Properties

Label 29.3.f.a.11.2
Level 29
Weight 3
Character 29.11
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 11.2
Character \(\chi\) = 29.11
Dual form 29.3.f.a.8.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-2.20133 + 0.770280i) q^{2}\) \(+(-0.552425 - 4.90291i) q^{3}\) \(+(1.12521 - 0.897324i) q^{4}\) \(+(2.64264 - 5.48750i) q^{5}\) \(+(4.99268 + 10.3674i) q^{6}\) \(+(-3.22936 + 4.04949i) q^{7}\) \(+(3.17747 - 5.05691i) q^{8}\) \(+(-14.9590 + 3.41428i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-2.20133 + 0.770280i) q^{2}\) \(+(-0.552425 - 4.90291i) q^{3}\) \(+(1.12521 - 0.897324i) q^{4}\) \(+(2.64264 - 5.48750i) q^{5}\) \(+(4.99268 + 10.3674i) q^{6}\) \(+(-3.22936 + 4.04949i) q^{7}\) \(+(3.17747 - 5.05691i) q^{8}\) \(+(-14.9590 + 3.41428i) q^{9}\) \(+(-1.59042 + 14.1154i) q^{10}\) \(+(3.16517 + 5.03734i) q^{11}\) \(+(-5.02109 - 5.02109i) q^{12}\) \(+(14.6839 + 3.35151i) q^{13}\) \(+(3.98966 - 11.4018i) q^{14}\) \(+(-28.3645 - 9.92518i) q^{15}\) \(+(-4.38044 + 19.1919i) q^{16}\) \(+(22.0898 - 22.0898i) q^{17}\) \(+(30.2997 - 19.0386i) q^{18}\) \(+(-0.835449 - 0.0941325i) q^{19}\) \(+(-1.95054 - 8.54589i) q^{20}\) \(+(21.6383 + 13.5962i) q^{21}\) \(+(-10.8478 - 8.65079i) q^{22}\) \(+(-21.1449 + 10.1828i) q^{23}\) \(+(-26.5489 - 12.7853i) q^{24}\) \(+(-7.54184 - 9.45717i) q^{25}\) \(+(-34.9058 + 3.93294i) q^{26}\) \(+(10.3374 + 29.5427i) q^{27}\) \(+7.45431i q^{28}\) \(+(-18.7362 + 22.1350i) q^{29}\) \(+70.0850 q^{30}\) \(+(21.3525 - 7.47156i) q^{31}\) \(+(-2.46561 - 21.8829i) q^{32}\) \(+(22.9491 - 18.3013i) q^{33}\) \(+(-31.6117 + 65.6424i) q^{34}\) \(+(13.6875 + 28.4225i) q^{35}\) \(+(-13.7682 + 17.2648i) q^{36}\) \(+(4.25720 - 6.77529i) q^{37}\) \(+(1.91161 - 0.436313i) q^{38}\) \(+(8.32037 - 73.8453i) q^{39}\) \(+(-19.3529 - 30.8000i) q^{40}\) \(+(-8.24028 - 8.24028i) q^{41}\) \(+(-58.1059 - 13.2623i) q^{42}\) \(+(-3.09691 + 8.85047i) q^{43}\) \(+(8.08161 + 2.82788i) q^{44}\) \(+(-20.7952 + 91.1099i) q^{45}\) \(+(38.7033 - 38.7033i) q^{46}\) \(+(-22.1022 + 13.8877i) q^{47}\) \(+(96.5161 + 10.8748i) q^{48}\) \(+(4.93392 + 21.6169i) q^{49}\) \(+(23.8868 + 15.0091i) q^{50}\) \(+(-120.507 - 96.1013i) q^{51}\) \(+(19.5299 - 9.40509i) q^{52}\) \(+(47.7265 + 22.9839i) q^{53}\) \(+(-45.5123 - 57.0706i) q^{54}\) \(+(36.0068 - 4.05699i) q^{55}\) \(+(10.2167 + 29.1977i) q^{56}\) \(+4.14813i q^{57}\) \(+(24.1944 - 63.1585i) q^{58}\) \(+17.4148 q^{59}\) \(+(-40.8221 + 14.2843i) q^{60}\) \(+(6.87260 + 60.9960i) q^{61}\) \(+(-41.2488 + 32.8948i) q^{62}\) \(+(34.4818 - 71.6021i) q^{63}\) \(+(-11.8813 - 24.6717i) q^{64}\) \(+(57.1957 - 71.7211i) q^{65}\) \(+(-36.4214 + 57.9644i) q^{66}\) \(+(-26.2055 + 5.98124i) q^{67}\) \(+(5.03393 - 44.6774i) q^{68}\) \(+(61.6065 + 98.0462i) q^{69}\) \(+(-52.0241 - 52.0241i) q^{70}\) \(+(-4.93086 - 1.12544i) q^{71}\) \(+(-30.2659 + 86.4949i) q^{72}\) \(+(-53.0793 - 18.5732i) q^{73}\) \(+(-4.15264 + 18.1939i) q^{74}\) \(+(-42.2013 + 42.2013i) q^{75}\) \(+(-1.02452 + 0.643750i) q^{76}\) \(+(-30.6201 - 3.45006i) q^{77}\) \(+(38.5656 + 168.967i) q^{78}\) \(+(74.2026 + 46.6246i) q^{79}\) \(+(93.7398 + 74.7550i) q^{80}\) \(+(14.7171 - 7.08739i) q^{81}\) \(+(24.4869 + 11.7923i) q^{82}\) \(+(-48.3929 - 60.6827i) q^{83}\) \(+(36.5478 - 4.11795i) q^{84}\) \(+(-62.8424 - 179.593i) q^{85}\) \(-21.8683i q^{86}\) \(+(118.876 + 79.6337i) q^{87}\) \(+35.5306 q^{88}\) \(+(-138.036 + 48.3009i) q^{89}\) \(+(-24.4029 - 216.581i) q^{90}\) \(+(-60.9916 + 48.6392i) q^{91}\) \(+(-14.6551 + 30.4317i) q^{92}\) \(+(-48.4280 - 100.562i) q^{93}\) \(+(37.9568 - 47.5963i) q^{94}\) \(+(-2.72434 + 4.33577i) q^{95}\) \(+(-105.928 + 24.1773i) q^{96}\) \(+(0.115126 - 1.02177i) q^{97}\) \(+(-27.5123 - 43.7855i) q^{98}\) \(+(-64.5465 - 64.5465i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{25}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.20133 + 0.770280i −1.10067 + 0.385140i −0.818663 0.574274i \(-0.805285\pi\)
−0.282003 + 0.959414i \(0.590999\pi\)
\(3\) −0.552425 4.90291i −0.184142 1.63430i −0.657516 0.753440i \(-0.728393\pi\)
0.473375 0.880861i \(-0.343036\pi\)
\(4\) 1.12521 0.897324i 0.281302 0.224331i
\(5\) 2.64264 5.48750i 0.528528 1.09750i −0.450312 0.892871i \(-0.648687\pi\)
0.978840 0.204628i \(-0.0655985\pi\)
\(6\) 4.99268 + 10.3674i 0.832113 + 1.72790i
\(7\) −3.22936 + 4.04949i −0.461337 + 0.578499i −0.957026 0.290001i \(-0.906344\pi\)
0.495689 + 0.868500i \(0.334916\pi\)
\(8\) 3.17747 5.05691i 0.397184 0.632114i
\(9\) −14.9590 + 3.41428i −1.66211 + 0.379365i
\(10\) −1.59042 + 14.1154i −0.159042 + 1.41154i
\(11\) 3.16517 + 5.03734i 0.287743 + 0.457940i 0.959049 0.283240i \(-0.0914093\pi\)
−0.671306 + 0.741180i \(0.734266\pi\)
\(12\) −5.02109 5.02109i −0.418424 0.418424i
\(13\) 14.6839 + 3.35151i 1.12953 + 0.257808i 0.746148 0.665780i \(-0.231901\pi\)
0.383385 + 0.923589i \(0.374758\pi\)
\(14\) 3.98966 11.4018i 0.284976 0.814414i
\(15\) −28.3645 9.92518i −1.89097 0.661679i
\(16\) −4.38044 + 19.1919i −0.273777 + 1.19950i
\(17\) 22.0898 22.0898i 1.29940 1.29940i 0.370615 0.928787i \(-0.379147\pi\)
0.928787 0.370615i \(-0.120853\pi\)
\(18\) 30.2997 19.0386i 1.68332 1.05770i
\(19\) −0.835449 0.0941325i −0.0439710 0.00495434i 0.0899516 0.995946i \(-0.471329\pi\)
−0.133923 + 0.990992i \(0.542757\pi\)
\(20\) −1.95054 8.54589i −0.0975272 0.427294i
\(21\) 21.6383 + 13.5962i 1.03039 + 0.647439i
\(22\) −10.8478 8.65079i −0.493080 0.393218i
\(23\) −21.1449 + 10.1828i −0.919344 + 0.442733i −0.832837 0.553519i \(-0.813285\pi\)
−0.0865068 + 0.996251i \(0.527570\pi\)
\(24\) −26.5489 12.7853i −1.10620 0.532720i
\(25\) −7.54184 9.45717i −0.301674 0.378287i
\(26\) −34.9058 + 3.93294i −1.34253 + 0.151267i
\(27\) 10.3374 + 29.5427i 0.382868 + 1.09417i
\(28\) 7.45431i 0.266225i
\(29\) −18.7362 + 22.1350i −0.646074 + 0.763274i
\(30\) 70.0850 2.33617
\(31\) 21.3525 7.47156i 0.688790 0.241018i 0.0368860 0.999319i \(-0.488256\pi\)
0.651904 + 0.758301i \(0.273970\pi\)
\(32\) −2.46561 21.8829i −0.0770504 0.683841i
\(33\) 22.9491 18.3013i 0.695427 0.554584i
\(34\) −31.6117 + 65.6424i −0.929756 + 1.93066i
