Properties

Label 29.3.f.a.11.3
Level 29
Weight 3
Character 29.11
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 11.3
Character \(\chi\) = 29.11
Dual form 29.3.f.a.8.3

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.0310749 + 0.0108736i) q^{2}\) \(+(0.529545 + 4.69985i) q^{3}\) \(+(-3.12648 + 2.49328i) q^{4}\) \(+(3.79007 - 7.87017i) q^{5}\) \(+(-0.0675598 - 0.140289i) q^{6}\) \(+(3.62612 - 4.54701i) q^{7}\) \(+(0.140107 - 0.222980i) q^{8}\) \(+(-13.0338 + 2.97487i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.0310749 + 0.0108736i) q^{2}\) \(+(0.529545 + 4.69985i) q^{3}\) \(+(-3.12648 + 2.49328i) q^{4}\) \(+(3.79007 - 7.87017i) q^{5}\) \(+(-0.0675598 - 0.140289i) q^{6}\) \(+(3.62612 - 4.54701i) q^{7}\) \(+(0.140107 - 0.222980i) q^{8}\) \(+(-13.0338 + 2.97487i) q^{9}\) \(+(-0.0321993 + 0.285777i) q^{10}\) \(+(3.95365 + 6.29219i) q^{11}\) \(+(-13.3737 - 13.3737i) q^{12}\) \(+(-10.7515 - 2.45395i) q^{13}\) \(+(-0.0632391 + 0.180727i) q^{14}\) \(+(38.9956 + 13.6451i) q^{15}\) \(+(3.55744 - 15.5862i) q^{16}\) \(+(-4.26171 + 4.26171i) q^{17}\) \(+(0.372676 - 0.234168i) q^{18}\) \(+(-13.0613 - 1.47165i) q^{19}\) \(+(7.77298 + 34.0556i) q^{20}\) \(+(23.2904 + 14.6343i) q^{21}\) \(+(-0.191278 - 0.152539i) q^{22}\) \(+(-6.32686 + 3.04685i) q^{23}\) \(+(1.12216 + 0.540405i) q^{24}\) \(+(-31.9876 - 40.1112i) q^{25}\) \(+(0.360785 - 0.0406507i) q^{26}\) \(+(-6.82468 - 19.5038i) q^{27}\) \(+23.2571i q^{28}\) \(+(29.0000 - 0.0339620i) q^{29}\) \(-1.36016 q^{30}\) \(+(2.37249 - 0.830170i) q^{31}\) \(+(0.176871 + 1.56977i) q^{32}\) \(+(-27.4787 + 21.9135i) q^{33}\) \(+(0.0860924 - 0.178773i) q^{34}\) \(+(-22.0425 - 45.7716i) q^{35}\) \(+(33.3326 - 41.7978i) q^{36}\) \(+(-17.7197 + 28.2007i) q^{37}\) \(+(0.421880 - 0.0962915i) q^{38}\) \(+(5.83981 - 51.8298i) q^{39}\) \(+(-1.22387 - 1.94778i) q^{40}\) \(+(-2.70371 - 2.70371i) q^{41}\) \(+(-0.882876 - 0.201511i) q^{42}\) \(+(-11.9973 + 34.2863i) q^{43}\) \(+(-28.0492 - 9.81484i) q^{44}\) \(+(-25.9862 + 113.853i) q^{45}\) \(+(0.163476 - 0.163476i) q^{46}\) \(+(7.75262 - 4.87130i) q^{47}\) \(+(75.1364 + 8.46584i) q^{48}\) \(+(3.37698 + 14.7955i) q^{49}\) \(+(1.43017 + 0.898634i) q^{50}\) \(+(-22.2862 - 17.7726i) q^{51}\) \(+(39.7327 - 19.1342i) q^{52}\) \(+(39.1941 + 18.8749i) q^{53}\) \(+(0.424153 + 0.531871i) q^{54}\) \(+(64.5052 - 7.26799i) q^{55}\) \(+(-0.505844 - 1.44562i) q^{56}\) \(-62.1653i q^{57}\) \(+(-0.900803 + 0.316389i) q^{58}\) \(+70.7916 q^{59}\) \(+(-155.940 + 54.5658i) q^{60}\) \(+(-11.5282 - 102.316i) q^{61}\) \(+(-0.0646980 + 0.0515949i) q^{62}\) \(+(-33.7352 + 70.0519i) q^{63}\) \(+(27.7234 + 57.5683i) q^{64}\) \(+(-60.0619 + 75.3153i) q^{65}\) \(+(0.615620 - 0.979753i) q^{66}\) \(+(26.2176 - 5.98401i) q^{67}\) \(+(2.69850 - 23.9498i) q^{68}\) \(+(-17.6701 - 28.1218i) q^{69}\) \(+(1.18267 + 1.18267i) q^{70}\) \(+(-93.3221 - 21.3002i) q^{71}\) \(+(-1.16279 + 3.32307i) q^{72}\) \(+(-83.5084 - 29.2208i) q^{73}\) \(+(0.243995 - 1.06901i) q^{74}\) \(+(171.578 - 171.578i) q^{75}\) \(+(44.5050 - 27.9644i) q^{76}\) \(+(42.9470 + 4.83897i) q^{77}\) \(+(0.382104 + 1.67411i) q^{78}\) \(+(51.8104 + 32.5546i) q^{79}\) \(+(-109.183 - 87.0704i) q^{80}\) \(+(-20.3542 + 9.80207i) q^{81}\) \(+(0.113416 + 0.0546185i) q^{82}\) \(+(18.9679 + 23.7849i) q^{83}\) \(+(-109.305 + 12.3157i) q^{84}\) \(+(17.3882 + 49.6926i) q^{85}\) \(-1.19590i q^{86}\) \(+(15.5164 + 136.277i) q^{87}\) \(+1.95696 q^{88}\) \(+(97.6073 - 34.1543i) q^{89}\) \(+(-0.430471 - 3.82054i) q^{90}\) \(+(-50.1443 + 39.9887i) q^{91}\) \(+(12.1841 - 25.3006i) q^{92}\) \(+(5.15801 + 10.7107i) q^{93}\) \(+(-0.187944 + 0.235674i) q^{94}\) \(+(-61.0853 + 97.2168i) q^{95}\) \(+(-7.28403 + 1.66253i) q^{96}\) \(+(-12.7840 + 113.461i) q^{97}\) \(+(-0.265820 - 0.423050i) q^{98}\) \(+(-70.2494 - 70.2494i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{25}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0310749 + 0.0108736i −0.0155375 + 0.00543680i −0.338037 0.941133i \(-0.609763\pi\)
0.322499 + 0.946570i \(0.395477\pi\)
\(3\) 0.529545 + 4.69985i 0.176515 + 1.56662i 0.699726 + 0.714412i \(0.253306\pi\)
−0.523211 + 0.852203i \(0.675266\pi\)
\(4\) −3.12648 + 2.49328i −0.781620 + 0.623321i
\(5\) 3.79007 7.87017i 0.758015 1.57403i −0.0595693 0.998224i \(-0.518973\pi\)
0.817584 0.575809i \(-0.195313\pi\)
\(6\) −0.0675598 0.140289i −0.0112600 0.0233816i
\(7\) 3.62612 4.54701i 0.518017 0.649572i −0.452170 0.891932i \(-0.649350\pi\)
0.970187 + 0.242360i \(0.0779214\pi\)
\(8\) 0.140107 0.222980i 0.0175134 0.0278724i
\(9\) −13.0338 + 2.97487i −1.44820 + 0.330542i
\(10\) −0.0321993 + 0.285777i −0.00321993 + 0.0285777i
\(11\) 3.95365 + 6.29219i 0.359422 + 0.572017i 0.976668 0.214753i \(-0.0688946\pi\)
−0.617246 + 0.786770i \(0.711752\pi\)
\(12\) −13.3737 13.3737i −1.11447 1.11447i
\(13\) −10.7515 2.45395i −0.827037 0.188766i −0.212006 0.977268i \(-0.567999\pi\)
−0.615031 + 0.788503i \(0.710857\pi\)
\(14\) −0.0632391 + 0.180727i −0.00451708 + 0.0129091i
\(15\) 38.9956 + 13.6451i 2.59971 + 0.909676i
\(16\) 3.55744 15.5862i 0.222340 0.974135i
\(17\) −4.26171 + 4.26171i −0.250689 + 0.250689i −0.821253 0.570564i \(-0.806725\pi\)
0.570564 + 0.821253i \(0.306725\pi\)
\(18\) 0.372676 0.234168i 0.0207042 0.0130093i
\(19\) −13.0613 1.47165i −0.687436 0.0774554i −0.238664 0.971102i \(-0.576710\pi\)
−0.448771 + 0.893647i \(0.648138\pi\)
\(20\) 7.77298 + 34.0556i 0.388649 + 1.70278i
\(21\) 23.2904 + 14.6343i 1.10907 + 0.696873i
\(22\) −0.191278 0.152539i −0.00869445 0.00693360i
\(23\) −6.32686 + 3.04685i −0.275081 + 0.132472i −0.566339 0.824173i \(-0.691641\pi\)
0.291258 + 0.956645i \(0.405926\pi\)
\(24\) 1.12216 + 0.540405i 0.0467568 + 0.0225169i
\(25\) −31.9876 40.1112i −1.27951 1.60445i
\(26\) 0.360785 0.0406507i 0.0138763 0.00156349i
\(27\) −6.82468 19.5038i −0.252766 0.722364i
\(28\) 23.2571i 0.830609i
\(29\) 29.0000 0.0339620i 0.999999 0.00117110i
\(30\) −1.36016 −0.0453386
\(31\) 2.37249 0.830170i 0.0765319 0.0267797i −0.291742 0.956497i \(-0.594235\pi\)
0.368273 + 0.929718i \(0.379949\pi\)
\(32\) 0.176871 + 1.56977i 0.00552722 + 0.0490554i
\(33\) −27.4787 + 21.9135i −0.832688 + 0.664046i
