.842290 + 0.294730i
\(302\) 12.2241 + 12.2241i 0.0404771 + 0.0404771i
\(303\) −216.504 + 449.576i −0.714536 + 1.48375i
\(304\) 23.2785 + 206.602i 0.0765739 + 0.679612i
\(305\) −0.694563 + 0.0782585i −0.00227726 + 0.000256585i
\(306\) 140.514 + 67.6678i 0.459195 + 0.221137i
\(307\) 91.5953 91.5953i 0.298356 0.298356i −0.542014 0.840370i \(-0.682338\pi\)
0.840370 + 0.542014i \(0.182338\pi\)
\(308\) −33.3362 95.2695i −0.108235 0.309317i
\(309\) −286.426 455.844i −0.926944 1.47522i
\(310\) −9.93573 + 4.78479i −0.0320507 + 0.0154348i
\(311\) 161.202 460.688i 0.518333 1.48131i −0.325936 0.945392i \(-0.605680\pi\)
0.844269 0.535919i \(-0.180035\pi\)
\(312\) −843.344 + 192.488i −2.70303 + 0.616948i
\(313\) −331.292 + 415.427i −1.05844 + 1.32724i −0.115861 + 0.993265i \(0.536963\pi\)
−0.942581 + 0.333979i \(0.891609\pi\)
\(314\) 81.2328 + 101.863i 0.258703 + 0.324403i
\(315\) 3.09091 13.5422i 0.00981243 0.0429911i
\(316\) 50.5846 80.5050i 0.160078 0.254763i
\(317\) 49.7527 441.567i 0.156948 1.39296i −0.630315 0.776339i \(-0.717074\pi\)
0.787264 0.616617i \(-0.211497\pi\)
\(318\) 621.512i 1.95444i
\(319\) −371.428 + 62.0306i −1.16435 + 0.194453i
\(320\) 12.7814 0.0399420
\(321\) 631.225 + 71.1220i 1.96643 + 0.221564i
\(322\) 241.806 + 151.937i 0.750949 + 0.471853i
\(323\) 164.443 + 37.5330i 0.509112 + 0.116201i
\(324\) −51.5232 + 41.0884i −0.159022 + 0.126816i
\(325\) 434.674 + 346.641i 1.33746 + 1.06659i
\(326\) 10.7543 + 47.1177i 0.0329886 + 0.144533i
\(327\) −133.137 46.5866i −0.407146 0.142467i
\(328\) −75.3204 156.404i −0.229635 0.476843i
\(329\) 27.3951 17.2135i 0.0832677 0.0523205i
\(330\) −16.8737 + 5.90437i −0.0511325 + 0.0178920i
\(331\) −206.567 206.567i −0.624068 0.624068i 0.322501 0.946569i \(-0.395477\pi\)
−0.946569 + 0.322501i \(0.895477\pi\)
\(332\) 13.3428 27.7066i 0.0401891 0.0834535i
\(333\) −30.1108 267.240i −0.0904227 0.802524i
\(334\) 71.3076 8.03443i 0.213496 0.0240552i
\(335\) −1.08530 0.522654i −0.00323971 0.00156016i
\(336\) 226.926 226.926i 0.675375 0.675375i
\(337\) 156.253 + 446.546i 0.463659 + 1.32506i 0.904116 + 0.427287i \(0.140531\pi\)
−0.440457 + 0.897774i \(0.645184\pi\)
\(338\) 295.375 + 470.087i 0.873891 + 1.39079i
\(339\) 388.706 187.191i 1.14663 0.552186i
\(340\) 0.557670 1.59373i 0.00164021 0.00468744i
\(341\) −453.421 + 103.490i −1.32968 + 0.303491i
\(342\) −235.059 + 294.754i −0.687306 + 0.861854i
\(343\) −214.737 269.272i −0.626055 0.785049i
\(344\) 74.4930 326.375i 0.216549 0.948765i
\(345\) −10.4012 + 16.5535i −0.0301485 + 0.0479810i
\(346\) −24.1587 + 214.414i −0.0698228 + 0.619694i
\(347\) 511.474i 1.47399i 0.675899 + 0.736994i \(0.263755\pi\)
−0.675899 + 0.736994i \(0.736245\pi\)
\(348\) 83.3355 + 118.155i 0.239470 + 0.339527i
\(349\) −482.022 −1.38115 −0.690576 0.723260i \(-0.742643\pi\)
−0.690576 + 0.723260i \(0.742643\pi\)
\(350\) −293.753 33.0980i −0.839293 0.0945657i
\(351\) −167.961 105.537i −0.478521 0.300675i
\(352\) 218.550 + 49.8827i 0.620881 + 0.141712i
\(353\) 190.763 152.128i 0.540404 0.430958i −0.314869 0.949135i \(-0.601961\pi\)
0.855273 + 0.518177i \(0.173389\pi\)
\(354\) 166.447 + 132.737i 0.470189 + 0.374963i
\(355\) 1.44764 + 6.34252i 0.00407785 + 0.0178662i
\(356\) −28.4110 9.94145i −0.0798063 0.0279254i
\(357\) −112.964 234.573i −0.316427 0.657067i
\(358\) 209.779 131.813i 0.585975 0.368192i