\(35\) 13.6875 + 28.4225i 0.391073 + 0.812070i
\(36\) −13.7682 + 17.2648i −0.382451 + 0.479578i
\(37\) 4.25720 6.77529i 0.115059 0.183116i −0.784230 0.620470i \(-0.786942\pi\)
0.899289 + 0.437355i \(0.144085\pi\)
\(38\) 1.91161 0.436313i 0.0503055 0.0114819i
\(39\) 8.32037 73.8453i 0.213343 1.89347i
\(40\) −19.3529 30.8000i −0.483822 0.769999i
\(41\) −8.24028 8.24028i −0.200982 0.200982i 0.599438 0.800421i \(-0.295391\pi\)
−0.800421 + 0.599438i \(0.795391\pi\)
\(42\) −58.1059 13.2623i −1.38347 0.315769i
\(43\) −3.09691 + 8.85047i −0.0720212 + 0.205825i −0.974267 0.225398i \(-0.927632\pi\)
0.902246 + 0.431222i \(0.141918\pi\)
\(44\) 8.08161 + 2.82788i 0.183673 + 0.0642699i
\(45\) −20.7952 + 91.1099i −0.462117 + 2.02467i
\(46\) 38.7033 38.7033i 0.841377 0.841377i
\(47\) −22.1022 + 13.8877i −0.470259 + 0.295483i −0.746237 0.665681i \(-0.768141\pi\)
0.275978 + 0.961164i \(0.410998\pi\)
\(48\) 96.5161 + 10.8748i 2.01075 + 0.226557i
\(49\) 4.93392 + 21.6169i 0.100692 + 0.441162i
\(50\) 23.8868 + 15.0091i 0.477735 + 0.300181i
\(51\) −120.507 96.1013i −2.36289 1.88434i
\(52\) 19.5299 9.40509i 0.375574 0.180867i
\(53\) 47.7265 + 22.9839i 0.900501 + 0.433658i 0.826070 0.563568i \(-0.190572\pi\)
0.0744311 + 0.997226i \(0.476286\pi\)
\(54\) −45.5123 57.0706i −0.842821 1.05686i
\(55\) 36.0068 4.05699i 0.654669 0.0737635i
\(56\) 10.2167 + 29.1977i 0.182442 + 0.521388i
\(57\) 4.14813i 0.0727742i
\(58\) 24.1944 63.1585i 0.417145 1.08894i
\(59\) 17.4148 0.295166 0.147583 0.989050i \(-0.452851\pi\)
0.147583 + 0.989050i \(0.452851\pi\)
\(60\) −40.8221 + 14.2843i −0.680369 + 0.238071i
\(61\) 6.87260 + 60.9960i 0.112666 + 0.999935i 0.915109 + 0.403207i \(0.132104\pi\)
−0.802443 + 0.596728i \(0.796467\pi\)
\(62\) −41.2488 + 32.8948i −0.665303 + 0.530561i
\(63\) 34.4818 71.6021i 0.547330 1.13654i
\(64\) −11.8813 24.6717i −0.185645 0.385496i
\(65\) 57.1957 71.7211i 0.879934 1.10340i
\(66\) −36.4214 + 57.9644i −0.551840 + 0.878249i
\(67\) −26.2055 + 5.98124i −0.391127 + 0.0892722i −0.413562 0.910476i \(-0.635715\pi\)
0.0224346 + 0.999748i \(0.492858\pi\)
\(68\) 5.03393 44.6774i 0.0740285 0.657021i
\(69\) 61.6065 + 98.0462i 0.892848 + 1.42096i
\(70\) −52.0241 52.0241i −0.743201 0.743201i
\(71\) −4.93086 1.12544i −0.0694487 0.0158512i 0.187655 0.982235i \(-0.439911\pi\)
−0.257104 + 0.966384i \(0.582768\pi\)
\(72\) −30.2659 + 86.4949i −0.420359 + 1.20132i
\(73\) −53.0793 18.5732i −0.727113 0.254428i −0.0587602 0.998272i \(-0.518715\pi\)
−0.668353 + 0.743844i \(0.733000\pi\)
\(74\) −4.15264 + 18.1939i −0.0561167 + 0.245863i
\(75\) −42.2013 + 42.2013i −0.562684 + 0.562684i
\(76\) −1.02452 + 0.643750i −0.0134806 + 0.00847040i
\(77\) −30.6201 3.45006i −0.397664 0.0448060i
\(78\) 38.5656 + 168.967i 0.494431 + 2.16625i
\(79\) 74.2026 + 46.6246i 0.939274 + 0.590185i 0.912332 0.409452i \(-0.134280\pi\)
0.0269421 + 0.999637i \(0.491423\pi\)
\(80\) 93.7398 + 74.7550i 1.17175 + 0.934438i
\(81\) 14.7171 7.08739i 0.181693 0.0874986i
\(82\) 24.4869 + 11.7923i 0.298621 + 0.143808i
\(83\) −48.3929 60.6827i −0.583047 0.731117i 0.399583 0.916697i \(-0.369155\pi\)
−0.982629 + 0.185580i \(0.940584\pi\)
\(84\) 36.5478 4.11795i 0.435093 0.0490232i
\(85\) −62.8424 179.593i −0.739322 2.11286i
\(86\) 21.8683i 0.254283i
\(87\) 118.876 + 79.6337i 1.36639 + 0.915330i
\(88\) 35.5306 0.403757
\(89\) −138.036 + 48.3009i −1.55097 + 0.542707i −0.963769 0.266737i \(-0.914054\pi\)
−0.587197 + 0.809444i \(0.699769\pi\)
\(90\) −24.4029 216.581i −0.271143 2.40646i
\(91\) −60.9916 + 48.6392i −0.670237 + 0.534497i
\(92\) −14.6551 + 30.4317i −0.159295 + 0.330779i
\(93\) −48.4280 100.562i −0.520731 1.08131i
\(94\) 37.9568 47.5963i 0.403796 0.506344i
\(95\) −2.72434 + 4.33577i −0.0286773 + 0.0456397i
\(96\) −105.928 + 24.1773i −1.10341 + 0.251847i
\(97\) 0.115126 1.02177i 0.00118686 0.0105337i −0.993105 0.117230i \(-0.962599\pi\)
0.994292 + 0.106696i \(0.0340272\pi\)
\(98\) −27.5123 43.7855i −0.280737 0.446791i
\(99\) −64.5465 64.5465i −0.651985 0.651985i
\(100\) −16.9723 3.87382i −0.169723 0.0387382i
\(101\) 43.9053 125.474i 0.434706 1.24232i −0.493334 0.869840i \(-0.664222\pi\)
0.928040 0.372479i \(-0.121492\pi\)
\(102\) 339.301 + 118.727i 3.32649 + 1.16399i
\(103\) 1.55354 6.80648i 0.0150829 0.0660824i −0.966826 0.255434i \(-0.917782\pi\)
0.981909 + 0.189352i \(0.0606387\pi\)
\(104\) 63.6060 63.6060i 0.611596 0.611596i
\(105\) 131.791 82.8100i 1.25516 0.788666i
\(106\) −122.766 13.8324i −1.15817 0.130494i
\(107\) 14.9676 + 65.5774i 0.139884 + 0.612873i 0.995459 + 0.0951935i \(0.0303470\pi\)
−0.855574 + 0.517680i \(0.826796\pi\)
\(108\) 38.1412 + 23.9657i 0.353159 + 0.221905i
\(109\) 139.358 + 111.134i 1.27851 + 1.01958i 0.998219 + 0.0596621i \(0.0190023\pi\)
0.280291 + 0.959915i \(0.409569\pi\)
\(110\) −76.1379 + 36.6661i −0.692163 + 0.333328i
\(111\) −35.5704 17.1298i −0.320454 0.154322i
\(112\) −63.5716 79.7163i −0.567604 0.711752i
\(113\) 14.1294 1.59200i 0.125039 0.0140885i −0.0492231 0.998788i \(-0.515675\pi\)
0.174262 + 0.984699i \(0.444246\pi\)
\(114\) −3.19522 9.13141i −0.0280282 0.0801001i
\(115\) 142.942i 1.24298i
\(116\) −1.21986 + 41.7189i −0.0105161 + 0.359645i
\(117\) −231.099 −1.97521
\(118\) −38.3357 + 13.4143i −0.324879 + 0.113680i
\(119\) 18.1165 + 160.789i 0.152240 + 1.35116i
\(120\) −140.318 + 111.900i −1.16932 + 0.932501i
\(121\) 37.1435 77.1292i 0.306971 0.637431i
\(122\) −62.1129 128.979i −0.509122 1.05720i
\(123\) −35.8492 + 44.9534i −0.291457 + 0.365475i
\(124\) 17.3216 27.5672i 0.139690 0.222316i
\(125\) 76.6224 17.4886i 0.612979 0.139908i
\(126\) −20.7522 + 184.181i −0.164700 + 1.46175i
\(127\) −56.8872 90.5354i −0.447931 0.712877i 0.544080 0.839033i \(-0.316879\pi\)
−0.992010 + 0.126156i \(0.959736\pi\)
\(128\) 107.445 + 107.445i 0.839411 + 0.839411i
\(129\) 45.1038 + 10.2947i 0.349642 + 0.0798035i
\(130\) −70.6614 + 201.939i −0.543550 + 1.55338i
\(131\) −15.0564 5.26846i −0.114934 0.0402172i 0.272199 0.962241i \(-0.412249\pi\)
−0.387133 + 0.922024i \(0.626535\pi\)
\(132\) 9.40033 41.1855i 0.0712146 0.312012i