\(34\) 0.0860924 0.178773i 0.00253213 0.00525802i
\(35\) −22.0425 45.7716i −0.629784 1.30776i
\(36\) 33.3326 41.7978i 0.925906 1.16105i
\(37\) −17.7197 + 28.2007i −0.478910 + 0.762182i −0.995571 0.0940085i \(-0.970032\pi\)
0.516661 + 0.856190i \(0.327175\pi\)
\(38\) 0.421880 0.0962915i 0.0111021 0.00253399i
\(39\) 5.83981 51.8298i 0.149739 1.32897i
\(40\) −1.22387 1.94778i −0.0305967 0.0486944i
\(41\) −2.70371 2.70371i −0.0659440 0.0659440i 0.673366 0.739310i \(-0.264848\pi\)
−0.739310 + 0.673366i \(0.764848\pi\)
\(42\) −0.882876 0.201511i −0.0210209 0.00479787i
\(43\) −11.9973 + 34.2863i −0.279007 + 0.797356i 0.716050 + 0.698049i \(0.245948\pi\)
−0.995057 + 0.0993068i \(0.968337\pi\)
\(44\) −28.0492 9.81484i −0.637482 0.223065i
\(45\) −25.9862 + 113.853i −0.577471 + 2.53007i
\(46\) 0.163476 0.163476i 0.00355384 0.00355384i
\(47\) 7.75262 4.87130i 0.164949 0.103645i −0.447027 0.894520i \(-0.647517\pi\)
0.611977 + 0.790876i \(0.290375\pi\)
\(48\) 75.1364 + 8.46584i 1.56534 + 0.176372i
\(49\) 3.37698 + 14.7955i 0.0689180 + 0.301949i
\(50\) 1.43017 + 0.898634i 0.0286033 + 0.0179727i
\(51\) −22.2862 17.7726i −0.436984 0.348483i
\(52\) 39.7327 19.1342i 0.764090 0.367966i
\(53\) 39.1941 + 18.8749i 0.739511 + 0.356130i 0.765417 0.643535i \(-0.222533\pi\)
−0.0259061 + 0.999664i \(0.508247\pi\)
\(54\) 0.424153 + 0.531871i 0.00785469 + 0.00984947i
\(55\) 64.5052 7.26799i 1.17282 0.132145i
\(56\) −0.505844 1.44562i −0.00903293 0.0258146i
\(57\) 62.1653i 1.09062i
\(58\) −0.900803 + 0.316389i −0.0155311 + 0.00545499i
\(59\) 70.7916 1.19986 0.599929 0.800054i \(-0.295196\pi\)
0.599929 + 0.800054i \(0.295196\pi\)
\(60\) −155.940 + 54.5658i −2.59900 + 0.909430i
\(61\) −11.5282 102.316i −0.188988 1.67731i −0.627524 0.778597i \(-0.715932\pi\)
0.438537 0.898713i \(-0.355497\pi\)
\(62\) −0.0646980 + 0.0515949i −0.00104352 + 0.000832176i
\(63\) −33.7352 + 70.0519i −0.535480 + 1.11194i
\(64\) 27.7234 + 57.5683i 0.433178 + 0.899504i
\(65\) −60.0619 + 75.3153i −0.924030 + 1.15870i
\(66\) 0.615620 0.979753i 0.00932757 0.0148447i
\(67\) 26.2176 5.98401i 0.391308 0.0893135i −0.0223398 0.999750i \(-0.507112\pi\)
0.413648 + 0.910437i \(0.364254\pi\)
\(68\) 2.69850 23.9498i 0.0396838 0.352203i
\(69\) −17.6701 28.1218i −0.256088 0.407562i
\(70\) 1.18267 + 1.18267i 0.0168953 + 0.0168953i
\(71\) −93.3221 21.3002i −1.31440 0.300002i −0.492835 0.870123i \(-0.664039\pi\)
−0.821561 + 0.570121i \(0.806896\pi\)
\(72\) −1.16279 + 3.32307i −0.0161499 + 0.0461537i
\(73\) −83.5084 29.2208i −1.14395 0.400286i −0.309245 0.950982i \(-0.600076\pi\)
−0.834705 + 0.550697i \(0.814362\pi\)
\(74\) 0.243995 1.06901i 0.00329723 0.0144461i
\(75\) 171.578 171.578i 2.28770 2.28770i
\(76\) 44.5050 27.9644i 0.585593 0.367952i
\(77\) 42.9470 + 4.83897i 0.557753 + 0.0628437i
\(78\) 0.382104 + 1.67411i 0.00489877 + 0.0214629i
\(79\) 51.8104 + 32.5546i 0.655828 + 0.412084i 0.818429 0.574608i \(-0.194846\pi\)
−0.162601 + 0.986692i \(0.551988\pi\)
\(80\) −109.183 87.0704i −1.36478 1.08838i
\(81\) −20.3542 + 9.80207i −0.251286 + 0.121013i
\(82\) 0.113416 + 0.0546185i 0.00138313 + 0.000666079i
\(83\) 18.9679 + 23.7849i 0.228528 + 0.286566i 0.882854 0.469647i \(-0.155619\pi\)
−0.654326 + 0.756213i \(0.727047\pi\)
\(84\) −109.305 + 12.3157i −1.30124 + 0.146615i
\(85\) 17.3882 + 49.6926i 0.204567 + 0.584619i
\(86\) 1.19590i 0.0139058i
\(87\) 15.5164 + 136.277i 0.178350 + 1.56641i
\(88\) 1.95696 0.0222382
\(89\) 97.6073 34.1543i 1.09671 0.383756i 0.279530 0.960137i \(-0.409821\pi\)
0.817181 + 0.576381i \(0.195536\pi\)
\(90\) −0.430471 3.82054i −0.00478301 0.0424504i
\(91\) −50.1443 + 39.9887i −0.551036 + 0.439436i
\(92\) 12.1841 25.3006i 0.132436 0.275006i
\(93\) 5.15801 + 10.7107i 0.0554625 + 0.115169i
\(94\) −0.187944 + 0.235674i −0.00199940 + 0.00250717i
\(95\) −61.0853 + 97.2168i −0.643004 + 1.02333i
\(96\) −7.28403 + 1.66253i −0.0758753 + 0.0173180i
\(97\) −12.7840 + 113.461i −0.131794 + 1.16970i 0.737479 + 0.675370i \(0.236016\pi\)
−0.869273 + 0.494333i \(0.835413\pi\)
\(98\) −0.265820 0.423050i −0.00271245 0.00431684i
\(99\) −70.2494 70.2494i −0.709590 0.709590i
\(100\) 200.017 + 45.6527i 2.00017 + 0.456527i
\(101\) 42.0839 120.269i 0.416672 1.19078i −0.524075 0.851672i \(-0.675589\pi\)
0.940747 0.339109i \(-0.110125\pi\)
\(102\) 0.885793 + 0.309953i 0.00868425 + 0.00303875i
\(103\) −36.2231 + 158.704i −0.351681 + 1.54081i 0.421618 + 0.906773i \(0.361462\pi\)
−0.773299 + 0.634041i \(0.781395\pi\)
\(104\) −2.05354 + 2.05354i −0.0197456 + 0.0197456i
\(105\) 203.447 127.834i 1.93759 1.21747i
\(106\) −1.42319 0.160355i −0.0134263 0.00151278i
\(107\) −15.1003 66.1586i −0.141124 0.618304i −0.995175 0.0981152i \(-0.968719\pi\)
0.854051 0.520189i \(-0.174139\pi\)
\(108\) 69.9658 + 43.9624i 0.647831 + 0.407059i
\(109\) −8.50965 6.78622i −0.0780702 0.0622589i 0.583677 0.811986i \(-0.301613\pi\)
−0.661747 + 0.749727i \(0.730185\pi\)
\(110\) −1.92547 + 0.927256i −0.0175042 + 0.00842960i
\(111\) −141.922 68.3462i −1.27858 0.615732i
\(112\) −57.9707 72.6930i −0.517596 0.649044i
\(113\) −56.1593 + 6.32764i −0.496985 + 0.0559968i −0.356900 0.934143i \(-0.616166\pi\)
−0.140085 + 0.990139i \(0.544738\pi\)
\(114\) 0.675960 + 1.93178i 0.00592947 + 0.0169455i
\(115\) 61.3412i 0.533402i
\(116\) −90.5831 + 72.4114i −0.780889 + 0.624236i
\(117\) 147.433 1.26011
\(118\) −2.19984 + 0.769759i −0.0186427 + 0.00652338i
\(119\) 3.92457 + 34.8315i 0.0329796 + 0.292702i
\(120\) 8.50616 6.78343i 0.0708846 0.0565286i
\(121\) 28.5396 59.2630i 0.235864 0.489777i
\(122\) 1.47078 + 3.05411i 0.0120556 + 0.0250337i
\(123\) 11.2753 14.1387i 0.0916688 0.114949i
\(124\) −5.34769 + 8.51079i −0.0431265 + 0.0686354i
\(125\) −224.012 + 51.1293i −1.79210 + 0.409035i
\(126\) 0.286604 2.54368i 0.00227464 0.0201879i
\(127\) −121.534 193.421i −0.956962 1.52300i −0.848700 0.528875i \(-0.822614\pi\)
−0.108262 0.994122i \(-0.534529\pi\)
\(128\) −5.95556 5.95556i −0.0465278 0.0465278i
\(129\) −167.493 38.2293i −1.29840 0.296351i
\(130\) 1.04747 2.99351i 0.00805749 0.0230270i
\(131\) 196.490 + 68.7549i 1.49993 + 0.524847i 0.950508 0.310701i \(-0.100564\pi\)
0.549418 + 0.835547i \(0.314849\pi\)
\(132\) 31.2749 137.024i 0.236931 1.03806i