\(359\) 569.212 199.176i 1.58555 0.554808i 0.613522 0.789677i \(-0.289752\pi\)
0.972027 + 0.234870i \(0.0754663\pi\)
\(360\) 12.2415 + 12.2415i 0.0340043 + 0.0340043i
\(361\) −20.2788 + 42.1094i −0.0561741 + 0.116647i
\(362\) −41.3753 367.216i −0.114296 1.01441i
\(363\) −211.568 + 23.8380i −0.582832 + 0.0656694i
\(364\) 155.947 + 75.1001i 0.428426 + 0.206319i
\(365\) 13.3539 13.3539i 0.0365861 0.0365861i
\(366\) −9.67138 27.6392i −0.0264245 0.0755170i
\(367\) 137.681 + 219.118i 0.375153 + 0.597052i 0.979930 0.199343i \(-0.0638807\pi\)
−0.604777 + 0.796395i \(0.706738\pi\)
\(368\) −223.751 + 107.753i −0.608020 + 0.292807i
\(369\) 72.5420 207.313i 0.196591 0.561824i
\(370\) 7.34407 1.67624i 0.0198488 0.00453037i
\(371\) −355.684 + 446.013i −0.958716 + 1.20219i
\(372\) 111.337 + 139.612i 0.299294 + 0.375302i
\(373\) −135.641 + 594.282i −0.363649 + 1.59325i 0.380201 + 0.924904i \(0.375855\pi\)
−0.743850 + 0.668347i \(0.767002\pi\)
\(374\) −98.0185 + 155.996i −0.262082 + 0.417101i
\(375\) 4.53460 40.2457i 0.0120923 0.107322i
\(376\) 40.3241i 0.107245i
\(377\) 375.174 525.611i 0.995158 1.39419i
\(378\) 105.472 0.279026
\(379\) −160.764 18.1138i −0.424180 0.0477936i −0.102706 0.994712i \(-0.532750\pi\)
−0.321475 + 0.946918i \(0.604179\pi\)
\(380\) 3.45602 + 2.17156i 0.00909480 + 0.00571464i
\(381\) −441.331 100.731i −1.15835 0.264386i
\(382\) 264.440 210.884i 0.692251 0.552052i
\(383\) −272.105 216.997i −0.710458 0.566571i 0.200189 0.979757i \(-0.435845\pi\)
−0.910647 + 0.413186i \(0.864416\pi\)
\(384\) 50.4479 + 221.027i 0.131375 + 0.575591i
\(385\) 15.4880 + 5.41950i 0.0402287 + 0.0140766i
\(386\) 236.304 + 490.691i 0.612187 + 1.27122i
\(387\) 358.637 225.347i 0.926712 0.582292i
\(388\) 7.57518 2.65067i 0.0195237 0.00683163i
\(389\) 254.246 + 254.246i 0.653588 + 0.653588i 0.953855 0.300267i \(-0.0970758\pi\)
−0.300267 + 0.953855i \(0.597076\pi\)
\(390\) 13.3014 27.6207i 0.0341062 0.0708222i
\(391\) 22.5582 + 200.210i 0.0576936 + 0.512045i
\(392\) 3.51816 0.396401i 0.00897490 0.00101123i
\(393\) −387.605 186.661i −0.986273 0.474964i
\(394\) 68.1051 68.1051i 0.172856 0.172856i
\(395\) 5.10510 + 14.5895i 0.0129243 + 0.0369355i
\(396\) 84.6793 + 134.766i 0.213837 + 0.340319i
\(397\) 110.601 53.2627i 0.278592 0.134163i −0.289371 0.957217i \(-0.593446\pi\)
0.567963 + 0.823054i \(0.307732\pi\)
\(398\) 16.2006 46.2987i 0.0407051 0.116328i
\(399\) 613.591 140.048i 1.53782 0.350998i
\(400\) 160.281 200.986i 0.400702 0.502465i
\(401\) 158.554 + 198.821i 0.395398 + 0.495813i 0.939186 0.343410i \(-0.111582\pi\)
−0.543788 + 0.839223i \(0.683010\pi\)
\(402\) 11.2297 49.2005i 0.0279346 0.122389i
\(403\) 424.325 675.309i 1.05292 1.67570i
\(404\) −13.9329 + 123.658i −0.0344875 + 0.306085i
\(405\) 10.7135i 0.0264531i
\(406\) −20.2194 + 342.765i −0.0498015 + 0.844248i
\(407\) 317.690 0.780565
\(408\) 322.451 + 36.3315i 0.790321 + 0.0890477i
\(409\) −55.7403 35.0239i −0.136284 0.0856331i 0.462164 0.886794i \(-0.347073\pi\)
−0.598449 + 0.801161i \(0.704216\pi\)
\(410\) 5.99796 + 1.36900i 0.0146292 + 0.00333901i
\(411\) −643.334 + 513.042i −1.56529 + 1.24828i
\(412\) −104.968 83.7092i −0.254777 0.203178i
\(413\) −43.4830 190.511i −0.105286 0.461286i
\(414\) −425.056 148.734i −1.02671 0.359260i
\(415\) 2.16915 + 4.50428i 0.00522686 + 0.0108537i