\(133\) 3.07916 3.07916i 0.0231516 0.0231516i
\(134\) 53.0798 33.3523i 0.396118 0.248897i
\(135\) 189.434 + 21.3441i 1.40321 + 0.158104i
\(136\) −41.5166 181.896i −0.305269 1.33747i
\(137\) −120.235 75.5488i −0.877630 0.551451i 0.0161943 0.999869i \(-0.494845\pi\)
−0.893824 + 0.448417i \(0.851988\pi\)
\(138\) −211.139 168.378i −1.53000 1.22013i
\(139\) 199.013 95.8394i 1.43174 0.689492i 0.452423 0.891803i \(-0.350560\pi\)
0.979321 + 0.202311i \(0.0648453\pi\)
\(140\) 40.9055 + 19.6991i 0.292182 + 0.140708i
\(141\) 80.2999 + 100.693i 0.569503 + 0.714134i
\(142\) 11.7214 1.32068i 0.0825448 0.00930057i
\(143\) 29.5944 + 84.5760i 0.206954 + 0.591440i
\(144\) 302.047i 2.09755i
\(145\) 71.9526 + 161.309i 0.496225 + 1.11248i
\(146\) 131.152 0.898299
\(147\) 103.260 36.1323i 0.702449 0.245798i
\(148\) −1.28940 11.4437i −0.00871213 0.0773223i
\(149\) −122.156 + 97.4158i −0.819836 + 0.653797i −0.940839 0.338855i \(-0.889960\pi\)
0.121003 + 0.992652i \(0.461389\pi\)
\(150\) 60.3923 125.406i 0.402615 0.836040i
\(151\) 81.9702 + 170.213i 0.542849 + 1.12724i 0.974332 + 0.225117i \(0.0722764\pi\)
−0.431483 + 0.902121i \(0.642009\pi\)
\(152\) −3.13064 + 3.92569i −0.0205963 + 0.0258269i
\(153\) −255.020 + 405.862i −1.66680 + 2.65269i
\(154\) 70.0626 15.9913i 0.454952 0.103840i
\(155\) 15.4268 136.916i 0.0995276 0.883332i
\(156\) −56.9011 90.5575i −0.364750 0.580497i
\(157\) −108.735 108.735i −0.692577 0.692577i 0.270221 0.962798i \(-0.412903\pi\)
−0.962798 + 0.270221i \(0.912903\pi\)
\(158\) −199.259 45.4795i −1.26113 0.287845i
\(159\) 86.3225 246.696i 0.542909 1.55154i
\(160\) −126.598 44.2986i −0.791239 0.276866i
\(161\) 27.0492 118.510i 0.168007 0.736088i
\(162\) −26.9380 + 26.9380i −0.166284 + 0.166284i
\(163\) −194.774 + 122.385i −1.19493 + 0.750826i −0.974459 0.224567i \(-0.927903\pi\)
−0.220474 + 0.975393i \(0.570760\pi\)
\(164\) −16.6662 1.87783i −0.101623 0.0114502i
\(165\) −39.7821 174.297i −0.241104 1.05634i
\(166\) 153.271 + 96.3068i 0.923322 + 0.580162i
\(167\) −96.4643 76.9277i −0.577631 0.460645i 0.290573 0.956853i \(-0.406154\pi\)
−0.868204 + 0.496208i \(0.834725\pi\)
\(168\) 137.510 66.2212i 0.818511 0.394174i
\(169\) 52.1212 + 25.1002i 0.308409 + 0.148522i
\(170\) 276.674 + 346.938i 1.62749 + 2.04081i
\(171\) 12.8188 1.44434i 0.0749640 0.00844641i
\(172\) 4.45707 + 12.7376i 0.0259132 + 0.0740556i
\(173\) 32.3262i 0.186857i −0.995626 0.0934283i \(-0.970217\pi\)
0.995626 0.0934283i \(-0.0297826\pi\)
\(174\) −323.026 83.7326i −1.85647 0.481222i
\(175\) 62.6521 0.358012
\(176\) −110.541 + 38.6800i −0.628075 + 0.219773i
\(177\) −9.62036 85.3830i −0.0543523 0.482390i
\(178\) 266.658 212.653i 1.49808 1.19468i
\(179\) −116.664 + 242.255i −0.651754 + 1.35338i 0.268963 + 0.963151i \(0.413319\pi\)
−0.920717 + 0.390231i \(0.872395\pi\)
\(180\) 58.3562 + 121.178i 0.324201 + 0.673210i
\(181\) −66.4061 + 83.2706i −0.366884 + 0.460058i −0.930668 0.365864i \(-0.880774\pi\)
0.563784 + 0.825922i \(0.309345\pi\)
\(182\) 96.7970 154.052i 0.531852 0.846437i
\(183\) 295.261 67.3914i 1.61345 0.368259i
\(184\) −15.6935 + 139.284i −0.0852908 + 0.756976i
\(185\) −25.9291 41.2660i −0.140158 0.223059i
\(186\) 184.067 + 184.067i 0.989607 + 0.989607i
\(187\) 181.192 + 41.3559i 0.968941 + 0.221154i
\(188\) −12.4078 + 35.4594i −0.0659988 + 0.188614i
\(189\) −153.016 53.5427i −0.809610 0.283295i
\(190\) 2.65743 11.6430i 0.0139865 0.0612788i
\(191\) 72.7058 72.7058i 0.380659 0.380659i −0.490681 0.871339i \(-0.663252\pi\)
0.871339 + 0.490681i \(0.163252\pi\)
\(192\) −114.400 + 71.8820i −0.595831 + 0.374386i
\(193\) −190.040 21.4124i −0.984665 0.110945i −0.395076 0.918649i \(-0.629282\pi\)
−0.589589 + 0.807703i \(0.700710\pi\)
\(194\) 0.533617 + 2.33793i 0.00275061 + 0.0120512i
\(195\) −383.238 240.805i −1.96532 1.23490i
\(196\) 24.9491 + 19.8962i 0.127291 + 0.101511i
\(197\) 46.6020 22.4423i 0.236558 0.113920i −0.311849 0.950132i \(-0.600948\pi\)
0.548408 + 0.836211i \(0.315234\pi\)
\(198\) 191.807 + 92.3695i 0.968724 + 0.466513i
\(199\) 0.321680 + 0.403373i 0.00161648 + 0.00202700i 0.782639 0.622476i \(-0.213873\pi\)
−0.781023 + 0.624503i \(0.785302\pi\)
\(200\) −71.7881 + 8.08857i −0.358940 + 0.0404429i
\(201\) 43.8020 + 125.179i 0.217920 + 0.622781i
\(202\) 310.030i 1.53480i
\(203\) −29.1295 147.354i −0.143495 0.725880i
\(204\) −221.830 −1.08740
\(205\) −66.9946 + 23.4424i −0.326803 + 0.114353i
\(206\) 1.82305 + 16.1800i 0.00884974 + 0.0785437i
\(207\) 281.538 224.519i 1.36009 1.08463i
\(208\) −128.644 + 267.132i −0.618480 + 1.28429i
\(209\) −2.17016 4.50639i −0.0103835 0.0215617i
\(210\) −226.330 + 283.808i −1.07776 + 1.35147i
\(211\) 81.6700 129.977i 0.387062 0.616005i −0.595187 0.803587i \(-0.702922\pi\)
0.982249 + 0.187582i \(0.0600650\pi\)
\(212\) 74.3264 16.9645i 0.350596 0.0800213i
\(213\) −2.79398 + 24.7973i −0.0131173 + 0.116419i
\(214\) −83.4617 132.829i −0.390008 0.620694i
\(215\) 40.3829 + 40.3829i 0.187827 + 0.187827i
\(216\) 182.242 + 41.5955i 0.843713 + 0.192572i
\(217\) −38.6989 + 110.595i −0.178336 + 0.509655i
\(218\) −392.376 137.298i −1.79989 0.629810i
\(219\) −61.7405 + 270.503i −0.281920 + 1.23517i
\(220\) 36.8747 36.8747i 0.167612 0.167612i
\(221\) 398.399 250.331i 1.80271 1.13272i
\(222\) 91.4970 + 10.3092i 0.412149 + 0.0464380i
\(223\) −17.7211 77.6414i −0.0794670 0.348168i 0.919526 0.393029i \(-0.128573\pi\)
−0.998993 + 0.0448610i \(0.985716\pi\)
\(224\) 96.5770 + 60.6834i 0.431148 + 0.270908i
\(225\) 145.108 + 115.719i 0.644922 + 0.514308i
\(226\) −29.8773 + 14.3881i −0.132200 + 0.0636643i
\(227\) −379.261 182.642i −1.67075 0.804592i −0.997897 0.0648180i \(-0.979353\pi\)
−0.672855 0.739774i \(-0.734932\pi\)
\(228\) 3.72222 + 4.66751i 0.0163255 + 0.0204716i
\(229\) −196.110 + 22.0963i −0.856378 + 0.0964906i −0.529226 0.848481i \(-0.677518\pi\)
−0.327152 + 0.944972i \(0.606089\pi\)
\(230\) −110.105 314.663i −0.478719 1.36810i
\(231\) 152.034i 0.658154i
\(232\) 52.4010 + 165.080i 0.225866 + 0.711553i
\(233\) 122.019 0.523687 0.261843 0.965110i \(-0.415670\pi\)
0.261843 + 0.965110i \(0.415670\pi\)