\(133\) −54.0533 + 54.0533i −0.406416 + 0.406416i
\(134\) −0.749644 + 0.471033i −0.00559436 + 0.00351517i
\(135\) −179.364 20.2095i −1.32863 0.149700i
\(136\) 0.353178 + 1.54737i 0.00259689 + 0.0113777i
\(137\) 58.6681 + 36.8636i 0.428235 + 0.269078i 0.728857 0.684665i \(-0.240052\pi\)
−0.300623 + 0.953743i \(0.597195\pi\)
\(138\) 0.854882 + 0.681746i 0.00619480 + 0.00494019i
\(139\) 97.5136 46.9601i 0.701537 0.337842i −0.0488824 0.998805i \(-0.515566\pi\)
0.750419 + 0.660962i \(0.229852\pi\)
\(140\) 183.037 + 88.1459i 1.30741 + 0.629614i
\(141\) 26.9997 + 33.8566i 0.191487 + 0.240117i
\(142\) 3.13159 0.352845i 0.0220534 0.00248482i
\(143\) −27.0668 77.3524i −0.189278 0.540926i
\(144\) 213.730i 1.48423i
\(145\) 109.645 228.363i 0.756171 1.57492i
\(146\) 2.91275 0.0199504
\(147\) −67.7484 + 23.7062i −0.460873 + 0.161267i
\(148\) −14.9122 132.349i −0.100758 0.894251i
\(149\) 42.7218 34.0695i 0.286724 0.228654i −0.469556 0.882902i \(-0.655586\pi\)
0.756280 + 0.654248i \(0.227015\pi\)
\(150\) −3.46610 + 7.19743i −0.0231073 + 0.0479829i
\(151\) 83.0312 + 172.416i 0.549875 + 1.14183i 0.971933 + 0.235259i \(0.0755937\pi\)
−0.422058 + 0.906569i \(0.638692\pi\)
\(152\) −2.15813 + 2.70621i −0.0141982 + 0.0178040i
\(153\) 42.8682 68.2243i 0.280184 0.445910i
\(154\) −1.38719 + 0.316618i −0.00900774 + 0.00205596i
\(155\) 2.45833 21.8183i 0.0158602 0.140763i
\(156\) 110.968 + 176.605i 0.711335 + 1.13208i
\(157\) −45.4322 45.4322i −0.289377 0.289377i 0.547457 0.836834i \(-0.315596\pi\)
−0.836834 + 0.547457i \(0.815596\pi\)
\(158\) −1.96399 0.448268i −0.0124303 0.00283714i
\(159\) −67.9539 + 194.201i −0.427383 + 1.22139i
\(160\) 13.0247 + 4.55755i 0.0814046 + 0.0284847i
\(161\) −9.08786 + 39.8165i −0.0564463 + 0.247307i
\(162\) 0.525922 0.525922i 0.00324643 0.00324643i
\(163\) −249.812 + 156.967i −1.53259 + 0.962990i −0.539975 + 0.841681i \(0.681566\pi\)
−0.992615 + 0.121309i \(0.961291\pi\)
\(164\) 15.1942 + 1.71197i 0.0926474 + 0.0104389i
\(165\) 68.3169 + 299.316i 0.414042 + 1.81403i
\(166\) −0.848053 0.532867i −0.00510875 0.00321004i
\(167\) 44.5238 + 35.5065i 0.266610 + 0.212614i 0.747665 0.664076i \(-0.231175\pi\)
−0.481055 + 0.876690i \(0.659746\pi\)
\(168\) 6.52632 3.14291i 0.0388471 0.0187078i
\(169\) −42.6913 20.5591i −0.252611 0.121651i
\(170\) −1.08067 1.35512i −0.00635691 0.00797131i
\(171\) 174.616 19.6745i 1.02114 0.115055i
\(172\) −47.9762 137.108i −0.278931 0.797140i
\(173\) 335.481i 1.93920i −0.244702 0.969598i \(-0.578690\pi\)
0.244702 0.969598i \(-0.421310\pi\)
\(174\) −1.96400 4.06609i −0.0112873 0.0233684i
\(175\) −298.377 −1.70501
\(176\) 112.136 39.2381i 0.637136 0.222944i
\(177\) 37.4873 + 332.709i 0.211793 + 1.87971i
\(178\) −2.66176 + 2.12268i −0.0149537 + 0.0119252i
\(179\) 69.3056 143.915i 0.387182 0.803992i −0.612724 0.790297i \(-0.709926\pi\)
0.999906 0.0136949i \(-0.00435935\pi\)
\(180\) −202.622 420.750i −1.12568 2.33750i
\(181\) 152.161 190.804i 0.840671 1.05417i −0.157110 0.987581i \(-0.550218\pi\)
0.997781 0.0665866i \(-0.0212109\pi\)
\(182\) 1.12341 1.78790i 0.00617258 0.00982360i
\(183\) 474.764 108.362i 2.59434 0.592141i
\(184\) −0.207053 + 1.83765i −0.00112529 + 0.00998721i
\(185\) 154.785 + 246.340i 0.836678 + 1.33157i
\(186\) −0.276749 0.276749i −0.00148790 0.00148790i
\(187\) −43.6648 9.96621i −0.233502 0.0532952i
\(188\) −12.0929 + 34.5595i −0.0643239 + 0.183827i
\(189\) −113.431 39.6913i −0.600165 0.210007i
\(190\) 0.841128 3.68522i 0.00442699 0.0193959i
\(191\) −166.578 + 166.578i −0.872137 + 0.872137i −0.992705 0.120568i \(-0.961528\pi\)
0.120568 + 0.992705i \(0.461528\pi\)
\(192\) −255.881 + 160.781i −1.33271 + 0.837400i
\(193\) 188.693 + 21.2606i 0.977683 + 0.110158i 0.586321 0.810078i \(-0.300576\pi\)
0.391362 + 0.920237i \(0.372004\pi\)
\(194\) −0.836468 3.66481i −0.00431169 0.0188908i
\(195\) −385.776 242.399i −1.97834 1.24307i
\(196\) −47.4475 37.8381i −0.242079 0.193052i
\(197\) −208.010 + 100.172i −1.05589 + 0.508488i −0.879532 0.475839i \(-0.842144\pi\)
−0.176353 + 0.984327i \(0.556430\pi\)
\(198\) 2.94686 + 1.41913i 0.0148831 + 0.00716734i
\(199\) −93.3547 117.063i −0.469119 0.588257i 0.489836 0.871815i \(-0.337057\pi\)
−0.958955 + 0.283558i \(0.908485\pi\)
\(200\) −13.4257 + 1.51271i −0.0671285 + 0.00756356i
\(201\) 42.0073 + 120.050i 0.208992 + 0.597264i
\(202\) 4.19495i 0.0207671i
\(203\) 105.003 131.986i 0.517256 0.650179i
\(204\) 113.989 0.558772
\(205\) −31.5259 + 11.0314i −0.153785 + 0.0538116i
\(206\) −0.600050 5.32559i −0.00291286 0.0258524i
\(207\) 73.3988 58.5336i 0.354584 0.282771i
\(208\) −76.4955 + 158.845i −0.367767 + 0.763676i
\(209\) −42.3797 88.0024i −0.202774 0.421064i
\(210\) −4.93209 + 6.18464i −0.0234861 + 0.0294507i
\(211\) −66.0800 + 105.166i −0.313175 + 0.498416i −0.965808 0.259259i \(-0.916522\pi\)
0.652632 + 0.757675i \(0.273665\pi\)
\(212\) −169.600 + 38.7101i −0.799999 + 0.182595i
\(213\) 50.6892 449.879i 0.237977 2.11211i
\(214\) 1.18862 + 1.89168i 0.00555430 + 0.00883962i
\(215\) 224.368 + 224.368i 1.04357 + 1.04357i
\(216\) −5.30514 1.21086i −0.0245608 0.00560585i
\(217\) 4.82813 13.7980i 0.0222495 0.0635853i
\(218\) 0.338227 + 0.118351i 0.00155150 + 0.000542894i
\(219\) 93.1120 407.950i 0.425169 1.86279i
\(220\) −183.553 + 183.553i −0.834332 + 0.834332i
\(221\) 56.2778 35.3617i 0.254651 0.160008i
\(222\) 5.15340 + 0.580649i 0.0232135 + 0.00261553i
\(223\) −26.1358 114.508i −0.117201 0.513491i −0.999114 0.0420792i \(-0.986602\pi\)
0.881913 0.471412i \(-0.156255\pi\)
\(224\) 7.77912 + 4.88795i 0.0347282 + 0.0218212i
\(225\) 536.246 + 427.642i 2.38331 + 1.90063i
\(226\) 1.67634 0.807285i 0.00741745 0.00357206i
\(227\) 223.061 + 107.420i 0.982646 + 0.473217i 0.855014 0.518604i \(-0.173548\pi\)
0.127632 + 0.991822i \(0.459262\pi\)
\(228\) 154.996 + 194.358i 0.679806 + 0.852449i
\(229\) 131.941 14.8662i 0.576162 0.0649179i 0.180925 0.983497i \(-0.442091\pi\)
0.395237 + 0.918579i \(0.370662\pi\)
\(230\) −0.666999 1.90617i −0.00290000 0.00828772i
\(231\) 204.407i 0.884878i
\(232\) 4.05554 6.47116i 0.0174808 0.0278929i
\(233\) −300.048 −1.28776 −0.643879 0.765128i \(-0.722676\pi\)
−0.643879 + 0.765128i \(0.722676\pi\)