\(416\) −325.501 + 204.526i −0.782454 + 0.491649i
\(417\) −788.467 + 275.897i −1.89081 + 0.661623i
\(418\) −314.915 314.915i −0.753386 0.753386i
\(419\) −226.933 + 471.231i −0.541606 + 1.12466i 0.433137 + 0.901328i \(0.357407\pi\)
−0.974743 + 0.223329i \(0.928308\pi\)
\(420\) −0.705408 6.26067i −0.00167954 0.0149064i
\(421\) −192.380 + 21.6760i −0.456960 + 0.0514871i −0.337445 0.941345i \(-0.609563\pi\)
−0.119515 + 0.992832i \(0.538134\pi\)
\(422\) −456.421 219.801i −1.08157 0.520855i
\(423\) −36.0761 + 36.0761i −0.0852862 + 0.0852862i
\(424\) −234.828 671.100i −0.553840 1.58278i
\(425\) −110.958 176.589i −0.261078 0.415503i
\(426\) −245.558 + 118.255i −0.576428 + 0.277593i
\(427\) −8.87715 + 25.3694i −0.0207896 + 0.0594132i
\(428\) 154.442 35.2504i 0.360846 0.0823608i
\(429\) 806.107 1010.83i 1.87904 2.35624i
\(430\) 7.39717 + 9.27576i 0.0172027 + 0.0215715i
\(431\) −58.0221 + 254.212i −0.134622 + 0.589818i 0.861943 + 0.507005i \(0.169248\pi\)
−0.996565 + 0.0828129i \(0.973610\pi\)
\(432\) −48.7984 + 77.6623i −0.112959 + 0.179774i
\(433\) 6.90278 61.2639i 0.0159418 0.141487i −0.983220 0.182424i \(-0.941606\pi\)
0.999162 + 0.0409369i \(0.0130343\pi\)
\(434\) 424.064i 0.977106i
\(435\) −23.4649 1.38417i −0.0539422 0.00318201i
\(436\) −35.1763 −0.0806795
\(437\) −483.975 54.5309i −1.10750 0.124785i
\(438\) 669.918 + 420.937i 1.52949 + 0.961044i
\(439\) −173.225 39.5375i −0.394590 0.0900626i 0.0206218 0.999787i \(-0.493435\pi\)
−0.415212 + 0.909725i \(0.636293\pi\)
\(440\) −15.9892 + 12.7509i −0.0363390 + 0.0289794i
\(441\) 3.50217 + 2.79289i 0.00794143 + 0.00633308i
\(442\) −70.3028 308.017i −0.159056 0.696871i
\(443\) 632.160 + 221.202i 1.42700 + 0.499328i 0.929721 0.368265i \(-0.120048\pi\)
0.497276 + 0.867592i \(0.334334\pi\)
\(444\) −52.9248 109.899i −0.119200 0.247521i
\(445\) 4.14336 2.60345i 0.00931093 0.00585044i
\(446\) 110.164 38.5481i 0.247005 0.0864308i
\(447\) −364.548 364.548i −0.815544 0.815544i
\(448\) 213.252 442.823i 0.476010 0.988445i
\(449\) 28.7774 + 255.406i 0.0640921 + 0.568834i 0.984186 + 0.177136i \(0.0566834\pi\)
−0.920094 + 0.391697i \(0.871888\pi\)
\(450\) 463.218 52.1922i 1.02937 0.115983i
\(451\) 233.765 + 112.575i 0.518327 + 0.249613i
\(452\) 76.0792 76.0792i 0.168317 0.168317i
\(453\) 15.0306 + 42.9550i 0.0331801 + 0.0948233i
\(454\) −399.541 635.865i −0.880045 1.40058i
\(455\) −25.3524 + 12.2091i −0.0557196 + 0.0268331i
\(456\) −259.073 + 740.388i −0.568142 + 1.62366i
\(457\) 508.462 116.053i 1.11261 0.253946i 0.373566 0.927604i \(-0.378135\pi\)
0.739043 + 0.673658i \(0.235278\pi\)
\(458\) 97.0308 121.673i 0.211858 0.265661i
\(459\) 46.3945 + 58.1768i 0.101077 + 0.126747i
\(460\) −1.08489 + 4.75323i −0.00235846 + 0.0103331i
\(461\) −305.337 + 485.941i −0.662336 + 1.05410i 0.331523 + 0.943447i \(0.392438\pi\)
−0.993859 + 0.110655i \(0.964705\pi\)
\(462\) −76.9687 + 683.116i −0.166599 + 1.47861i
\(463\) 548.047i 1.18369i −0.806053 0.591843i \(-0.798400\pi\)
0.806053 0.591843i \(-0.201600\pi\)
\(464\) −243.033 173.474i −0.523779 0.373867i
\(465\) −29.0304 −0.0624310
\(466\) 195.290 + 22.0039i 0.419077 + 0.0472187i
\(467\) −696.323 437.528i −1.49105 0.936892i −0.997751 0.0670350i \(-0.978646\pi\)
−0.493304 0.869857i \(-0.664211\pi\)
\(468\) −266.099 60.7354i −0.568588 0.129776i
\(469\) −36.2156 + 28.8810i −0.0772187 + 0.0615799i