\(234\) 508.726 178.011i 2.17404 0.760730i
\(235\) 17.8007 + 157.986i 0.0757477 + 0.672280i
\(236\) 19.5953 15.6267i 0.0830308 0.0662149i
\(237\) 187.605 389.565i 0.791581 1.64373i
\(238\) −163.733 339.994i −0.687952 1.42855i
\(239\) 191.297 239.879i 0.800405 1.00368i −0.199313 0.979936i \(-0.563871\pi\)
0.999718 0.0237404i \(-0.00755751\pi\)
\(240\) 314.733 500.894i 1.31139 2.08706i
\(241\) −133.954 + 30.5741i −0.555826 + 0.126864i −0.491201 0.871046i \(-0.663442\pi\)
−0.0646245 + 0.997910i \(0.520585\pi\)
\(242\) −22.3541 + 198.398i −0.0923722 + 0.819826i
\(243\) 106.990 + 170.274i 0.440289 + 0.700717i
\(244\) 62.4663 + 62.4663i 0.256010 + 0.256010i
\(245\) 131.661 + 30.0508i 0.537393 + 0.122656i
\(246\) 44.2892 126.571i 0.180038 0.514518i
\(247\) −11.9522 4.18225i −0.0483894 0.0169322i
\(248\) 30.0639 131.718i 0.121225 0.531123i
\(249\) −270.788 + 270.788i −1.08750 + 1.08750i
\(250\) −155.200 + 97.5188i −0.620801 + 0.390075i
\(251\) −330.590 37.2486i −1.31709 0.148401i −0.574699 0.818365i \(-0.694881\pi\)
−0.742393 + 0.669964i \(0.766309\pi\)
\(252\) −25.4511 111.509i −0.100997 0.442495i
\(253\) −118.222 74.2836i −0.467279 0.293611i
\(254\) 194.965 + 155.480i 0.767580 + 0.612124i
\(255\) −845.813 + 407.322i −3.31691 + 1.59734i
\(256\) −220.597 106.234i −0.861707 0.414976i
\(257\) 44.4882 + 55.7865i 0.173106 + 0.217068i 0.860814 0.508919i \(-0.169955\pi\)
−0.687709 + 0.725987i \(0.741383\pi\)
\(258\) −107.218 + 12.0806i −0.415575 + 0.0468240i
\(259\) 13.6885 + 39.1193i 0.0528512 + 0.151040i
\(260\) 132.024i 0.507786i
\(261\) 204.698 395.086i 0.784285 1.51374i
\(262\) 37.2023 0.141993
\(263\) 220.348 77.1032i 0.837826 0.293168i 0.122944 0.992414i \(-0.460766\pi\)
0.714882 + 0.699246i \(0.246481\pi\)
\(264\) −19.6280 174.203i −0.0743485 0.659861i
\(265\) 252.248 201.161i 0.951880 0.759099i
\(266\) −4.40644 + 9.15006i −0.0165656 + 0.0343987i
\(267\) 313.069 + 650.095i 1.17254 + 2.43481i
\(268\) −24.1196 + 30.2450i −0.0899984 + 0.112854i
\(269\) −176.731 + 281.266i −0.656993 + 1.04560i 0.337553 + 0.941306i \(0.390401\pi\)
−0.994547 + 0.104293i \(0.966742\pi\)
\(270\) −433.448 + 98.9316i −1.60536 + 0.366413i
\(271\) 14.5758 129.364i 0.0537851 0.477356i −0.937730 0.347365i \(-0.887077\pi\)
0.991515 0.129991i \(-0.0414949\pi\)
\(272\) 327.184 + 520.710i 1.20288 + 1.91437i
\(273\) 272.167 + 272.167i 0.996947 + 0.996947i
\(274\) 322.872 + 73.6933i 1.17836 + 0.268954i
\(275\) 23.7678 67.9244i 0.0864282 0.246998i
\(276\) 157.299 + 55.0415i 0.569926 + 0.199426i
\(277\) 10.5344 46.1541i 0.0380303 0.166621i −0.952347 0.305018i \(-0.901338\pi\)
0.990377 + 0.138396i \(0.0441948\pi\)
\(278\) −364.270 + 364.270i −1.31032 + 1.31032i
\(279\) −293.901 + 184.670i −1.05341 + 0.661900i
\(280\) 187.222 + 21.0948i 0.668649 + 0.0753386i
\(281\) 15.5090 + 67.9492i 0.0551921 + 0.241812i 0.994998 0.0998970i \(-0.0318513\pi\)
−0.939806 + 0.341709i \(0.888994\pi\)
\(282\) −254.328 159.805i −0.901874 0.566685i
\(283\) 430.103 + 342.995i 1.51980 + 1.21200i 0.906544 + 0.422111i \(0.138711\pi\)
0.613253 + 0.789887i \(0.289861\pi\)
\(284\) −6.55813 + 3.15823i −0.0230920 + 0.0111205i
\(285\) 22.7629 + 10.9620i 0.0798697 + 0.0384632i
\(286\) −130.294 163.384i −0.455574 0.571272i
\(287\) 59.9798 6.75810i 0.208989 0.0235474i
\(288\) 111.597 + 318.927i 0.387491 + 1.10739i
\(289\) 686.921i 2.37689i
\(290\) −282.645 299.672i −0.974638 1.03335i
\(291\) −5.07323 −0.0174338
\(292\) −76.3915 + 26.7305i −0.261615 + 0.0915430i
\(293\) 35.7040 + 316.882i 0.121857 + 1.08151i 0.894624 + 0.446819i \(0.147443\pi\)
−0.772768 + 0.634689i \(0.781128\pi\)
\(294\) −199.478 + 159.078i −0.678496 + 0.541082i
\(295\) 46.0210 95.5636i 0.156003 0.323944i
\(296\) −20.7349 43.0566i −0.0700505 0.145461i
\(297\) −116.097 + 145.581i −0.390899 + 0.490171i
\(298\) 193.868 308.538i 0.650562 1.03536i
\(299\) −344.618 + 78.6568i −1.15257 + 0.263066i
\(300\) −9.61704 + 85.3536i −0.0320568 + 0.284512i
\(301\) −25.8389 41.1223i −0.0858434 0.136619i
\(302\) −311.555 311.555i −1.03164 1.03164i
\(303\) −639.443 145.949i −2.11037 0.481679i
\(304\) 5.46622 15.6216i 0.0179810 0.0513867i
\(305\) 352.877 + 123.477i 1.15698 + 0.404843i
\(306\) 248.756 1089.87i 0.812929 3.56168i
\(307\) 361.966 361.966i 1.17904 1.17904i 0.199053 0.979989i \(-0.436213\pi\)
0.979989 0.199053i \(-0.0637867\pi\)
\(308\) −37.5499 + 23.5942i −0.121915 + 0.0766044i
\(309\) −34.2298 3.85677i −0.110776 0.0124814i
\(310\) 71.5045 + 313.282i 0.230660 + 1.01059i
\(311\) 409.769 + 257.475i 1.31758 + 0.827893i 0.993017 0.117970i \(-0.0376387\pi\)
0.324567 + 0.945863i \(0.394782\pi\)
\(312\) −346.992 276.717i −1.11215 0.886912i
\(313\) 276.742 133.272i 0.884159 0.425789i 0.0640173 0.997949i \(-0.479609\pi\)
0.820142 + 0.572160i \(0.193894\pi\)
\(314\) 323.117 + 155.605i 1.02903 + 0.495557i
\(315\) −301.794 378.437i −0.958075 1.20139i
\(316\) 125.331 14.1214i 0.396617 0.0446880i
\(317\) 184.663 + 527.737i 0.582534 + 1.66479i 0.736281 + 0.676676i \(0.236580\pi\)
−0.153747 + 0.988110i \(0.549134\pi\)
\(318\) 609.552i 1.91683i
\(319\) −170.804 24.3195i −0.535437 0.0762366i
\(320\) −166.784 −0.521200
\(321\) 313.252 109.611i 0.975861 0.341469i
\(322\) 31.7418 + 281.716i 0.0985769 + 0.874894i
\(323\) −20.5343 + 16.3756i −0.0635737 + 0.0506983i
\(324\) 10.2001 21.1808i 0.0314819 0.0653729i
\(325\) −79.0480 164.145i −0.243225 0.505061i
\(326\) 334.492 419.440i 1.02605 1.28663i
\(327\) 467.895 744.650i 1.43087 2.27722i
\(328\) −67.8536 + 15.4871i −0.206871 + 0.0472169i
\(329\) 15.1377 134.351i 0.0460113 0.408362i
\(330\) 221.831 + 353.042i 0.672214 + 1.06982i
\(331\) −418.557 418.557i −1.26452 1.26452i −0.948877 0.315645i \(-0.897779\pi\)
−0.315645 0.948877i \(-0.602221\pi\)
\(332\) −108.904 24.8567i −0.328025 0.0748695i
\(333\) −40.5504 + 115.887i −0.121773 + 0.348008i
\(334\) 271.606 + 95.0390i 0.813191 + 0.284548i
\(335\) −36.4297 + 159.609i −0.108745 + 0.476445i
\(336\) −355.723 + 355.723i −1.05870 + 1.05870i
\(337\) −535.661 + 336.578i −1.58950 + 0.998748i −0.611218 + 0.791463i \(0.709320\pi\)
−0.978281 + 0.207285i \(0.933537\pi\)