\(234\) −4.58146 + 1.60312i −0.0195789 + 0.00685095i
\(235\) −8.95491 79.4770i −0.0381060 0.338200i
\(236\) −221.328 + 176.503i −0.937832 + 0.747896i
\(237\) −125.566 + 260.740i −0.529813 + 1.10017i
\(238\) −0.500699 1.03971i −0.00210378 0.00436854i
\(239\) −137.342 + 172.222i −0.574654 + 0.720594i −0.981191 0.193041i \(-0.938165\pi\)
0.406536 + 0.913635i \(0.366736\pi\)
\(240\) 351.400 559.250i 1.46417 2.33021i
\(241\) −32.7575 + 7.47668i −0.135923 + 0.0310236i −0.289941 0.957044i \(-0.593636\pi\)
0.154018 + 0.988068i \(0.450779\pi\)
\(242\) −0.242464 + 2.15192i −0.00100192 + 0.00889224i
\(243\) −155.789 247.937i −0.641107 1.02032i
\(244\) 291.145 + 291.145i 1.19322 + 1.19322i
\(245\) 129.242 + 29.4987i 0.527519 + 0.120403i
\(246\) −0.196639 + 0.561963i −0.000799347 + 0.00228440i
\(247\) 136.817 + 47.8742i 0.553914 + 0.193823i
\(248\) 0.147292 0.645329i 0.000593920 0.00260213i
\(249\) −101.741 + 101.741i −0.408599 + 0.408599i
\(250\) 6.40521 4.02466i 0.0256208 0.0160986i
\(251\) −51.8762 5.84504i −0.206678 0.0232870i 0.00801842 0.999968i \(-0.497448\pi\)
−0.214696 + 0.976681i \(0.568876\pi\)
\(252\) −69.1868 303.127i −0.274551 1.20289i
\(253\) −44.1855 27.7636i −0.174646 0.109738i
\(254\) 5.87984 + 4.68902i 0.0231490 + 0.0184607i
\(255\) −224.340 + 108.036i −0.879764 + 0.423672i
\(256\) −230.023 110.773i −0.898528 0.432709i
\(257\) −21.9630 27.5408i −0.0854593 0.107163i 0.737264 0.675605i \(-0.236118\pi\)
−0.822723 + 0.568443i \(0.807546\pi\)
\(258\) 5.62054 0.633282i 0.0217850 0.00245458i
\(259\) 63.9752 + 182.831i 0.247008 + 0.705910i
\(260\) 385.223i 1.48163i
\(261\) −377.878 + 86.7140i −1.44781 + 0.332237i
\(262\) −6.85354 −0.0261585
\(263\) 72.7181 25.4452i 0.276495 0.0967497i −0.188470 0.982079i \(-0.560353\pi\)
0.464965 + 0.885329i \(0.346067\pi\)
\(264\) 1.03630 + 9.19743i 0.00392539 + 0.0348388i
\(265\) 297.097 236.927i 1.12112 0.894063i
\(266\) 1.09195 2.26746i 0.00410507 0.00852428i
\(267\) 212.207 + 440.653i 0.794783 + 1.65038i
\(268\) −67.0491 + 84.0769i −0.250183 + 0.313720i
\(269\) −40.6748 + 64.7335i −0.151207 + 0.240645i −0.913735 0.406310i \(-0.866815\pi\)
0.762528 + 0.646955i \(0.223958\pi\)
\(270\) 5.79349 1.32233i 0.0214574 0.00489750i
\(271\) −38.5675 + 342.296i −0.142316 + 1.26309i 0.696057 + 0.717987i \(0.254936\pi\)
−0.838372 + 0.545098i \(0.816492\pi\)
\(272\) 51.2630 + 81.5846i 0.188467 + 0.299943i
\(273\) −214.494 214.494i −0.785694 0.785694i
\(274\) −2.22395 0.507602i −0.00811660 0.00185256i
\(275\) 125.920 359.858i 0.457890 1.30857i
\(276\) 125.361 + 43.8656i 0.454206 + 0.158934i
\(277\) 57.6112 252.411i 0.207983 0.911232i −0.757924 0.652343i \(-0.773786\pi\)
0.965907 0.258889i \(-0.0833565\pi\)
\(278\) −2.51960 + 2.51960i −0.00906333 + 0.00906333i
\(279\) −28.4528 + 17.8781i −0.101981 + 0.0640792i
\(280\) −13.2944 1.49792i −0.0474802 0.00534973i
\(281\) −90.9123 398.313i −0.323531 1.41748i −0.831220 0.555943i \(-0.812357\pi\)
0.507689 0.861540i \(-0.330500\pi\)
\(282\) −1.20716 0.758507i −0.00428070 0.00268974i
\(283\) −122.197 97.4487i −0.431791 0.344342i 0.383351 0.923603i \(-0.374770\pi\)
−0.815142 + 0.579261i \(0.803341\pi\)
\(284\) 344.877 166.084i 1.21435 0.584802i
\(285\) −489.251 235.611i −1.71667 0.826705i
\(286\) 1.68220 + 2.10941i 0.00588181 + 0.00737555i
\(287\) −22.0977 + 2.48981i −0.0769955 + 0.00867531i
\(288\) −6.97517 19.9339i −0.0242194 0.0692149i
\(289\) 252.676i 0.874310i
\(290\) −0.924073 + 8.28861i −0.00318646 + 0.0285814i
\(291\) −540.020 −1.85574
\(292\) 333.943 116.852i 1.14364 0.400177i
\(293\) 15.8049 + 140.273i 0.0539417 + 0.478746i 0.991421 + 0.130706i \(0.0417243\pi\)
−0.937480 + 0.348040i \(0.886847\pi\)
\(294\) 1.84751 1.47334i 0.00628403 0.00501135i
\(295\) 268.305 557.142i 0.909509 1.88862i
\(296\) 3.80553 + 7.90226i 0.0128565 + 0.0266968i
\(297\) 95.7394 120.053i 0.322355 0.404220i
\(298\) −0.957120 + 1.52325i −0.00321181 + 0.00511157i
\(299\) 75.4999 17.2324i 0.252508 0.0576333i
\(300\) −108.642 + 964.226i −0.362141 + 3.21409i
\(301\) 112.396 + 178.878i 0.373410 + 0.594279i
\(302\) −4.45497 4.45497i −0.0147516 0.0147516i
\(303\) 587.530 + 134.100i 1.93904 + 0.442574i
\(304\) −69.4021 + 198.340i −0.228297 + 0.652434i
\(305\) −848.937 297.056i −2.78340 0.973953i
\(306\) −0.590282 + 2.58620i −0.00192903 + 0.00845162i
\(307\) 211.914 211.914i 0.690275 0.690275i −0.272017 0.962292i \(-0.587691\pi\)
0.962292 + 0.272017i \(0.0876908\pi\)
\(308\) −146.338 + 91.9501i −0.475123 + 0.298539i
\(309\) −765.066 86.2022i −2.47594 0.278972i
\(310\) 0.160851 + 0.704733i 0.000518873 + 0.00227333i
\(311\) 0.482806 + 0.303367i 0.00155243 + 0.000975456i 0.532808 0.846236i \(-0.321137\pi\)
−0.531256 + 0.847212i \(0.678280\pi\)
\(312\) −10.7388 8.56389i −0.0344192 0.0274484i
\(313\) −11.9391 + 5.74959i −0.0381442 + 0.0183693i −0.452859 0.891582i \(-0.649596\pi\)
0.414714 + 0.909952i \(0.363881\pi\)
\(314\) 1.90581 + 0.917792i 0.00606947 + 0.00292290i
\(315\) 423.461 + 531.004i 1.34432 + 1.68573i
\(316\) −243.152 + 27.3966i −0.769468 + 0.0866982i
\(317\) 168.368 + 481.169i 0.531131 + 1.51788i 0.826745 + 0.562577i \(0.190190\pi\)
−0.295614 + 0.955307i \(0.595524\pi\)
\(318\) 6.77369i 0.0213009i
\(319\) 114.869 + 182.339i 0.360092 + 0.571596i
\(320\) 558.146 1.74421
\(321\) 302.939 106.003i 0.943734 0.330227i
\(322\) −0.150544 1.33611i −0.000467527 0.00414942i
\(323\) 61.9352 49.3917i 0.191750 0.152915i
\(324\) 39.1976 81.3947i 0.120980 0.251218i
\(325\) 245.483 + 509.751i 0.755333 + 1.56847i
\(326\) 6.05610 7.59411i 0.0185770 0.0232948i
\(327\) 27.3879 43.5876i 0.0837551 0.133296i
\(328\) −0.981680 + 0.224062i −0.00299293 + 0.000683116i
\(329\) 5.96210 52.9151i 0.0181219 0.160836i
\(330\) −5.37758 8.55837i −0.0162957 0.0259345i
\(331\) −88.5260 88.5260i −0.267450 0.267450i 0.560622 0.828072i \(-0.310562\pi\)
−0.828072 + 0.560622i \(0.810562\pi\)
\(332\) −118.605 27.0709i −0.357245 0.0815388i
\(333\) 147.061 420.276i 0.441624 1.26209i
\(334\) −1.76966 0.619230i −0.00529838 0.00185398i
\(335\) 52.2717 229.017i 0.156035 0.683633i
\(336\) 310.948 310.948i 0.925439 0.925439i
\(337\) 175.703 110.401i 0.521373 0.327601i −0.245503 0.969396i \(-0.578953\pi\)
0.766876 + 0.641795i \(0.221810\pi\)