\(470\) −1.11730 0.891017i −0.00237724 0.00189578i
\(471\) 76.3196 + 334.378i 0.162037 + 0.709932i
\(472\) 229.880 + 80.4385i 0.487034 + 0.170420i
\(473\) 217.095 + 450.801i 0.458974 + 0.953069i
\(474\) −548.304 + 344.522i −1.15676 + 0.726840i
\(475\) 475.858 166.510i 1.00181 0.350547i
\(476\) −45.9116 45.9116i −0.0964530 0.0964530i
\(477\) 390.312 810.491i 0.818264 1.69914i
\(478\) 33.3308 + 295.819i 0.0697297 + 0.618868i
\(479\) 272.204 30.6701i 0.568277 0.0640294i 0.176848 0.984238i \(-0.443410\pi\)
0.391428 + 0.920209i \(0.371981\pi\)
\(480\) 12.6070 + 6.07123i 0.0262647 + 0.0126484i
\(481\) −385.230 + 385.230i −0.800894 + 0.800894i
\(482\) −2.10106 6.00448i −0.00435904 0.0124574i
\(483\) 399.968 + 636.546i 0.828092 + 1.31790i
\(484\) −47.8375 + 23.0373i −0.0988379 + 0.0475978i
\(485\) −0.430922 + 1.23150i −0.000888498 + 0.00253918i
\(486\) 570.343 130.177i 1.17354 0.267854i
\(487\) 77.1649 96.7617i 0.158449 0.198689i −0.696269 0.717781i \(-0.745158\pi\)
0.854719 + 0.519091i \(0.173730\pi\)
\(488\) −20.8861 26.1903i −0.0427993 0.0536686i
\(489\) −28.3104 + 124.036i −0.0578944 + 0.253652i
\(490\) −0.0667551 + 0.106240i −0.000136235 + 0.000216817i
\(491\) 11.6732 103.602i 0.0237743 0.211002i −0.976209 0.216833i \(-0.930427\pi\)
0.999983 + 0.00583045i \(0.00185590\pi\)
\(492\) 99.6214i 0.202482i
\(493\) −197.958 + 139.621i −0.401538 + 0.283207i
\(494\) 763.731 1.54601
\(495\) −25.7124 2.89709i −0.0519442 0.00585271i
\(496\) −312.251 196.201i −0.629539 0.395566i
\(497\) 243.895 + 55.6675i 0.490734 + 0.112007i
\(498\) −163.751 + 130.587i −0.328818 + 0.262223i
\(499\) −276.912 220.830i −0.554935 0.442546i 0.305437 0.952212i \(-0.401197\pi\)
−0.860372 + 0.509666i \(0.829769\pi\)
\(500\) −2.24750 9.84694i −0.00449500 0.0196939i
\(501\) 178.302 + 62.3907i 0.355893 + 0.124532i
\(502\) 140.359 + 291.459i 0.279600 + 0.580596i
\(503\) −437.771 + 275.070i −0.870320 + 0.546858i −0.891553 0.452916i \(-0.850384\pi\)
0.0212333 + 0.999775i \(0.493241\pi\)
\(504\) 628.363 219.874i 1.24675 0.436257i
\(505\) −14.3051 14.3051i −0.0283269 0.0283269i
\(506\) 230.815 479.292i 0.456155 0.947217i
\(507\) 163.636 + 1452.31i 0.322754 + 2.86452i
\(508\) −112.182 + 12.6399i −0.220830 + 0.0248816i
\(509\) 282.331 + 135.964i 0.554679 + 0.267119i 0.690155 0.723661i \(-0.257542\pi\)
−0.135477 + 0.990781i \(0.543257\pi\)
\(510\) −8.13167 + 8.13167i −0.0159445 + 0.0159445i
\(511\) −239.853 685.462i −0.469381 1.34141i
\(512\) 284.940 + 453.480i 0.556524 + 0.885703i
\(513\) −162.063 + 78.0456i −0.315913 + 0.152136i
\(514\) −80.6617 + 230.518i −0.156929 + 0.448479i
\(515\) 21.2794 4.85688i 0.0413192 0.00943083i
\(516\) 119.781 150.200i 0.232133 0.291086i
\(517\) −37.5773 47.1204i −0.0726833 0.0911420i
\(518\) 64.4580 282.409i 0.124436 0.545191i
\(519\) −302.200 + 480.948i −0.582273 + 0.926683i
\(520\) 3.92667 34.8502i 0.00755129 0.0670195i
\(521\) 903.060i 1.73332i −0.498898 0.866661i \(-0.666262\pi\)
0.498898 0.866661i \(-0.333738\pi\)
\(522\) −89.1892 534.048i −0.170860 1.02308i
\(523\) 643.715 1.23081 0.615407 0.788210i \(-0.288992\pi\)
0.615407 + 0.788210i \(0.288992\pi\)
\(524\) −106.613 12.0124i −0.203460 0.0229244i
\(525\) −658.911 414.021i −1.25507 0.788612i
\(526\) 23.6853 + 5.40601i 0.0450290 + 0.0102776i
\(527\) −233.908 + 186.535i −0.443847 + 0.353957i
\(528\) −467.389 372.730i −0.885206 0.705928i