\(338\) −134.070 15.1061i −0.396657 0.0446926i
\(339\) −15.6109 68.3958i −0.0460498 0.201757i
\(340\) −231.864 145.690i −0.681954 0.428500i
\(341\) 105.221 + 83.9110i 0.308566 + 0.246073i
\(342\) −27.1060 + 13.0536i −0.0792573 + 0.0381683i
\(343\) −332.133 159.947i −0.968316 0.466317i
\(344\) 34.9157 + 43.7829i 0.101499 + 0.127276i
\(345\) 700.832 78.9648i 2.03140 0.228883i
\(346\) 24.9002 + 71.1607i 0.0719659 + 0.205667i
\(347\) 141.419i 0.407547i 0.979018 + 0.203774i \(0.0653207\pi\)
−0.979018 + 0.203774i \(0.934679\pi\)
\(348\) 205.218 17.0657i 0.589706 0.0490393i
\(349\) −571.537 −1.63764 −0.818821 0.574048i \(-0.805372\pi\)
−0.818821 + 0.574048i \(0.805372\pi\)
\(350\) −137.918 + 48.2596i −0.394052 + 0.137885i
\(351\) 52.7815 + 468.449i 0.150375 + 1.33461i
\(352\) 102.428 81.6833i 0.290987 0.232055i
\(353\) 6.08107 12.6275i 0.0172268 0.0357719i −0.892178 0.451684i \(-0.850823\pi\)
0.909405 + 0.415912i \(0.136538\pi\)
\(354\) 86.9464 + 180.546i 0.245611 + 0.510017i
\(355\) −19.2063 + 24.0840i −0.0541023 + 0.0678421i
\(356\) −111.978 + 178.212i −0.314545 + 0.500595i
\(357\) 778.323 177.647i 2.18018 0.497611i
\(358\) 70.2120 623.148i 0.196123 1.74064i
\(359\) 8.23661 + 13.1085i 0.0229432 + 0.0365139i 0.857999 0.513651i \(-0.171708\pi\)
−0.835056 + 0.550165i \(0.814565\pi\)
\(360\) 394.659 + 394.659i 1.09627 + 1.09627i
\(361\) −351.260 80.1728i −0.973019 0.222085i
\(362\) 82.0402 234.457i 0.226630 0.647672i
\(363\) −398.676 139.503i −1.09828 0.384305i
\(364\) −24.9832 + 109.459i −0.0686351 + 0.300710i
\(365\) −242.190 + 242.190i −0.663534 + 0.663534i
\(366\) −598.058 + 375.785i −1.63404 + 1.02673i
\(367\) 281.948 + 31.7679i 0.768249 + 0.0865609i 0.487386 0.873187i \(-0.337951\pi\)
0.280864 + 0.959748i \(0.409379\pi\)
\(368\) −102.805 450.417i −0.279361 1.22396i
\(369\) 151.401 + 95.1313i 0.410300 + 0.257808i
\(370\) 88.8650 + 70.8675i 0.240176 + 0.191534i
\(371\) −247.199 + 119.045i −0.666306 + 0.320876i
\(372\) −144.728 69.6974i −0.389054 0.187359i
\(373\) 146.301 + 183.455i 0.392227 + 0.491837i 0.938262 0.345925i \(-0.112435\pi\)
−0.546035 + 0.837762i \(0.683863\pi\)
\(374\) −430.719 + 48.5304i −1.15166 + 0.129760i
\(375\) −128.073 366.011i −0.341527 0.976029i
\(376\) 155.896i 0.414618i
\(377\) −349.306 + 262.234i −0.926541 + 0.695580i
\(378\) 378.083 1.00022
\(379\) 549.482 192.272i 1.44982 0.507314i 0.513386 0.858158i \(-0.328391\pi\)
0.936434 + 0.350844i \(0.114105\pi\)
\(380\) 0.825134 + 7.32327i 0.00217140 + 0.0192718i
\(381\) −412.461 + 328.926i −1.08257 + 0.863324i
\(382\) −104.046 + 216.054i −0.272371 + 0.565585i
\(383\) −177.905 369.424i −0.464504 0.964553i −0.993274 0.115788i \(-0.963061\pi\)
0.528770 0.848765i \(-0.322654\pi\)
\(384\) 467.436 586.146i 1.21728 1.52642i
\(385\) −99.8502 + 158.911i −0.259351 + 0.412755i
\(386\) 434.835 99.2484i 1.12652 0.257120i
\(387\) 16.1086 142.968i 0.0416242 0.369425i
\(388\) −0.787317 1.25301i −0.00202917 0.00322940i
\(389\) 57.4399 + 57.4399i 0.147661 + 0.147661i 0.777072 0.629412i \(-0.216704\pi\)
−0.629412 + 0.777072i \(0.716704\pi\)
\(390\) 1029.12 + 234.890i 2.63877 + 0.602283i
\(391\) −242.150 + 692.024i −0.619309 + 1.76988i
\(392\) 124.992 + 43.7367i 0.318858 + 0.111573i
\(393\) −17.5132 + 76.7304i −0.0445629 + 0.195243i
\(394\) −85.2996 + 85.2996i −0.216496 + 0.216496i
\(395\) 451.943 283.975i 1.14416 0.718923i
\(396\) −130.548 14.7092i −0.329665 0.0371444i
\(397\) 22.5451 + 98.7767i 0.0567887 + 0.248808i 0.995353 0.0962980i \(-0.0307002\pi\)
−0.938564 + 0.345106i \(0.887843\pi\)
\(398\) −1.01883 0.640176i −0.00255988 0.00160848i
\(399\) −16.7978 13.3958i −0.0420998 0.0335735i
\(400\) 214.538 103.316i 0.536345 0.258290i
\(401\) 107.974 + 51.9976i 0.269262 + 0.129670i 0.563643 0.826018i \(-0.309399\pi\)
−0.294381 + 0.955688i \(0.595113\pi\)
\(402\) −192.846 241.821i −0.479715 0.601544i
\(403\) 338.579 38.1487i 0.840147 0.0946619i
\(404\) −63.1884 180.582i −0.156407 0.446985i
\(405\) 99.4895i 0.245653i
\(406\) 177.627 + 301.937i 0.437506 + 0.743687i
\(407\) 47.6042 0.116964
\(408\) −868.884 + 304.036i −2.12962 + 0.745186i
\(409\) −42.0942 373.596i −0.102920 0.913438i −0.933997 0.357281i \(-0.883704\pi\)
0.831077 0.556157i \(-0.187725\pi\)
\(410\) 129.420 103.209i 0.315659 0.251730i
\(411\) −303.988 + 631.237i −0.739630 + 1.53586i
\(412\) −4.35957 9.05274i −0.0105815 0.0219727i
\(413\) −56.2386 + 70.5210i −0.136171 + 0.170753i
\(414\) −446.817 + 711.105i −1.07927 + 1.71765i
\(415\) −460.881 + 105.193i −1.11056 + 0.253477i
\(416\) 37.1359 329.590i 0.0892691 0.792285i
\(417\) −579.831 922.795i −1.39048 2.21294i
\(418\) 8.24843 + 8.24843i 0.0197331 + 0.0197331i
\(419\) −231.325 52.7983i −0.552087 0.126010i −0.0626288 0.998037i \(-0.519948\pi\)
−0.489459 + 0.872027i \(0.662806\pi\)
\(420\) 73.9854 211.438i 0.176156 0.503424i
\(421\) 120.085 + 42.0197i 0.285238 + 0.0998092i 0.469106 0.883142i \(-0.344576\pi\)
−0.183868 + 0.982951i \(0.558862\pi\)
\(422\) −79.6642 + 349.032i −0.188778 + 0.827089i
\(423\) 283.209 283.209i 0.669524 0.669524i
\(424\) 267.877 168.318i 0.631786 0.396977i
\(425\) −375.505 42.3093i −0.883542 0.0995512i
\(426\) −12.9503 56.7392i −0.0303999 0.133191i
\(427\) −269.197 169.148i −0.630438 0.396131i
\(428\) 75.6860 + 60.3575i 0.176836 + 0.141022i
\(429\) 398.319 191.820i 0.928483 0.447134i
\(430\) −120.002 57.7901i −0.279075 0.134396i
\(431\) 102.073 + 127.996i 0.236828 + 0.296973i 0.886016 0.463655i \(-0.153462\pi\)
−0.649187 + 0.760629i \(0.724891\pi\)
\(432\) −612.265 + 68.9857i −1.41728 + 0.159689i
\(433\) −29.3711 83.9378i −0.0678316 0.193852i 0.904978 0.425459i \(-0.139887\pi\)
−0.972809 + 0.231607i \(0.925602\pi\)
\(434\) 273.266i 0.629644i
\(435\) 751.136 441.888i 1.72675 1.01583i
\(436\) 256.530 0.588371
\(437\) 18.6240 6.51683i 0.0426179 0.0149127i
\(438\) −72.4515 643.024i −0.165414 1.46809i
\(439\) 377.689 301.197i 0.860340 0.686098i −0.0904611 0.995900i \(-0.528834\pi\)
0.950801 + 0.309802i \(0.100263\pi\)
\(440\) 93.8946 194.974i 0.213397 0.443123i
\(441\) −147.613 306.521i −0.334722 0.695058i