\(338\) 1.55018 + 0.174664i 0.00458634 + 0.000516756i
\(339\) −59.4778 260.589i −0.175451 0.768700i
\(340\) −178.262 112.009i −0.524299 0.329439i
\(341\) 14.6036 + 11.6460i 0.0428257 + 0.0341524i
\(342\) −5.21224 + 2.51008i −0.0152405 + 0.00733942i
\(343\) 336.275 + 161.942i 0.980394 + 0.472133i
\(344\) 5.96424 + 7.47891i 0.0173379 + 0.0217410i
\(345\) −288.294 + 32.4830i −0.835636 + 0.0941535i
\(346\) 3.64788 + 10.4251i 0.0105430 + 0.0301302i
\(347\) 98.9513i 0.285162i 0.989783 + 0.142581i \(0.0455402\pi\)
−0.989783 + 0.142581i \(0.954460\pi\)
\(348\) −388.290 387.382i −1.11578 1.11317i
\(349\) 293.432 0.840780 0.420390 0.907343i \(-0.361893\pi\)
0.420390 + 0.907343i \(0.361893\pi\)
\(350\) 9.27205 3.24443i 0.0264916 0.00926980i
\(351\) 25.5139 + 226.442i 0.0726893 + 0.645135i
\(352\) −9.17803 + 7.31923i −0.0260739 + 0.0207933i
\(353\) −139.632 + 289.949i −0.395558 + 0.821385i 0.604142 + 0.796877i \(0.293516\pi\)
−0.999700 + 0.0245079i \(0.992198\pi\)
\(354\) −4.78266 9.93130i −0.0135103 0.0280545i
\(355\) −521.333 + 653.731i −1.46854 + 1.84150i
\(356\) −220.011 + 350.145i −0.618008 + 0.983554i
\(357\) −161.624 + 36.8897i −0.452730 + 0.103333i
\(358\) −0.588799 + 5.22573i −0.00164469 + 0.0145970i
\(359\) −246.904 392.946i −0.687756 1.09456i −0.989965 0.141315i \(-0.954867\pi\)
0.302209 0.953242i \(-0.402276\pi\)
\(360\) 21.7460 + 21.7460i 0.0604057 + 0.0604057i
\(361\) −183.518 41.8867i −0.508360 0.116030i
\(362\) −2.65368 + 7.58377i −0.00733060 + 0.0209497i
\(363\) 293.640 + 102.749i 0.808926 + 0.283055i
\(364\) 57.0718 250.048i 0.156791 0.686944i
\(365\) −546.476 + 546.476i −1.49719 + 1.49719i
\(366\) −13.5750 + 8.52973i −0.0370901 + 0.0233053i
\(367\) 97.2298 + 10.9552i 0.264931 + 0.0298506i 0.243431 0.969918i \(-0.421727\pi\)
0.0215005 + 0.999769i \(0.493156\pi\)
\(368\) 24.9814 + 109.450i 0.0678841 + 0.297420i
\(369\) 43.2827 + 27.1963i 0.117297 + 0.0737027i
\(370\) −7.48855 5.97192i −0.0202393 0.0161403i
\(371\) 227.946 109.773i 0.614411 0.295885i
\(372\) −42.8313 20.6264i −0.115138 0.0554474i
\(373\) 205.926 + 258.222i 0.552079 + 0.692285i 0.977071 0.212912i \(-0.0682946\pi\)
−0.424992 + 0.905197i \(0.639723\pi\)
\(374\) 1.46525 0.165094i 0.00391778 0.000441428i
\(375\) −358.925 1025.75i −0.957132 2.73533i
\(376\) 2.41118i 0.00641272i
\(377\) −311.876 70.7995i −0.827257 0.187797i
\(378\) 3.95645 0.0104668
\(379\) −219.932 + 76.9574i −0.580295 + 0.203054i −0.604435 0.796655i \(-0.706601\pi\)
0.0241400 + 0.999709i \(0.492315\pi\)
\(380\) −51.4069 456.249i −0.135281 1.20066i
\(381\) 844.689 673.617i 2.21703 1.76802i
\(382\) 3.36510 6.98771i 0.00880917 0.0182924i
\(383\) −101.754 211.295i −0.265677 0.551685i 0.724865 0.688891i \(-0.241902\pi\)
−0.990543 + 0.137206i \(0.956188\pi\)
\(384\) 24.8365 31.1440i 0.0646783 0.0811041i
\(385\) 200.856 319.660i 0.521703 0.830286i
\(386\) −6.09480 + 1.39110i −0.0157896 + 0.00360388i
\(387\) 54.3726 482.570i 0.140498 1.24695i
\(388\) −242.922 386.608i −0.626087 0.996412i
\(389\) 297.193 + 297.193i 0.763992 + 0.763992i 0.977041 0.213049i \(-0.0683394\pi\)
−0.213049 + 0.977041i \(0.568339\pi\)
\(390\) 14.6237 + 3.33776i 0.0374967 + 0.00855837i
\(391\) 13.9784 39.9481i 0.0357505 0.102169i
\(392\) 3.77224 + 1.31996i 0.00962306 + 0.00336725i
\(393\) −219.087 + 959.883i −0.557473 + 2.44245i
\(394\) 5.37465 5.37465i 0.0136412 0.0136412i
\(395\) 452.575 284.372i 1.14576 0.719929i
\(396\) 394.785 + 44.4816i 0.996932 + 0.112327i
\(397\) 61.8313 + 270.901i 0.155746 + 0.682370i 0.991152 + 0.132735i \(0.0423759\pi\)
−0.835405 + 0.549635i \(0.814767\pi\)
\(398\) 4.17389 + 2.62263i 0.0104872 + 0.00658952i
\(399\) −282.666 225.419i −0.708436 0.564959i
\(400\) −738.975 + 355.871i −1.84744 + 0.889679i
\(401\) 198.105 + 95.4022i 0.494027 + 0.237911i 0.664272 0.747491i \(-0.268742\pi\)
−0.170245 + 0.985402i \(0.554456\pi\)
\(402\) −2.61075 3.27378i −0.00649441 0.00814373i
\(403\) −27.5450 + 3.10357i −0.0683498 + 0.00770117i
\(404\) 168.290 + 480.945i 0.416559 + 1.19046i
\(405\) 197.342i 0.487263i
\(406\) −1.82779 + 5.24322i −0.00450195 + 0.0129143i
\(407\) −247.502 −0.608112
\(408\) −7.08539 + 2.47928i −0.0173661 + 0.00607668i
\(409\) 43.0110 + 381.733i 0.105161 + 0.933333i 0.929898 + 0.367816i \(0.119895\pi\)
−0.824737 + 0.565516i \(0.808677\pi\)
\(410\) 0.859713 0.685599i 0.00209686 0.00167219i
\(411\) −142.186 + 295.252i −0.345951 + 0.718375i
\(412\) −282.443 586.499i −0.685541 1.42354i
\(413\) 256.698 321.890i 0.621546 0.779394i
\(414\) −1.64439 + 2.61704i −0.00397197 + 0.00632135i
\(415\) 259.081 59.1336i 0.624292 0.142491i
\(416\) 1.95053 17.3114i 0.00468877 0.0416140i
\(417\) 272.343 + 433.431i 0.653101 + 1.03940i
\(418\) 2.27385 + 2.27385i 0.00543983 + 0.00543983i
\(419\) −258.143 58.9194i −0.616092 0.140619i −0.0969251 0.995292i \(-0.530901\pi\)
−0.519167 + 0.854673i \(0.673758\pi\)
\(420\) −317.346 + 906.922i −0.755585 + 2.15934i
\(421\) 210.923 + 73.8051i 0.501005 + 0.175309i 0.568937 0.822381i \(-0.307355\pi\)
−0.0679329 + 0.997690i \(0.521640\pi\)
\(422\) 0.909903 3.98655i 0.00215617 0.00944679i
\(423\) −86.5545 + 86.5545i −0.204621 + 0.204621i
\(424\) 9.70009 6.09497i 0.0228776 0.0143749i
\(425\) 307.265 + 34.6204i 0.722976 + 0.0814598i
\(426\) 3.31663 + 14.5311i 0.00778553 + 0.0341106i
\(427\) −507.034 318.591i −1.18743 0.746114i
\(428\) 212.163 + 169.194i 0.495707 + 0.395313i
\(429\) 349.211 168.171i 0.814012 0.392008i
\(430\) −9.41192 4.53254i −0.0218882 0.0105408i
\(431\) −131.485 164.877i −0.305069 0.382545i 0.605539 0.795816i \(-0.292958\pi\)
−0.910608 + 0.413271i \(0.864386\pi\)
\(432\) −328.268 + 36.9870i −0.759880 + 0.0856180i
\(433\) −53.6896 153.436i −0.123995 0.354356i 0.865108 0.501586i \(-0.167250\pi\)
−0.989102 + 0.147230i \(0.952964\pi\)
\(434\) 0.481271i 0.00110892i
\(435\) 1131.33 + 394.385i 2.60077 + 0.906631i
\(436\) 43.5252 0.0998284
\(437\) 87.1207 30.4849i 0.199361 0.0697594i
\(438\) 1.54244 + 13.6895i 0.00352154 + 0.0312545i
\(439\) −404.677 + 322.719i −0.921816 + 0.735124i −0.964533 0.263963i \(-0.914970\pi\)
0.0427165 + 0.999087i \(0.486399\pi\)
\(440\) 7.41704 15.4016i 0.0168569 0.0350037i
\(441\) −88.0296 182.795i −0.199614 0.414502i