\(529\) −11.7403 51.4375i −0.0221934 0.0972354i
\(530\) 23.7837 + 8.32228i 0.0448749 + 0.0157024i
\(531\) 133.698 + 277.627i 0.251785 + 0.522838i
\(532\) 132.898 83.5053i 0.249808 0.156965i
\(533\) −419.972 + 146.955i −0.787940 + 0.275712i
\(534\) 144.961 + 144.961i 0.271463 + 0.271463i
\(535\) −11.1740 + 23.2031i −0.0208860 + 0.0433702i
\(536\) −6.46394 57.3690i −0.0120596 0.107032i
\(537\) 648.103 73.0236i 1.20690 0.135984i
\(538\) −187.229 90.1649i −0.348010 0.167593i
\(539\) −3.74172 + 3.74172i −0.00694196 + 0.00694196i
\(540\) 0.594716 + 1.69960i 0.00110133 + 0.00314741i
\(541\) 63.1537 + 100.509i 0.116735 + 0.185783i 0.899981 0.435929i \(-0.143580\pi\)
−0.783246 + 0.621712i \(0.786437\pi\)
\(542\) −658.063 + 316.906i −1.21414 + 0.584698i
\(543\) 321.296 918.211i 0.591705 1.69100i
\(544\) 140.590 32.0887i 0.258437 0.0589865i
\(545\) 3.56551 4.47101i 0.00654222 0.00820368i
\(546\) −735.013 921.677i −1.34618 1.68805i
\(547\) −141.842 + 621.450i −0.259309 + 1.13611i 0.662684 + 0.748899i \(0.269417\pi\)
−0.921993 + 0.387206i \(0.873440\pi\)
\(548\) −109.177 + 173.754i −0.199228 + 0.317070i
\(549\) 4.74544 42.1170i 0.00864379 0.0767158i
\(550\) 550.664i 1.00121i
\(551\) −222.566 541.638i −0.403931 0.983010i
\(552\) −936.963 −1.69740
\(553\) 590.643 + 66.5495i 1.06807 + 0.120343i
\(554\) −579.808 364.317i −1.04658 0.657613i
\(555\) 19.3330 + 4.41264i 0.0348343 + 0.00795071i
\(556\) −162.873 + 129.887i −0.292936 + 0.233609i
\(557\) 593.908 + 473.626i 1.06626 + 0.850316i 0.989180 0.146709i \(-0.0468680\pi\)
0.0770829 + 0.997025i \(0.475439\pi\)
\(558\) −148.801 651.940i −0.266668 1.16835i
\(559\) −809.889 283.392i −1.44882 0.506963i
\(560\) 5.64527 + 11.7225i 0.0100808 + 0.0209331i
\(561\) −410.654 + 258.031i −0.732003 + 0.459948i
\(562\) −98.6237 + 34.5099i −0.175487 + 0.0614055i
\(563\) −443.544 443.544i −0.787822 0.787822i 0.193315 0.981137i \(-0.438076\pi\)
−0.981137 + 0.193315i \(0.938076\pi\)
\(564\) −10.0404 + 20.8491i −0.0178021 + 0.0369665i
\(565\) 1.95841 + 17.3814i 0.00346621 + 0.0307635i
\(566\) −299.109 + 33.7014i −0.528460 + 0.0595432i
\(567\) −371.179 178.750i −0.654636 0.315256i
\(568\) −220.470 + 220.470i −0.388152 + 0.388152i
\(569\) 92.2750 + 263.707i 0.162170 + 0.463456i 0.996081 0.0884427i \(-0.0281890\pi\)
−0.833911 + 0.551899i \(0.813903\pi\)
\(570\) −14.7901 23.5383i −0.0259475 0.0412953i
\(571\) 438.799 211.315i 0.768475 0.370078i −0.00821061 0.999966i \(-0.502614\pi\)
0.776686 + 0.629888i \(0.216899\pi\)
\(572\) 106.491 304.334i 0.186173 0.532053i
\(573\) 868.060 198.129i 1.51494 0.345775i
\(574\) 147.503 184.963i 0.256975 0.322236i
\(575\) 375.466 + 470.819i 0.652984 + 0.818816i
\(576\) −172.463 + 755.609i −0.299414 + 1.31182i
\(577\) 150.219 239.072i 0.260345 0.414336i −0.690817 0.723030i \(-0.742749\pi\)
0.951161 + 0.308694i \(0.0998918\pi\)
\(578\) 41.6905 370.013i 0.0721288 0.640161i
\(579\) 1433.71i 2.47618i
\(580\) −5.63741 + 1.60690i −0.00971966 + 0.00277052i
\(581\) 192.246 0.330888
\(582\) −54.3167 6.12003i −0.0933277 0.0105155i
\(583\) 899.792 + 565.377i 1.54338 + 0.969771i
\(584\) 882.413 + 201.405i 1.51098 + 0.344872i
\(585\) 34.6918 27.6658i 0.0593022 0.0472919i
\(586\) 67.2035 + 53.5930i 0.114682 + 0.0914556i
\(587\) 36.9042 + 161.688i 0.0628691 + 0.275448i 0.996586 0.0825656i \(-0.0263114\pi\)