\(442\) −684.185 + 857.941i −1.54793 + 1.94104i
\(443\) −33.5662 + 53.4203i −0.0757703 + 0.120588i −0.882460 0.470388i \(-0.844114\pi\)
0.806690 + 0.590975i \(0.201257\pi\)
\(444\) −55.3951 + 12.6436i −0.124764 + 0.0284765i
\(445\) −99.7284 + 885.114i −0.224109 + 1.98902i
\(446\) 98.8157 + 157.264i 0.221560 + 0.352610i
\(447\) 545.102 + 545.102i 1.21947 + 1.21947i
\(448\) 138.277 + 31.5608i 0.308654 + 0.0704482i
\(449\) 224.975 642.941i 0.501058 1.43194i −0.364534 0.931190i \(-0.618772\pi\)
0.865592 0.500751i \(-0.166943\pi\)
\(450\) −408.566 142.964i −0.907925 0.317697i
\(451\) 15.4272 67.5910i 0.0342066 0.149869i
\(452\) 14.4700 14.4700i 0.0320133 0.0320133i
\(453\) 789.256 495.922i 1.74229 1.09475i
\(454\) 975.565 + 109.920i 2.14882 + 0.242114i
\(455\) 105.729 + 463.227i 0.232370 + 1.01808i
\(456\) 20.9767 + 13.1806i 0.0460016 + 0.0289047i
\(457\) −81.2493 64.7942i −0.177788 0.141782i 0.530552 0.847652i \(-0.321985\pi\)
−0.708341 + 0.705871i \(0.750556\pi\)
\(458\) 414.684 199.701i 0.905424 0.436029i
\(459\) 880.946 + 424.241i 1.91927 + 0.924272i
\(460\) 128.266 + 160.840i 0.278838 + 0.349652i
\(461\) 286.769 32.3111i 0.622058 0.0700891i 0.204690 0.978827i \(-0.434381\pi\)
0.417368 + 0.908738i \(0.362953\pi\)
\(462\) −117.108 334.676i −0.253481 0.724408i
\(463\) 377.960i 0.816329i −0.912908 0.408164i \(-0.866169\pi\)
0.912908 0.408164i \(-0.133831\pi\)
\(464\) −342.740 456.544i −0.738664 0.983931i
\(465\) −679.810 −1.46196
\(466\) −268.604 + 93.9888i −0.576404 + 0.201693i
\(467\) −89.7450 796.509i −0.192173 1.70559i −0.606193 0.795318i \(-0.707304\pi\)
0.414019 0.910268i \(-0.364125\pi\)
\(468\) −260.035 + 207.371i −0.555630 + 0.443100i
\(469\) 60.4061 125.435i 0.128798 0.267451i
\(470\) −160.879 334.068i −0.342295 0.710782i
\(471\) −473.048 + 593.183i −1.00435 + 1.25941i
\(472\) 55.3349 88.0650i 0.117235 0.186578i
\(473\) −54.3851 + 12.4130i −0.114979 + 0.0262432i
\(474\) −112.906 + 1002.07i −0.238199 + 2.11407i
\(475\) 5.41060 + 8.61092i 0.0113907 + 0.0181283i
\(476\) 164.664 + 164.664i 0.345934 + 0.345934i
\(477\) −792.413 180.863i −1.66124 0.379168i
\(478\) −236.334 + 675.405i −0.494423 + 1.41298i
\(479\) −392.771 137.436i −0.819981 0.286924i −0.112496 0.993652i \(-0.535885\pi\)
−0.707485 + 0.706729i \(0.750170\pi\)
\(480\) −147.256 + 645.170i −0.306783 + 1.34411i
\(481\) 85.2198 85.2198i 0.177172 0.177172i
\(482\) 271.327 170.486i 0.562919 0.353705i
\(483\) −595.987 67.1516i −1.23393 0.139030i
\(484\) −27.4157 120.116i −0.0566441 0.248174i
\(485\) −5.30271 3.33192i −0.0109334 0.00686993i
\(486\) −366.680 292.418i −0.754486 0.601682i
\(487\) −642.025 + 309.183i −1.31833 + 0.634873i −0.954949 0.296769i \(-0.904091\pi\)
−0.363378 + 0.931642i \(0.618377\pi\)
\(488\) 330.289 + 159.059i 0.676822 + 0.325940i
\(489\) 707.638 + 887.350i 1.44711 + 1.81462i
\(490\) −312.978 + 35.2641i −0.638731 + 0.0719676i
\(491\) −16.0776 45.9471i −0.0327446 0.0935786i 0.926351 0.376662i \(-0.122928\pi\)
−0.959095 + 0.283084i \(0.908643\pi\)
\(492\) 82.7504i 0.168192i
\(493\) 75.0788 + 902.836i 0.152290 + 1.83131i
\(494\) 29.5322 0.0597819
\(495\) −524.772 + 183.626i −1.06015 + 0.370961i
\(496\) 49.8605 + 442.525i 0.100525 + 0.892187i
\(497\) 20.4810 16.3330i 0.0412092 0.0328632i
\(498\) 387.512 804.678i 0.778137 1.61582i
\(499\) 336.600 + 698.958i 0.674550 + 1.40072i 0.904058 + 0.427410i \(0.140574\pi\)
−0.229508 + 0.973307i \(0.573712\pi\)
\(500\) 70.5233 88.4334i 0.141047 0.176867i
\(501\) −323.880 + 515.452i −0.646467 + 1.02885i
\(502\) 756.431 172.650i 1.50683 0.343925i
\(503\) −52.8932 + 469.440i −0.105156 + 0.933281i 0.824754 + 0.565492i \(0.191314\pi\)
−0.929909 + 0.367789i \(0.880115\pi\)
\(504\) −252.521 401.885i −0.501034 0.797391i
\(505\) −572.514 572.514i −1.13369 1.13369i
\(506\) 317.464 + 72.4592i 0.627400 + 0.143200i
\(507\) 94.2710 269.411i 0.185939 0.531383i
\(508\) −145.250 50.8250i −0.285924 0.100049i
\(509\) −171.270 + 750.383i −0.336483 + 1.47423i 0.469838 + 0.882753i \(0.344312\pi\)
−0.806322 + 0.591477i \(0.798545\pi\)
\(510\) 1548.16 1548.16i 3.03562 3.03562i
\(511\) 246.624 154.964i 0.482631 0.303257i
\(512\) −36.5399 4.11706i −0.0713670 0.00804114i
\(513\) −5.85548 25.6545i −0.0114142 0.0500088i
\(514\) −140.905 88.5362i −0.274133 0.172249i
\(515\) −33.2451 26.5121i −0.0645537 0.0514798i
\(516\) 59.9889 28.8891i 0.116258 0.0559867i
\(517\) −139.914 67.3791i −0.270627 0.130327i
\(518\) −60.2657 75.5708i −0.116343 0.145890i
\(519\) −158.492 + 17.8578i −0.305380 + 0.0344081i
\(520\) −180.950 517.126i −0.347981 0.994472i
\(521\) 306.568i 0.588421i −0.955741 0.294211i \(-0.904943\pi\)
0.955741 0.294211i \(-0.0950567\pi\)
\(522\) −146.282 + 1027.39i −0.280234 + 1.96818i
\(523\) 789.078 1.50875 0.754377 0.656442i \(-0.227939\pi\)
0.754377 + 0.656442i \(0.227939\pi\)
\(524\) −21.6691 + 7.58234i −0.0413532 + 0.0144701i
\(525\) −34.6106 307.177i −0.0659249 0.585099i
\(526\) −425.669 + 339.459i −0.809256 + 0.645360i
\(527\) 306.627 636.718i 0.581836 1.20819i
\(528\) 250.710 + 520.605i 0.474830 + 0.985994i
\(529\) 13.5904 17.0418i 0.0256907 0.0322151i
\(530\) −400.332 + 637.124i −0.755343 + 1.20212i
\(531\) −260.507 + 59.4590i −0.490597 + 0.111976i
\(532\) 0.701693 6.22770i 0.00131897 0.0117062i
\(533\) −93.3822 148.617i −0.175201 0.278831i
\(534\) −1189.92 1189.92i −2.22832 2.22832i
\(535\) 399.410 + 91.1628i 0.746561 + 0.170398i
\(536\) −53.0206 + 151.524i −0.0989191 + 0.282694i
\(537\) 1252.20 + 438.165i 2.33185 + 0.815949i
\(538\) 172.391 755.293i 0.320429 1.40389i
\(539\) −93.2750 + 93.2750i −0.173052 + 0.173052i
\(540\) 232.305 145.967i 0.430195 0.270309i
\(541\) 231.201 + 26.0502i 0.427359 + 0.0481518i 0.323025 0.946390i \(-0.395300\pi\)
0.104334 + 0.994542i \(0.466729\pi\)
\(542\) 67.5600 + 296.000i 0.124649 + 0.546125i
\(543\) 444.952 + 279.582i 0.819433 + 0.514884i
\(544\) −537.855 428.925i −0.988703 0.788465i
\(545\) 978.119 471.037i 1.79471 0.864288i
\(546\) −808.774 389.485i −1.48127 0.713342i
\(547\) 5.46184 + 6.84892i 0.00998507 + 0.0125209i 0.786799 0.617209i \(-0.211737\pi\)