\(442\) −1.36432 + 1.71080i −0.00308670 + 0.00387060i
\(443\) −205.271 + 326.686i −0.463365 + 0.737440i −0.993907 0.110218i \(-0.964845\pi\)
0.530543 + 0.847658i \(0.321988\pi\)
\(444\) 614.124 140.170i 1.38316 0.315698i
\(445\) 101.139 897.633i 0.227278 2.01715i
\(446\) 2.05729 + 3.27415i 0.00461275 + 0.00734115i
\(447\) 182.745 + 182.745i 0.408825 + 0.408825i
\(448\) 362.292 + 82.6907i 0.808687 + 0.184577i
\(449\) 51.5162 147.225i 0.114735 0.327895i −0.872168 0.489206i \(-0.837287\pi\)
0.986904 + 0.161311i \(0.0515723\pi\)
\(450\) −21.3138 7.45802i −0.0473640 0.0165734i
\(451\) 6.32274 27.7017i 0.0140194 0.0614229i
\(452\) 159.804 159.804i 0.353549 0.353549i
\(453\) −766.360 + 481.536i −1.69174 + 1.06299i
\(454\) −8.09964 0.912610i −0.0178406 0.00201016i
\(455\) 124.667 + 546.204i 0.273994 + 1.20045i
\(456\) −13.8616 8.70981i −0.0303982 0.0191005i
\(457\) −551.243 439.602i −1.20622 0.961930i −0.206359 0.978476i \(-0.566161\pi\)
−0.999863 + 0.0165465i \(0.994733\pi\)
\(458\) −3.93841 + 1.89664i −0.00859916 + 0.00414114i
\(459\) 112.205 + 54.0349i 0.244454 + 0.117723i
\(460\) −152.941 191.782i −0.332481 0.416917i
\(461\) 472.975 53.2915i 1.02598 0.115600i 0.417097 0.908862i \(-0.363048\pi\)
0.608880 + 0.793262i \(0.291619\pi\)
\(462\) −2.22264 6.35193i −0.00481090 0.0137488i
\(463\) 436.814i 0.943442i −0.881748 0.471721i \(-0.843633\pi\)
0.881748 0.471721i \(-0.156367\pi\)
\(464\) 102.636 452.119i 0.221199 0.974395i
\(465\) 103.844 0.223321
\(466\) 9.32396 3.26259i 0.0200085 0.00700127i
\(467\) 22.5274 + 199.936i 0.0482385 + 0.428128i 0.994501 + 0.104728i \(0.0333973\pi\)
−0.946262 + 0.323400i \(0.895174\pi\)
\(468\) −460.945 + 367.591i −0.984925 + 0.785451i
\(469\) 67.8589 140.911i 0.144689 0.300449i
\(470\) 1.14247 + 2.37237i 0.00243080 + 0.00504760i
\(471\) 189.466 237.583i 0.402263 0.504422i
\(472\) 9.91842 15.7851i 0.0210136 0.0334430i
\(473\) −263.169 + 60.0666i −0.556383 + 0.126991i
\(474\) 1.06677 9.46783i 0.00225057 0.0199743i
\(475\) 358.770 + 570.979i 0.755305 + 1.20206i
\(476\) −99.1149 99.1149i −0.208225 0.208225i
\(477\) −566.997 129.413i −1.18867 0.271307i
\(478\) 2.39524 6.84519i 0.00501095 0.0143205i
\(479\) −625.859 218.997i −1.30659 0.457197i −0.414913 0.909861i \(-0.636188\pi\)
−0.891681 + 0.452664i \(0.850474\pi\)
\(480\) −14.5226 + 63.6277i −0.0302554 + 0.132558i
\(481\) 259.716 259.716i 0.539950 0.539950i
\(482\) 0.936638 0.588529i 0.00194323 0.00122101i
\(483\) −191.944 21.6269i −0.397399 0.0447761i
\(484\) 58.5312 + 256.442i 0.120932 + 0.529839i
\(485\) 844.506 + 530.638i 1.74125 + 1.09410i
\(486\) 7.53709 + 6.01063i 0.0155084 + 0.0123676i
\(487\) −98.2132 + 47.2970i −0.201670 + 0.0971191i −0.531993 0.846749i \(-0.678557\pi\)
0.330323 + 0.943868i \(0.392842\pi\)
\(488\) −24.4296 11.7647i −0.0500606 0.0241079i
\(489\) −870.009 1090.96i −1.77916 2.23100i
\(490\) −4.33695 + 0.488657i −0.00885092 + 0.000997259i
\(491\) −152.864 436.860i −0.311332 0.889735i −0.988137 0.153573i \(-0.950922\pi\)
0.676805 0.736162i \(-0.263364\pi\)
\(492\) 72.3169i 0.146986i
\(493\) −123.445 + 123.734i −0.250395 + 0.250982i
\(494\) −4.77213 −0.00966019
\(495\) −819.125 + 286.624i −1.65480 + 0.579039i
\(496\) −4.49917 39.9313i −0.00907092 0.0805066i
\(497\) −435.249 + 347.099i −0.875752 + 0.698389i
\(498\) 2.05531 4.26789i 0.00412713 0.00857007i
\(499\) −119.381 247.898i −0.239241 0.496789i 0.746431 0.665463i \(-0.231766\pi\)
−0.985672 + 0.168674i \(0.946052\pi\)
\(500\) 572.890 718.381i 1.14578 1.43676i
\(501\) −143.298 + 228.057i −0.286024 + 0.455204i
\(502\) 1.67561 0.382446i 0.00333786 0.000761845i
\(503\) −59.4343 + 527.494i −0.118160 + 1.04870i 0.785031 + 0.619456i \(0.212647\pi\)
−0.903191 + 0.429239i \(0.858782\pi\)
\(504\) 10.8936 + 17.3371i 0.0216143 + 0.0343989i
\(505\) −787.035 787.035i −1.55849 1.55849i
\(506\) 1.67495 + 0.382297i 0.00331018 + 0.000755528i
\(507\) 74.0174 211.530i 0.145991 0.417218i
\(508\) 862.227 + 301.706i 1.69730 + 0.593910i
\(509\) 19.4786 85.3413i 0.0382683 0.167665i −0.952183 0.305529i \(-0.901167\pi\)
0.990451 + 0.137864i \(0.0440238\pi\)
\(510\) 5.79660 5.79660i 0.0113659 0.0113659i
\(511\) −435.679 + 273.755i −0.852600 + 0.535724i
\(512\) 41.8304 + 4.71315i 0.0816999 + 0.00920537i
\(513\) 60.4362 + 264.788i 0.117809 + 0.516157i
\(514\) 0.981968 + 0.617011i 0.00191044 + 0.00120041i
\(515\) 1111.74 + 886.582i 2.15871 + 1.72152i
\(516\) 618.981 298.086i 1.19958 0.577685i
\(517\) 61.3023 + 29.5216i 0.118573 + 0.0571018i
\(518\) −3.97605 4.98581i −0.00767577 0.00962512i
\(519\) 1576.71 177.652i 3.03797 0.342298i
\(520\) 8.37865 + 23.9448i 0.0161128 + 0.0460477i
\(521\) 416.078i 0.798613i −0.916817 0.399307i \(-0.869251\pi\)
0.916817 0.399307i \(-0.130749\pi\)
\(522\) 10.7997 6.80352i 0.0206890 0.0130336i
\(523\) −244.076 −0.466684 −0.233342 0.972395i \(-0.574966\pi\)
−0.233342 + 0.972395i \(0.574966\pi\)
\(524\) −785.748 + 274.945i −1.49952 + 0.524705i
\(525\) −158.004 1402.33i −0.300960 2.67110i
\(526\) −1.98303 + 1.58141i −0.00377002 + 0.00300649i
\(527\) −6.57292 + 13.6488i −0.0124723 + 0.0258991i
\(528\) 243.794 + 506.244i 0.461731 + 0.958795i
\(529\) −299.080 + 375.035i −0.565369 + 0.708951i
\(530\) −6.65602 + 10.5930i −0.0125585 + 0.0199868i
\(531\) −922.682 + 210.596i −1.73763 + 0.396603i
\(532\) 34.2263 303.767i 0.0643351 0.570990i
\(533\) 22.4341 + 35.7036i 0.0420902 + 0.0669861i
\(534\) −11.3858 11.3858i −0.0213217 0.0213217i
\(535\) −577.910 131.904i −1.08021 0.246550i
\(536\) 2.33897 6.68440i 0.00436376 0.0124709i
\(537\) 713.076 + 249.516i 1.32789 + 0.464648i
\(538\) 0.560080 2.45387i 0.00104104 0.00456110i
\(539\) −79.7449 + 79.7449i −0.147950 + 0.147950i
\(540\) 611.167 384.022i 1.13179 0.711151i
\(541\) 741.239 + 83.5176i 1.37013 + 0.154376i 0.766169 0.642639i \(-0.222160\pi\)
0.603959 + 0.797015i \(0.293589\pi\)
\(542\) −2.52350 11.0562i −0.00465591 0.0203989i
\(543\) 977.327 + 614.096i 1.79987 + 1.13093i
\(544\) −7.44370 5.93615i −0.0136833 0.0109120i
\(545\) −85.6609 + 41.2521i −0.157176 + 0.0756919i
\(546\) 8.99773 + 4.33308i 0.0164794 + 0.00793604i
\(547\) 206.292 + 258.682i 0.377133 + 0.472910i 0.933784 0.357836i \(-0.116485\pi\)