−0.933717 + 0.358013i \(0.883454\pi\)
\(588\) 1.91773 + 0.671041i 0.00326144 + 0.00114123i
\(589\) −313.793 651.597i −0.532755 1.10628i
\(590\) −7.30830 + 4.59211i −0.0123870 + 0.00778324i
\(591\) 239.319 83.7412i 0.404938 0.141694i
\(592\) 178.124 + 178.124i 0.300885 + 0.300885i
\(593\) 464.417 964.372i 0.783165 1.62626i 0.00355571 0.999994i \(-0.498868\pi\)
0.779610 0.626266i \(-0.215418\pi\)
\(594\) −21.9980 195.237i −0.0370336 0.328683i
\(595\) 10.4892 1.18184i 0.0176288 0.00198629i
\(596\) −115.838 55.7844i −0.194358 0.0935980i
\(597\) 91.3060 91.3060i 0.152941 0.152941i
\(598\) 301.302 + 861.073i 0.503850 + 1.43992i
\(599\) 19.6237 + 31.2310i 0.0327608 + 0.0521385i 0.862703 0.505711i \(-0.168770\pi\)
−0.829942 + 0.557849i \(0.811627\pi\)
\(600\) 873.834 420.816i 1.45639 0.701361i
\(601\) −165.010 + 471.571i −0.274559 + 0.784645i 0.721207 + 0.692720i \(0.243588\pi\)
−0.995766 + 0.0919249i \(0.970698\pi\)
\(602\) 444.785 101.519i 0.738846 0.168637i
\(603\) 45.5424 57.1083i 0.0755263 0.0947070i
\(604\) 7.07610 + 8.87315i 0.0117154 + 0.0146906i
\(605\) 1.92076 8.41538i 0.00317480 0.0139097i
\(606\) 450.919 717.634i 0.744091 1.18421i
\(607\) −18.5846 + 164.942i −0.0306171 + 0.271734i 0.969072 + 0.246780i \(0.0793725\pi\)
−0.999689 + 0.0249540i \(0.992056\pi\)
\(608\) 348.593i 0.573344i
\(609\) −439.457 + 789.866i −0.721604 + 1.29699i
\(610\) 1.18719 0.00194621
\(611\) 102.704 + 11.5720i 0.168092 + 0.0189394i
\(612\) 86.6929 + 54.4728i 0.141655 + 0.0890078i
\(613\) −793.283 181.062i −1.29410 0.295370i −0.480602 0.876939i \(-0.659582\pi\)
−0.813497 + 0.581569i \(0.802439\pi\)
\(614\) −172.016 + 137.178i −0.280157 + 0.223418i
\(615\) 12.6622 + 10.0977i 0.0205889 + 0.0164191i
\(616\) 174.995 + 766.702i 0.284082 + 1.24465i
\(617\) −889.197 311.143i −1.44116 0.504284i −0.507254 0.861797i \(-0.669339\pi\)
−0.933908 + 0.357512i \(0.883625\pi\)
\(618\) 396.749 + 823.857i 0.641988 + 1.33310i
\(619\) −690.219 + 433.693i −1.11505 + 0.700635i −0.957947 0.286946i \(-0.907360\pi\)
−0.157108 + 0.987581i \(0.550217\pi\)
\(620\) −6.83347 + 2.39113i −0.0110217 + 0.00385667i
\(621\) −151.929 151.929i −0.244653 0.244653i
\(622\) −359.691 + 746.906i −0.578281 + 1.20081i
\(623\) −21.0685 186.988i −0.0338177 0.300141i
\(624\) 1018.73 114.783i 1.63257 0.183947i
\(625\) −560.886 270.108i −0.897418 0.432174i
\(626\) 638.168 638.168i 1.01944 1.01944i
\(627\) −387.216 1106.60i −0.617569 1.76491i
\(628\) 45.5064 + 72.4231i 0.0724625 + 0.115323i
\(629\) 184.126 88.6705i 0.292728 0.140971i
\(630\) −7.79229 + 22.2691i −0.0123687 + 0.0353477i
\(631\) 430.841 98.3366i 0.682791 0.155842i 0.132963 0.991121i \(-0.457551\pi\)
0.549827 + 0.835278i \(0.314694\pi\)
\(632\) −461.879 + 579.178i −0.730822 + 0.916421i
\(633\) −831.474 1042.63i −1.31354 1.64713i
\(634\) −167.948 + 735.828i −0.264902 + 1.16061i
\(635\) 9.76432 15.5398i 0.0153769 0.0244722i
\(636\) 45.6838 405.455i 0.0718299 0.637508i
\(637\) 9.07439i 0.0142455i
\(638\) 638.704 34.0616i 1.00110 0.0533881i
\(639\) −394.488 −0.617353
\(640\) −9.13367 1.02912i −0.0142714 0.00160800i
\(641\) 439.716 + 276.292i 0.685984 + 0.431032i 0.829419 0.558628i \(-0.188672\pi\)
−0.143435 + 0.989660i \(0.545815\pi\)
\(642\) −1051.87 240.084i −1.63843 0.373962i
\(643\) 886.679 707.103i 1.37897 1.09969i 0.395533 0.918452i \(-0.370560\pi\)