−0.776814 + 0.629730i \(0.783165\pi\)
\(548\) −203.082 + 22.8818i −0.370587 + 0.0417551i
\(549\) −311.065 888.972i −0.566602 1.61926i
\(550\) 167.832i 0.305149i
\(551\) 17.7367 16.7290i 0.0321901 0.0303611i
\(552\) 691.564 1.25283
\(553\) −428.433 + 149.915i −0.774743 + 0.271094i
\(554\) 12.3619 + 109.715i 0.0223139 + 0.198042i
\(555\) −187.999 + 149.925i −0.338738 + 0.270134i
\(556\) 137.932 286.418i 0.248079 0.515141i
\(557\) −184.669 383.470i −0.331543 0.688456i 0.666846 0.745195i \(-0.267644\pi\)
−0.998389 + 0.0567395i \(0.981930\pi\)
\(558\) 504.726 632.907i 0.904527 1.13424i
\(559\) −75.1373 + 119.580i −0.134414 + 0.213918i
\(560\) −605.440 + 138.188i −1.08114 + 0.246764i
\(561\) 102.669 911.213i 0.183011 1.62427i
\(562\) −86.4803 137.633i −0.153880 0.244898i
\(563\) 493.000 + 493.000i 0.875666 + 0.875666i 0.993083 0.117416i \(-0.0374612\pi\)
−0.117416 + 0.993083i \(0.537461\pi\)
\(564\) 180.708 + 41.2455i 0.320405 + 0.0731303i
\(565\) 28.6029 81.7423i 0.0506245 0.144677i
\(566\) −1211.00 423.748i −2.13958 0.748671i
\(567\) −18.8266 + 82.4846i −0.0332038 + 0.145475i
\(568\) −21.3589 + 21.3589i −0.0376037 + 0.0376037i
\(569\) −267.135 + 167.852i −0.469482 + 0.294995i −0.745919 0.666037i \(-0.767989\pi\)
0.276436 + 0.961032i \(0.410846\pi\)
\(570\) −58.5524 6.59727i −0.102724 0.0115742i
\(571\) −136.850 599.581i −0.239668 1.05005i −0.941315 0.337529i \(-0.890409\pi\)
0.701647 0.712525i \(-0.252448\pi\)
\(572\) 109.192 + 68.6099i 0.190895 + 0.119947i
\(573\) −396.634 316.305i −0.692206 0.552016i
\(574\) −126.830 + 61.0780i −0.220958 + 0.106408i
\(575\) 255.772 + 123.174i 0.444822 + 0.214215i
\(576\) 261.968 + 328.497i 0.454805 + 0.570308i
\(577\) −468.624 + 52.8013i −0.812173 + 0.0915100i −0.508275 0.861195i \(-0.669717\pi\)
−0.303898 + 0.952705i \(0.598288\pi\)
\(578\) 529.121 + 1512.14i 0.915434 + 2.61616i
\(579\) 943.578i 1.62967i
\(580\) 225.709 + 116.942i 0.389153 + 0.201624i
\(581\) 402.012 0.691932
\(582\) 11.1679 3.90781i 0.0191888 0.00671444i
\(583\) 35.2850 + 313.163i 0.0605231 + 0.537157i
\(584\) −262.581 + 209.401i −0.449625 + 0.358564i
\(585\) −610.712 + 1268.16i −1.04395 + 2.16779i
\(586\) −322.684 670.061i −0.550656 1.14345i
\(587\) −125.247 + 157.054i −0.213367 + 0.267554i −0.876985 0.480518i \(-0.840449\pi\)
0.663618 + 0.748072i \(0.269020\pi\)
\(588\) 83.7668 133.314i 0.142461 0.226725i
\(589\) −18.5422 + 4.23215i −0.0314809 + 0.00718531i
\(590\) −27.6968 + 245.816i −0.0469438 + 0.416638i
\(591\) −135.777 216.087i −0.229741 0.365630i
\(592\) 111.383 + 111.383i 0.188146 + 0.188146i
\(593\) −372.413 85.0008i −0.628015 0.143340i −0.103344 0.994646i \(-0.532954\pi\)
−0.524671 + 0.851305i \(0.675812\pi\)
\(594\) 143.430 409.899i 0.241464 0.690066i
\(595\) 930.202 + 325.492i 1.56337 + 0.547045i
\(596\) −50.0370 + 219.226i −0.0839546 + 0.367829i
\(597\) 1.80000 1.80000i 0.00301507 0.00301507i
\(598\) 698.031 438.602i 1.16728 0.733448i
\(599\) −289.961 32.6708i −0.484076 0.0545422i −0.133445 0.991056i \(-0.542604\pi\)
−0.350630 + 0.936514i \(0.614033\pi\)
\(600\) 79.3150 + 347.502i 0.132192 + 0.579170i
\(601\) 434.543 + 273.041i 0.723033 + 0.454312i 0.842618 0.538512i \(-0.181013\pi\)
−0.119585 + 0.992824i \(0.538156\pi\)
\(602\) 88.5556 + 70.6207i 0.147102 + 0.117310i
\(603\) 371.585 178.946i 0.616228 0.296760i
\(604\) 244.970 + 117.971i 0.405579 + 0.195317i
\(605\) −325.089 407.649i −0.537338 0.673800i
\(606\) 1520.05 171.268i 2.50833 0.282621i
\(607\) 182.154 + 520.567i 0.300090 + 0.857607i 0.990904 + 0.134574i \(0.0429667\pi\)
−0.690814 + 0.723033i \(0.742748\pi\)
\(608\) 18.5142i 0.0304509i
\(609\) −706.369 + 224.221i −1.15988 + 0.368179i
\(610\) −871.912 −1.42936
\(611\) −371.091 + 129.850i −0.607350 + 0.212521i
\(612\) 77.2389 + 685.515i 0.126207 + 1.12012i
\(613\) 280.338 223.562i 0.457321 0.364701i −0.367567 0.929997i \(-0.619809\pi\)
0.824888 + 0.565295i \(0.191238\pi\)
\(614\) −517.992 + 1075.62i −0.843636 + 1.75183i
\(615\) 151.945 + 315.518i 0.247066 + 0.513037i
\(616\) −114.741 + 143.881i −0.186268 + 0.233573i
\(617\) −279.227 + 444.387i −0.452555 + 0.720238i −0.992604 0.121396i \(-0.961263\pi\)
0.540049 + 0.841634i \(0.318406\pi\)
\(618\) 78.3219 17.8765i 0.126734 0.0289263i
\(619\) 112.177 995.602i 0.181224 1.60840i −0.493103 0.869971i \(-0.664137\pi\)
0.674327 0.738433i \(-0.264434\pi\)
\(620\) −105.500 167.902i −0.170161 0.270810i
\(621\) −519.413 519.413i −0.836414 0.836414i
\(622\) −1100.36 251.151i −1.76907 0.403780i
\(623\) 250.174 714.957i 0.401564 1.14760i
\(624\) 1380.79 + 483.159i 2.21280 + 0.774293i
\(625\) 173.808 761.503i 0.278093 1.21841i
\(626\) −506.544 + 506.544i −0.809176 + 0.809176i
\(627\) −20.8955 + 13.1295i −0.0333262 + 0.0209402i
\(628\) −219.919 24.7790i −0.350190 0.0394569i
\(629\) −55.6242 243.706i −0.0884328 0.387449i
\(630\) 955.851 + 600.601i 1.51722 + 0.953335i
\(631\) −434.398 346.421i −0.688427 0.549002i 0.215598 0.976482i \(-0.430830\pi\)
−0.904025 + 0.427480i \(0.859401\pi\)
\(632\) 471.553 227.088i 0.746128 0.359317i
\(633\) −682.382 328.618i −1.07801 0.519143i
\(634\) −813.011 1019.48i −1.28235 1.60802i
\(635\) −647.145 + 72.9158i −1.01913 + 0.114828i
\(636\) −124.235 355.043i −0.195338 0.558244i
\(637\) 333.957i 0.524266i
\(638\) 394.730 78.0319i 0.618699 0.122307i
\(639\) 77.6031 0.121445
\(640\) 873.540 305.665i 1.36491 0.477601i
\(641\) −75.0000 665.643i −0.117005 1.03845i −0.905775 0.423758i \(-0.860711\pi\)
0.788771 0.614687i \(-0.210718\pi\)
\(642\) −605.139 + 482.583i −0.942585 + 0.751686i
\(643\) 38.4657 79.8749i 0.0598223 0.124222i −0.868914 0.494963i \(-0.835182\pi\)
0.928737 + 0.370740i \(0.120896\pi\)
\(644\) −75.9061 157.621i −0.117867 0.244753i
\(645\) 175.685 220.302i 0.272380 0.341554i
\(646\) 32.5891 51.8652i 0.0504475 0.0802867i
\(647\) −399.560 + 91.1970i −0.617558 + 0.140954i −0.519844 0.854261i \(-0.674010\pi\)
−0.0977136 + 0.995215i \(0.531153\pi\)
\(648\) 10.9229 96.9431i 0.0168563 0.149604i
\(649\) 55.1207 + 87.7241i 0.0849318 + 0.135168i
\(650\) 300.448 + 300.448i 0.462228 + 0.462228i
\(651\) 563.616 + 128.642i 0.865769 + 0.197606i