−0.556651 + 0.830746i \(0.687914\pi\)
\(548\) −275.336 + 31.0229i −0.502438 + 0.0566112i
\(549\) 454.634 + 1299.27i 0.828112 + 2.36661i
\(550\) 12.5518i 0.0228214i
\(551\) −378.827 42.2343i −0.687526 0.0766503i
\(552\) −8.74630 −0.0158447
\(553\) 335.897 117.535i 0.607408 0.212541i
\(554\) 0.954352 + 8.47011i 0.00172266 + 0.0152890i
\(555\) −1075.79 + 857.916i −1.93836 + 1.54579i
\(556\) −187.789 + 389.949i −0.337751 + 0.701347i
\(557\) 8.12730 + 16.8765i 0.0145912 + 0.0302989i 0.908137 0.418673i \(-0.137505\pi\)
−0.893546 + 0.448972i \(0.851790\pi\)
\(558\) 0.689771 0.864945i 0.00123615 0.00155008i
\(559\) 213.126 339.188i 0.381262 0.606776i
\(560\) −791.819 + 180.728i −1.41396 + 0.322728i
\(561\) 23.7171 210.495i 0.0422765 0.375215i
\(562\) 7.15619 + 11.3890i 0.0127334 + 0.0202651i
\(563\) −682.747 682.747i −1.21269 1.21269i −0.970137 0.242557i \(-0.922014\pi\)
−0.242557 0.970137i \(-0.577986\pi\)
\(564\) −168.828 38.5339i −0.299340 0.0683225i
\(565\) −163.048 + 465.966i −0.288581 + 0.824718i
\(566\) 4.85688 + 1.69949i 0.00858105 + 0.00300264i
\(567\) −29.2366 + 128.094i −0.0515637 + 0.225916i
\(568\) −17.8246 + 17.8246i −0.0313814 + 0.0313814i
\(569\) 814.946 512.065i 1.43224 0.899938i 0.432245 0.901756i \(-0.357722\pi\)
0.999998 + 0.00181851i \(0.000578849\pi\)
\(570\) 17.7654 + 2.00168i 0.0311673 + 0.00351172i
\(571\) −32.2889 141.467i −0.0565480 0.247753i 0.938752 0.344594i \(-0.111983\pi\)
−0.995300 + 0.0968408i \(0.969126\pi\)
\(572\) 277.485 + 174.356i 0.485114 + 0.304817i
\(573\) −871.102 694.681i −1.52025 1.21236i
\(574\) 0.659612 0.317652i 0.00114915 0.000553401i
\(575\) 324.594 + 156.316i 0.564512 + 0.271855i
\(576\) −532.599 667.858i −0.924652 1.15948i
\(577\) 263.320 29.6690i 0.456360 0.0514194i 0.119207 0.992869i \(-0.461965\pi\)
0.337153 + 0.941450i \(0.390536\pi\)
\(578\) −2.74749 7.85188i −0.00475344 0.0135846i
\(579\) 898.086i 1.55110i
\(580\) 226.573 + 987.349i 0.390643 + 1.70233i
\(581\) 176.930 0.304527
\(582\) 16.7811 5.87195i 0.0288335 0.0100893i
\(583\) 36.1952 + 321.241i 0.0620844 + 0.551014i
\(584\) −18.2158 + 14.5266i −0.0311914 + 0.0248743i
\(585\) 558.780 1160.32i 0.955180 1.98345i
\(586\) −2.01640 4.18711i −0.00344096 0.00714523i
\(587\) 606.443 760.455i 1.03312 1.29549i 0.0787436 0.996895i \(-0.474909\pi\)
0.954379 0.298599i \(-0.0965194\pi\)
\(588\) 152.708 243.033i 0.259707 0.413321i
\(589\) −32.2094 + 7.35160i −0.0546850 + 0.0124815i
\(590\) −2.27944 + 20.2306i −0.00386346 + 0.0342891i
\(591\) −580.944 924.567i −0.982985 1.56441i
\(592\) 376.504 + 376.504i 0.635987 + 0.635987i
\(593\) 829.756 + 189.386i 1.39925 + 0.319370i 0.854597 0.519291i \(-0.173804\pi\)
0.544654 + 0.838661i \(0.316661\pi\)
\(594\) −1.66968 + 4.77168i −0.00281092 + 0.00803314i
\(595\) 289.004 + 101.127i 0.485721 + 0.169961i
\(596\) −48.6239 + 213.035i −0.0815837 + 0.357442i
\(597\) 500.743 500.743i 0.838765 0.838765i
\(598\) −2.15878 + 1.35645i −0.00361000 + 0.00226831i
\(599\) −970.894 109.393i −1.62086 0.182627i −0.745638 0.666351i \(-0.767855\pi\)
−0.875220 + 0.483724i \(0.839284\pi\)
\(600\) −14.2190 62.2976i −0.0236984 0.103829i
\(601\) −265.894 167.072i −0.442419 0.277990i 0.292345 0.956313i \(-0.405564\pi\)
−0.734764 + 0.678323i \(0.762707\pi\)
\(602\) −5.43776 4.33647i −0.00903282 0.00720343i
\(603\) −323.913 + 155.988i −0.537170 + 0.258687i
\(604\) −689.477 332.035i −1.14152 0.549726i
\(605\) −358.243 449.223i −0.592137 0.742517i
\(606\) −19.7156 + 2.22142i −0.0325340 + 0.00366570i
\(607\) −250.177 714.965i −0.412154 1.17787i −0.943690 0.330832i \(-0.892671\pi\)
0.531536 0.847036i \(-0.321615\pi\)
\(608\) 20.7635i 0.0341505i
\(609\) 675.919 + 423.605i 1.10988 + 0.695574i
\(610\) 29.6107 0.0485422
\(611\) −95.3061 + 33.3491i −0.155984 + 0.0545811i
\(612\) 36.0761 + 320.184i 0.0589479 + 0.523177i
\(613\) −84.7718 + 67.6033i −0.138290 + 0.110283i −0.690192 0.723627i \(-0.742474\pi\)
0.551902 + 0.833909i \(0.313902\pi\)
\(614\) −4.28096 + 8.88950i −0.00697224 + 0.0144780i
\(615\) −68.5401 142.325i −0.111447 0.231423i
\(616\) 7.09618 8.89833i 0.0115198 0.0144453i
\(617\) −477.375 + 759.739i −0.773704 + 1.23134i 0.194432 + 0.980916i \(0.437714\pi\)
−0.968136 + 0.250427i \(0.919429\pi\)
\(618\) 24.7117 5.64028i 0.0399866 0.00912667i
\(619\) −34.8184 + 309.021i −0.0562494 + 0.499227i 0.933726 + 0.357988i \(0.116537\pi\)
−0.989976 + 0.141239i \(0.954891\pi\)
\(620\) 46.7133 + 74.3437i 0.0753440 + 0.119909i
\(621\) 102.604 + 102.604i 0.165224 + 0.165224i
\(622\) −0.0183018 0.00417728i −2.94242e−5 6.71588e-6i
\(623\) 198.636 567.668i 0.318837 0.911185i
\(624\) −787.053 275.402i −1.26130 0.441349i
\(625\) −161.220 + 706.351i −0.257952 + 1.13016i
\(626\) 0.308489 0.308489i 0.000492794 0.000492794i
\(627\) 391.156 245.780i 0.623853 0.391993i
\(628\) 255.318 + 28.7674i 0.406558 + 0.0458080i
\(629\) −44.6672 195.700i −0.0710130 0.311128i
\(630\) −18.9330 11.8964i −0.0300523 0.0188831i
\(631\) −60.2526 48.0499i −0.0954875 0.0761487i 0.574582 0.818447i \(-0.305164\pi\)
−0.670070 + 0.742298i \(0.733736\pi\)
\(632\) 14.5180 6.99151i 0.0229716 0.0110625i
\(633\) −529.255 254.876i −0.836106 0.402647i
\(634\) −10.4641 13.1215i −0.0165049 0.0206964i
\(635\) −1982.88 + 223.416i −3.12264 + 0.351837i
\(636\) −271.742 776.594i −0.427267 1.22106i
\(637\) 167.361i 0.262733i
\(638\) −5.55224 4.41714i −0.00870257 0.00692341i
\(639\) 1279.70 2.00267
\(640\) −69.4433 + 24.2993i −0.108505 + 0.0379676i
\(641\) 36.9672 + 328.093i 0.0576712 + 0.511846i 0.989027 + 0.147735i \(0.0471984\pi\)
−0.931356 + 0.364110i \(0.881373\pi\)
\(642\) −8.26117 + 6.58806i −0.0128679 + 0.0102618i
\(643\) −351.977 + 730.888i −0.547399 + 1.13668i 0.425394 + 0.905008i \(0.360135\pi\)
−0.972793 + 0.231677i \(0.925579\pi\)
\(644\) −70.8608 147.144i −0.110032 0.228485i
\(645\) −935.683 + 1173.31i −1.45067 + 1.81908i
\(646\) −1.38757 + 2.20830i −0.00214794 + 0.00341842i
\(647\) 643.781 146.939i 0.995024 0.227108i 0.306146 0.951985i \(-0.400961\pi\)
0.688878 + 0.724877i \(0.258103\pi\)
\(648\) −0.666113 + 5.91191i −0.00102795 + 0.00912332i
\(649\) 279.885 + 445.434i 0.431255 + 0.686339i
\(650\) −13.1712 13.1712i −0.0202634 0.0202634i