0.983439 0.181241i \(-0.0580115\pi\)
\(644\) 146.579 + 116.893i 0.227607 + 0.181510i
\(645\) 6.94978 + 30.4490i 0.0107748 + 0.0472077i
\(646\) −270.414 94.6219i −0.418597 0.146474i
\(647\) −64.3196 133.561i −0.0994120 0.206431i 0.845331 0.534243i \(-0.179403\pi\)
−0.944743 + 0.327812i \(0.893689\pi\)
\(648\) 434.760 273.178i 0.670926 0.421571i
\(649\) −343.583 + 120.225i −0.529404 + 0.185246i
\(650\) −667.734 667.734i −1.02728 1.02728i
\(651\) −484.360 + 1005.78i −0.744024 + 1.54498i
\(652\) 3.55242 + 31.5286i 0.00544850 + 0.0483568i
\(653\) −828.414 + 93.3398i −1.26863 + 0.142940i −0.720500 0.693455i \(-0.756088\pi\)
−0.548128 + 0.836395i \(0.684659\pi\)
\(654\) 215.853 + 103.949i 0.330050 + 0.158944i
\(655\) 12.3332 12.3332i 0.0188294 0.0188294i
\(656\) 67.9493 + 194.188i 0.103581 + 0.296018i
\(657\) 609.265 + 969.640i 0.927344 + 1.47586i
\(658\) −49.5117 + 23.8436i −0.0752458 + 0.0362365i
\(659\) 30.0943 86.0046i 0.0456666 0.130508i −0.918792 0.394743i \(-0.870834\pi\)
0.964458 + 0.264235i \(0.0851194\pi\)
\(660\) −11.4419 + 2.61154i −0.0173362 + 0.00395688i
\(661\) −17.7926 + 22.3113i −0.0269177 + 0.0337538i −0.795108 0.606468i \(-0.792586\pi\)
0.768190 + 0.640221i \(0.221157\pi\)
\(662\) 309.366 + 387.933i 0.467320 + 0.586001i
\(663\) 185.070 810.845i 0.279140 1.22299i
\(664\) −127.476 + 202.877i −0.191982 + 0.305538i
\(665\) −2.85692 + 25.3559i −0.00429613 + 0.0381292i
\(666\) 456.783i 0.685860i
\(667\) 522.868 464.617i 0.783910 0.696578i
\(668\) 47.1095 0.0705231
\(669\) 305.314 + 34.4006i 0.456373 + 0.0514209i
\(670\) 1.73241 + 1.08855i 0.00258569 + 0.00162470i
\(671\) 48.8125 + 11.1411i 0.0727458 + 0.0166038i
\(672\) 420.686 335.486i 0.626020 0.499235i
\(673\) −459.480 366.423i −0.682734 0.544463i 0.219551 0.975601i \(-0.429541\pi\)
−0.902286 + 0.431138i \(0.858112\pi\)
\(674\) −178.808 783.408i −0.265293 1.16233i
\(675\) 209.929 + 73.4572i 0.311005 + 0.108825i
\(676\) 158.140 + 328.382i 0.233935 + 0.485772i
\(677\) −104.008 + 65.3523i −0.153630 + 0.0965322i −0.606653 0.794967i \(-0.707488\pi\)
0.453023 + 0.891499i \(0.350346\pi\)
\(678\) −691.668 + 242.025i −1.02016 + 0.356969i
\(679\) 35.4767 + 35.4767i 0.0522485 + 0.0522485i
\(680\) −5.70806 + 11.8529i −0.00839420 + 0.0174307i
\(681\) −221.344 1964.48i −0.325027 2.88470i
\(682\) 784.978 88.4458i 1.15099 0.129686i
\(683\) 909.152 + 437.825i 1.33112 + 0.641032i 0.958004 0.286755i \(-0.0925765\pi\)
0.373112 + 0.927786i \(0.378291\pi\)
\(684\) −175.011 + 175.011i −0.255864 + 0.255864i
\(685\) −11.0183 31.4886i −0.0160852 0.0459688i
\(686\) 311.231 + 495.322i 0.453690 + 0.722043i
\(687\) 369.108 177.753i 0.537275 0.258738i
\(688\) −131.036 + 374.479i −0.190459 + 0.544301i
\(689\) −1776.66 + 405.511i −2.57861 + 0.588550i
\(690\) 20.7035 25.9614i 0.0300051 0.0376252i
\(691\) −82.1865 103.059i −0.118938 0.149144i 0.718798 0.695219i \(-0.244693\pi\)
−0.837736 + 0.546075i \(0.816121\pi\)
\(692\) −31.5208 + 138.102i −0.0455503 + 0.199569i
\(693\) −529.372 + 842.490i −0.763884 + 1.21571i
\(694\) 97.2684 863.280i 0.140156 1.24392i
\(695\) 33.8670i 0.0487296i
\(696\) −542.147 987.512i −0.778947 1.41884i
\(697\) 166.906 0.239464
\(698\) 813.571 + 91.6674i 1.16557 + 0.131329i
\(699\) 438.051 + 275.246i 0.626682 + 0.393771i
\(700\) −189.202 43.1842i −0.270289 0.0616918i