\(652\) −109.343 + 312.484i −0.167704 + 0.479270i
\(653\) −28.0410 9.81196i −0.0429418 0.0150260i 0.308723 0.951152i \(-0.400098\pi\)
−0.351664 + 0.936126i \(0.614384\pi\)
\(654\) −456.403 + 1999.63i −0.697864 + 3.05754i
\(655\) −68.6992 + 68.6992i −0.104884 + 0.104884i
\(656\) 194.243 122.051i 0.296102 0.186053i
\(657\) 857.425 + 96.6086i 1.30506 + 0.147045i
\(658\) 70.1647 + 307.411i 0.106633 + 0.467191i
\(659\) 839.507 + 527.497i 1.27391 + 0.800451i 0.987494 0.157655i \(-0.0503933\pi\)
0.286416 + 0.958105i \(0.407536\pi\)
\(660\) −201.164 160.423i −0.304794 0.243065i
\(661\) 34.7693 16.7440i 0.0526010 0.0253313i −0.407398 0.913251i \(-0.633564\pi\)
0.459999 + 0.887919i \(0.347850\pi\)
\(662\) 1243.79 + 598.977i 1.87883 + 0.904799i
\(663\) −1447.43 1815.03i −2.18316 2.73760i
\(664\) −460.634 + 51.9010i −0.693726 + 0.0781642i
\(665\) −8.75977 25.0340i −0.0131726 0.0376451i
\(666\) 286.340i 0.429940i
\(667\) 170.777 658.829i 0.256038 0.987750i
\(668\) −177.572 −0.265826
\(669\) −370.879 + 129.776i −0.554378 + 0.193985i
\(670\) −42.7496 379.413i −0.0638054 0.566289i
\(671\) −285.505 + 227.682i −0.425491 + 0.339318i
\(672\) 244.173 507.031i 0.363353 0.754511i
\(673\) 340.019 + 706.057i 0.505229 + 1.04912i 0.985132 + 0.171797i \(0.0549575\pi\)
−0.479903 + 0.877321i \(0.659328\pi\)
\(674\) 919.909 1153.53i 1.36485 1.71147i
\(675\) 201.427 320.569i 0.298411 0.474918i
\(676\) 81.1703 18.5266i 0.120074 0.0274062i
\(677\) 72.2705 641.418i 0.106751 0.947442i −0.820153 0.572144i \(-0.806112\pi\)
0.926904 0.375298i \(-0.122460\pi\)
\(678\) 87.0486 + 138.537i 0.128390 + 0.204332i
\(679\) 3.76586 + 3.76586i 0.00554618 + 0.00554618i
\(680\) −1107.87 252.864i −1.62922 0.371858i
\(681\) −685.965 + 1960.38i −1.00729 + 2.87867i
\(682\) −296.261 103.666i −0.434401 0.152003i
\(683\) 196.973 862.994i 0.288393 1.26353i −0.598336 0.801245i \(-0.704171\pi\)
0.886729 0.462289i \(-0.152972\pi\)
\(684\) 13.1278 13.1278i 0.0191927 0.0191927i
\(685\) −732.313 + 460.143i −1.06907 + 0.671741i
\(686\) 854.338 + 96.2608i 1.24539 + 0.140322i
\(687\) 216.673 + 949.305i 0.315389 + 1.38181i
\(688\) −156.292 98.2047i −0.227168 0.142739i
\(689\) 623.782 + 497.450i 0.905344 + 0.721988i
\(690\) −1481.94 + 713.664i −2.14774 + 1.03430i
\(691\) 553.507 + 266.555i 0.801023 + 0.385752i 0.789168 0.614177i \(-0.210512\pi\)
0.0118551 + 0.999930i \(0.496226\pi\)
\(692\) −29.0071 36.3737i −0.0419177 0.0525632i
\(693\) 469.825 52.9365i 0.677958 0.0763875i
\(694\) −108.932 311.310i −0.156963 0.448574i
\(695\) 1345.35i 1.93575i
\(696\) 780.425 348.112i 1.12130 0.500160i
\(697\) −364.053 −0.522314
\(698\) 1258.14 440.244i 1.80250 0.630721i
\(699\) −67.4063 598.248i −0.0964325 0.855862i
\(700\) 70.4967 56.2192i 0.100710 0.0803132i
\(701\) 92.4303 191.933i 0.131855 0.273800i −0.824580 0.565745i \(-0.808588\pi\)
0.956435 + 0.291946i \(0.0943028\pi\)
\(702\) −477.026 990.555i −0.679525 1.41105i
\(703\) −4.19445 + 5.25967i −0.00596650 + 0.00748175i
\(704\) 86.6736 137.940i 0.123116 0.195938i
\(705\) 764.756 174.550i 1.08476 0.247589i
\(706\) −3.65977 + 32.4814i −0.00518381 + 0.0460076i
\(707\) 366.321 + 582.996i 0.518134 + 0.824606i
\(708\) −87.4412 87.4412i −0.123504 0.123504i
\(709\) 976.236 + 222.819i 1.37692 + 0.314273i 0.846015 0.533159i \(-0.178995\pi\)
0.530904 + 0.847432i \(0.321852\pi\)
\(710\) 23.7281 67.8110i 0.0334199 0.0955085i
\(711\) −1269.18 444.106i −1.78507 0.624622i
\(712\) −194.352 + 851.511i −0.272966 + 1.19594i
\(713\) −375.415 + 375.415i −0.526528 + 0.526528i
\(714\) −1576.51 + 990.587i −2.20800 + 1.38738i
\(715\) 542.318 + 61.1045i 0.758486 + 0.0854609i
\(716\) 86.1102 + 377.273i 0.120266 + 0.526918i
\(717\) −1281.78 805.395i −1.78770 1.12328i
\(718\) −28.2287 22.5116i −0.0393158 0.0313533i
\(719\) −1085.74 + 522.866i −1.51007 + 0.727213i −0.991776 0.127987i \(-0.959148\pi\)
−0.518298 + 0.855200i \(0.673434\pi\)
\(720\) −1657.48 798.202i −2.30206 1.10861i
\(721\) 22.5459 + 28.2716i 0.0312703 + 0.0392117i
\(722\) 834.995 94.0814i 1.15650 0.130307i
\(723\) 223.902 + 639.874i 0.309684 + 0.885026i
\(724\) 153.285i 0.211719i
\(725\) 350.639 + 10.2527i 0.483640 + 0.0141417i
\(726\) 985.075 1.35685
\(727\) −984.289 + 344.418i −1.35391 + 0.473752i −0.907113 0.420886i \(-0.861719\pi\)
−0.446792 + 0.894638i \(0.647433\pi\)
\(728\) 52.1652 + 462.979i 0.0716555 + 0.635960i
\(729\) 890.673 710.288i 1.22177 0.974332i
\(730\) 346.587 719.695i 0.474776 0.985883i
\(731\) 127.095 + 263.916i 0.173865 + 0.361034i
\(732\) 271.759 340.775i 0.371255 0.465539i
\(733\) 365.036 580.951i 0.498002 0.792566i −0.499264 0.866450i \(-0.666396\pi\)
0.997267 + 0.0738833i \(0.0235392\pi\)
\(734\) −645.131 + 147.247i −0.878924 + 0.200609i
\(735\) 74.6034 662.124i 0.101501 0.900849i
\(736\) 274.966 + 437.605i 0.373594 + 0.594572i
\(737\) −113.074 113.074i −0.153425 0.153425i
\(738\) −406.561 92.7949i −0.550895 0.125738i
\(739\) 282.220 806.539i 0.381895 1.09139i −0.579203 0.815183i \(-0.696636\pi\)
0.961098 0.276209i \(-0.0890782\pi\)
\(740\) −66.2047 23.1660i −0.0894658 0.0313054i
\(741\) −13.9025 + 60.9108i −0.0187618 + 0.0822008i
\(742\) 452.470 452.470i 0.609798 0.609798i
\(743\) −277.918 + 174.627i −0.374048 + 0.235030i −0.705915 0.708296i \(-0.749464\pi\)
0.331868 + 0.943326i \(0.392321\pi\)
\(744\) −662.411 74.6358i −0.890337 0.100317i
\(745\) 211.756 + 927.763i 0.284236 + 1.24532i
\(746\) −463.369 291.154i −0.621138 0.390287i
\(747\) 931.095 + 742.523i 1.24645 + 0.994007i
\(748\) 240.988 116.054i 0.322177 0.155152i
\(749\) −313.891 151.162i −0.419080 0.201818i
\(750\) 563.862 + 707.060i 0.751816 + 0.942747i
\(751\) 971.174 109.425i 1.29318 0.145706i 0.561567 0.827431i \(-0.310199\pi\)
0.731608 + 0.681725i \(0.238770\pi\)
\(752\) −169.715 485.018i −0.225685 0.644970i
\(753\) 1641.43i 2.17985i
\(754\) 566.945 846.326i 0.751917 1.12245i
\(755\) 1150.66 1.52405
\(756\) −220.221 + 77.0585i −0.291297 + 0.101929i
\(757\) −0.974699 8.65069i −0.00128758 0.0114276i 0.993052 0.117676i \(-0.0375446\pi\)
−0.994340 + 0.106249i \(0.966116\pi\)
\(758\) −1061.49 +