\(651\) 67.4052 + 15.3848i 0.103541 + 0.0236326i
\(652\) 389.668 1113.61i 0.597650 1.70799i
\(653\) 510.481 + 178.625i 0.781747 + 0.273545i 0.691502 0.722375i \(-0.256949\pi\)
0.0902449 + 0.995920i \(0.471235\pi\)
\(654\) −0.377124 + 1.65229i −0.000576642 + 0.00252643i
\(655\) 1285.83 1285.83i 1.96309 1.96309i
\(656\) −51.7587 + 32.5221i −0.0789004 + 0.0495764i
\(657\) 1175.36 + 132.431i 1.78898 + 0.201569i
\(658\) 0.390105 + 1.70916i 0.000592865 + 0.00259751i
\(659\) 67.5559 + 42.4482i 0.102513 + 0.0644131i 0.582313 0.812965i \(-0.302148\pi\)
−0.479800 + 0.877378i \(0.659291\pi\)
\(660\) −959.870 765.471i −1.45435 1.15980i
\(661\) −174.005 + 83.7962i −0.263245 + 0.126772i −0.560851 0.827917i \(-0.689526\pi\)
0.297606 + 0.954689i \(0.403812\pi\)
\(662\) 3.71354 + 1.78834i 0.00560957 + 0.00270143i
\(663\) 195.996 + 245.771i 0.295620 + 0.370696i
\(664\) 7.96109 0.897000i 0.0119896 0.00135090i
\(665\) 220.543 + 630.275i 0.331643 + 0.947782i
\(666\) 14.6591i 0.0220107i
\(667\) −183.375 + 88.5736i −0.274925 + 0.132794i
\(668\) −227.731 −0.340914
\(669\) 524.332 183.472i 0.783755 0.274248i
\(670\) 0.865900 + 7.68507i 0.00129239 + 0.0114703i
\(671\) 598.213 477.059i 0.891524 0.710967i
\(672\) −18.8532 + 39.1491i −0.0280554 + 0.0582575i
\(673\) 217.268 + 451.162i 0.322835 + 0.670374i 0.997716 0.0675528i \(-0.0215191\pi\)
−0.674880 + 0.737927i \(0.735805\pi\)
\(674\) −4.25949 + 5.34124i −0.00631973 + 0.00792469i
\(675\) −564.017 + 897.628i −0.835581 + 1.32982i
\(676\) 184.733 42.1641i 0.273274 0.0623730i
\(677\) 32.4892 288.350i 0.0479900 0.425923i −0.946629 0.322325i \(-0.895536\pi\)
0.994619 0.103598i \(-0.0330357\pi\)
\(678\) 4.68181 + 7.45106i 0.00690533 + 0.0109898i
\(679\) 469.552 + 469.552i 0.691535 + 0.691535i
\(680\) 13.5166 + 3.08509i 0.0198774 + 0.00453689i
\(681\) −386.738 + 1105.23i −0.567898 + 1.62296i
\(682\) −0.580438 0.203104i −0.000851082 0.000297807i
\(683\) −135.936 + 595.576i −0.199028 + 0.871999i 0.772489 + 0.635029i \(0.219012\pi\)
−0.971517 + 0.236971i \(0.923845\pi\)
\(684\) −496.878 + 496.878i −0.726430 + 0.726430i
\(685\) 512.480 322.012i 0.748145 0.470091i
\(686\) −12.2106 1.37581i −0.0177997 0.00200555i
\(687\) 139.738 + 612.231i 0.203403 + 0.891166i
\(688\) 491.712 + 308.963i 0.714698 + 0.449075i
\(689\) −375.076 299.113i −0.544378 0.434127i
\(690\) 8.60552 4.14420i 0.0124718 0.00600609i
\(691\) 525.520 + 253.077i 0.760521 + 0.366248i 0.773606 0.633667i \(-0.218451\pi\)
−0.0130852 + 0.999914i \(0.504165\pi\)
\(692\) 836.449 + 1048.87i 1.20874 + 1.51571i
\(693\) −574.157 + 64.6920i −0.828509 + 0.0933506i
\(694\) −1.07596 3.07490i −0.00155037 0.00443070i
\(695\) 945.431i 1.36033i
\(696\) 32.5610 + 15.6336i 0.0467831 + 0.0224621i
\(697\) 23.0448 0.0330629
\(698\) −9.11839 + 3.19066i −0.0130636 + 0.00457115i
\(699\) −158.889 1410.18i −0.227309 2.01742i
\(700\) 932.869 743.938i 1.33267 1.06277i
\(701\) −400.779 + 832.225i −0.571724 + 1.18720i 0.391918 + 0.920000i \(0.371812\pi\)
−0.963642 + 0.267197i \(0.913902\pi\)
\(702\) −3.25509 6.75926i −0.00463688 0.00962857i
\(703\) 272.943 342.260i 0.388255 0.486857i
\(704\) −252.622 + 402.046i −0.358838 + 0.571088i
\(705\) 368.788 84.1734i 0.523103 0.119395i
\(706\) 1.18627 10.5284i 0.00168027 0.0149128i
\(707\) −394.262 627.465i −0.557655 0.887503i
\(708\) −946.742 946.742i −1.33721 1.33721i
\(709\) −776.868 177.315i −1.09572 0.250092i −0.363799 0.931478i \(-0.618520\pi\)
−0.731924 + 0.681386i \(0.761378\pi\)
\(710\) 9.09199 25.9834i 0.0128056 0.0365964i
\(711\) −772.131 270.180i −1.08598 0.380000i
\(712\) 6.05979 26.5497i 0.00851094 0.0372889i
\(713\) −12.4810 + 12.4810i −0.0175049 + 0.0175049i
\(714\) 4.62135 2.90378i 0.00647247 0.00406692i
\(715\) −711.362 80.1512i −0.994911 0.112100i
\(716\) 142.137 + 622.744i 0.198516 + 0.869754i
\(717\) −882.145 554.289i −1.23033 0.773067i
\(718\) 11.9453 + 9.52604i 0.0166369 + 0.0132675i
\(719\) 1063.27 512.044i 1.47882 0.712162i 0.491495 0.870880i \(-0.336450\pi\)
0.987324 + 0.158718i \(0.0507361\pi\)
\(720\) 1682.09 + 810.051i 2.33623 + 1.12507i
\(721\) 590.278 + 740.186i 0.818694 + 1.02661i
\(722\) 6.15826 0.693870i 0.00852945 0.000961038i
\(723\) −52.4858 149.996i −0.0725945 0.207463i
\(724\) 975.927i 1.34797i
\(725\) −929.003 1162.14i −1.28138 1.60295i
\(726\) −10.2421 −0.0141076
\(727\) −870.912 + 304.745i −1.19795 + 0.419182i −0.854233 0.519890i \(-0.825973\pi\)
−0.343721 + 0.939072i \(0.611687\pi\)
\(728\) 1.89109 + 16.7839i 0.00259765 + 0.0230548i
\(729\) 923.802 736.708i 1.26722 1.01057i
\(730\) 11.0395 22.9239i 0.0151227 0.0314025i
\(731\) −94.9894 197.247i −0.129944 0.269832i
\(732\) −1214.16 + 1522.51i −1.65869 + 2.07994i
\(733\) 503.422 801.192i 0.686797 1.09303i −0.303334 0.952884i \(-0.598100\pi\)
0.990131 0.140147i \(-0.0447574\pi\)
\(734\) −3.14053 + 0.716806i −0.00427866 + 0.000976575i
\(735\) −70.1997 + 623.039i −0.0955098 + 0.847673i
\(736\) −5.90191 9.39283i −0.00801890 0.0127620i
\(737\) 141.308 + 141.308i 0.191734 + 0.191734i
\(738\) −1.64073 0.374485i −0.00222321 0.000507433i
\(739\) −400.530 + 1144.65i −0.541990 + 1.54892i 0.268569 + 0.963260i \(0.413449\pi\)
−0.810559 + 0.585657i \(0.800836\pi\)
\(740\) −1098.13 384.252i −1.48396 0.519259i
\(741\) −152.551 + 668.369i −0.205872 + 0.901982i
\(742\) −5.88979 + 5.88979i −0.00793772 + 0.00793772i
\(743\) 670.026 421.005i 0.901785 0.566629i 0.000569123 1.00000i \(-0.499819\pi\)
0.901216 + 0.433371i \(0.142676\pi\)
\(744\) 3.11095 + 0.350519i 0.00418138 + 0.000471128i
\(745\) −106.214 465.354i −0.142569 0.624636i
\(746\) −9.20693 5.78510i −0.0123417 0.00775482i
\(747\) −317.980 253.581i −0.425676 0.339465i
\(748\) 161.366 77.7096i 0.215730 0.103890i
\(749\) −355.579 171.238i −0.474738 0.228622i
\(750\) 22.3071 + 27.9722i 0.0297428 + 0.0372963i
\(751\) −73.9585 + 8.33312i −0.0984800 + 0.0110960i −0.161067 0.986943i \(-0.551494\pi\)
0.0625869 + 0.998040i \(0.480065\pi\)
\(752\) −48.3453 138.163i −0.0642890 0.183727i
\(753\) 246.905i 0.327895i
\(754\) 10.4614 1.19112i 0.0138745 0.00157974i
\(755\) 1671.64 2.21409
\(756\) 453.602 158.722i 0.600002 0.209950i
\(757\) −21.2663 188.743i −0.0280928 0.249331i −0.999908 0.0135854i \(-0.995675\pi\)
0.971815 0.235745i