\(701\) 205.200 163.642i 0.292725 0.233441i −0.466104 0.884730i \(-0.654343\pi\)
0.758830 + 0.651289i \(0.225771\pi\)
\(702\) 263.419 + 210.070i 0.375241 + 0.299245i
\(703\) 109.930 + 481.633i 0.156372 + 0.685111i
\(704\) −864.181 302.390i −1.22753 0.429531i
\(705\) −1.63228 3.38946i −0.00231529 0.00480774i
\(706\) −350.905 + 220.488i −0.497033 + 0.312307i
\(707\) −734.285 + 256.937i −1.03859 + 0.363419i
\(708\) 98.8282 + 98.8282i 0.139588 + 0.139588i
\(709\) 242.106 502.738i 0.341475 0.709081i −0.657541 0.753418i \(-0.728404\pi\)
0.999017 + 0.0443379i \(0.0141178\pi\)
\(710\) −1.23719 10.9804i −0.00174252 0.0154653i
\(711\) −931.384 + 104.942i −1.30996 + 0.147597i
\(712\) 211.299 + 101.756i 0.296768 + 0.142916i
\(713\) 610.852 610.852i 0.856735 0.856735i
\(714\) 146.055 + 417.402i 0.204559 + 0.584597i
\(715\) 27.8877 + 44.3830i 0.0390038 + 0.0620742i
\(716\) 146.542 70.5710i 0.204668 0.0985628i
\(717\) −258.827 + 739.685i −0.360986 + 1.03164i
\(718\) −998.611 + 227.926i −1.39082 + 0.317446i
\(719\) 173.291 217.300i 0.241017 0.302225i −0.646581 0.762846i \(-0.723802\pi\)
0.887597 + 0.460620i \(0.152373\pi\)
\(720\) −12.7922 16.0409i −0.0177669 0.0222790i
\(721\) 186.766 818.277i 0.259038 1.13492i
\(722\) 42.2353 67.2171i 0.0584976 0.0930984i
\(723\) 1.87500 16.6411i 0.00259336 0.0230167i
\(724\) 242.602i 0.335085i
\(725\) −278.967 + 668.148i −0.384782 + 0.921583i
\(726\) 361.624 0.498105
\(727\) −868.909 97.9026i −1.19520 0.134667i −0.508144 0.861272i \(-0.669668\pi\)
−0.687055 + 0.726606i \(0.741097\pi\)
\(728\) −1141.90 717.502i −1.56854 0.985580i
\(729\) 982.845 + 224.328i 1.34821 + 0.307720i
\(730\) −25.0787 + 19.9996i −0.0343543 + 0.0273967i
\(731\) 251.647 + 200.681i 0.344250 + 0.274530i
\(732\) −4.27771 18.7419i −0.00584386 0.0256036i
\(733\) 121.421 + 42.4869i 0.165649 + 0.0579631i 0.411830 0.911261i \(-0.364890\pi\)
−0.246181 + 0.969224i \(0.579176\pi\)
\(734\) −190.712 396.017i −0.259825 0.539533i
\(735\) −0.279674 + 0.175731i −0.000380509 + 0.000239090i
\(736\) −393.024 + 137.525i −0.534000 + 0.186855i
\(737\) 61.0145 + 61.0145i 0.0827876 + 0.0827876i
\(738\) −161.864 + 336.114i −0.219328 + 0.455439i
\(739\) 61.1890 + 543.068i 0.0827998 + 0.734868i 0.964685 + 0.263405i \(0.0848455\pi\)
−0.881886 + 0.471463i \(0.843726\pi\)
\(740\) 4.91426 0.553704i 0.00664089 0.000748249i
\(741\) 1811.40 + 872.322i 2.44453 + 1.17722i
\(742\) 685.153 685.153i 0.923387 0.923387i
\(743\) 73.3592 + 209.649i 0.0987338 + 0.282165i 0.982647 0.185486i \(-0.0593860\pi\)
−0.883913 + 0.467651i \(0.845100\pi\)
\(744\) −740.231 1178.07i −0.994934 1.58343i
\(745\) 18.8318 9.06891i 0.0252776 0.0121730i
\(746\) 341.955 977.252i 0.458385 1.30999i
\(747\) −295.551 + 67.4577i −0.395651 + 0.0903048i
\(748\) −75.4107 + 94.5620i −0.100816 + 0.126420i
\(749\) 617.456 + 774.266i 0.824374 + 1.03373i
\(750\) −15.3073 + 67.0655i −0.0204097 + 0.0894207i
\(751\) −4.56022 + 7.25755i −0.00607220 + 0.00966385i −0.849747 0.527191i \(-0.823245\pi\)
0.843674 + 0.536855i \(0.180388\pi\)
\(752\) 5.35069 47.4887i 0.00711528 0.0631498i
\(753\) 851.592i 1.13093i
\(754\) −733.187 + 815.793i −0.972397 + 1.08195i
\(755\) −1.84504 −0.00244377
\(756\) 68.8067 + 7.75265i 0.0910141 + 0.0102548i
\(757\) 642.972 + 404.006i 0.849368 + 0.533693i 0.884957 0.465673i \(-0.154188\pi\)
−0.0355886 + 0.999367i \(0.511331\pi\)
\(758\)