Properties

Label 29.3.f.a.11.1
Level 29
Weight 3
Character 29.11
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 11.1
Character \(\chi\) = 29.11
Dual form 29.3.f.a.8.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-2.32673 + 0.814157i) q^{2}\) \(+(0.184193 + 1.63476i) q^{3}\) \(+(1.62348 - 1.29468i) q^{4}\) \(+(-3.83207 + 7.95737i) q^{5}\) \(+(-1.75952 - 3.65367i) q^{6}\) \(+(2.23777 - 2.80607i) q^{7}\) \(+(2.52264 - 4.01476i) q^{8}\) \(+(6.13584 - 1.40047i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-2.32673 + 0.814157i) q^{2}\) \(+(0.184193 + 1.63476i) q^{3}\) \(+(1.62348 - 1.29468i) q^{4}\) \(+(-3.83207 + 7.95737i) q^{5}\) \(+(-1.75952 - 3.65367i) q^{6}\) \(+(2.23777 - 2.80607i) q^{7}\) \(+(2.52264 - 4.01476i) q^{8}\) \(+(6.13584 - 1.40047i) q^{9}\) \(+(2.43763 - 21.6345i) q^{10}\) \(+(4.04453 + 6.43684i) q^{11}\) \(+(2.41552 + 2.41552i) q^{12}\) \(+(-7.19807 - 1.64291i) q^{13}\) \(+(-2.92209 + 8.35085i) q^{14}\) \(+(-13.7142 - 4.79881i) q^{15}\) \(+(-4.44912 + 19.4929i) q^{16}\) \(+(1.60706 - 1.60706i) q^{17}\) \(+(-13.1362 + 8.25404i) q^{18}\) \(+(33.1033 + 3.72985i) q^{19}\) \(+(4.08097 + 17.8799i) q^{20}\) \(+(4.99943 + 3.14135i) q^{21}\) \(+(-14.6511 - 11.6839i) q^{22}\) \(+(-20.4388 + 9.84282i) q^{23}\) \(+(7.02782 + 3.38442i) q^{24}\) \(+(-33.0478 - 41.4406i) q^{25}\) \(+(18.0855 - 2.03775i) q^{26}\) \(+(8.30969 + 23.7477i) q^{27}\) \(-7.45278i q^{28}\) \(+(14.4627 - 25.1362i) q^{29}\) \(+35.8162 q^{30}\) \(+(5.30982 - 1.85799i) q^{31}\) \(+(-3.39483 - 30.1300i) q^{32}\) \(+(-9.77769 + 7.79745i) q^{33}\) \(+(-2.43079 + 5.04759i) q^{34}\) \(+(13.7537 + 28.5598i) q^{35}\) \(+(8.14825 - 10.2176i) q^{36}\) \(+(8.64092 - 13.7519i) q^{37}\) \(+(-80.0590 + 18.2729i) q^{38}\) \(+(1.35993 - 12.0697i) q^{39}\) \(+(22.2800 + 35.4584i) q^{40}\) \(+(-42.1095 - 42.1095i) q^{41}\) \(+(-14.1898 - 3.23874i) q^{42}\) \(+(1.74483 - 4.98643i) q^{43}\) \(+(14.8999 + 5.21368i) q^{44}\) \(+(-12.3689 + 54.1919i) q^{45}\) \(+(39.5419 - 39.5419i) q^{46}\) \(+(60.4551 - 37.9864i) q^{47}\) \(+(-32.6856 - 3.68278i) q^{48}\) \(+(8.03709 + 35.2128i) q^{49}\) \(+(110.632 + 69.5148i) q^{50}\) \(+(2.92317 + 2.33115i) q^{51}\) \(+(-13.8130 + 6.65197i) q^{52}\) \(+(-78.2991 - 37.7068i) q^{53}\) \(+(-38.6687 - 48.4891i) q^{54}\) \(+(-66.7192 + 7.51745i) q^{55}\) \(+(-5.62062 - 16.0628i) q^{56}\) \(+54.8029i q^{57}\) \(+(-13.1859 + 70.2600i) q^{58}\) \(+67.9548 q^{59}\) \(+(-28.4777 + 9.96476i) q^{60}\) \(+(5.72557 + 50.8159i) q^{61}\) \(+(-10.8418 + 8.64605i) q^{62}\) \(+(9.80078 - 20.3515i) q^{63}\) \(+(-2.27117 - 4.71614i) q^{64}\) \(+(40.6568 - 50.9820i) q^{65}\) \(+(16.4017 - 26.1031i) q^{66}\) \(+(-29.4645 + 6.72508i) q^{67}\) \(+(0.528398 - 4.68966i) q^{68}\) \(+(-19.8553 - 31.5995i) q^{69}\) \(+(-55.2532 - 55.2532i) q^{70}\) \(+(17.3364 + 3.95693i) q^{71}\) \(+(9.85600 - 28.1668i) q^{72}\) \(+(29.8255 + 10.4364i) q^{73}\) \(+(-8.90881 + 39.0321i) q^{74}\) \(+(61.6582 - 61.6582i) q^{75}\) \(+(58.5714 - 36.8029i) q^{76}\) \(+(27.1129 + 3.05489i) q^{77}\) \(+(6.66246 + 29.1901i) q^{78}\) \(+(-38.0418 - 23.9032i) q^{79}\) \(+(-138.063 - 110.101i) q^{80}\) \(+(13.7422 - 6.61788i) q^{81}\) \(+(132.261 + 63.6936i) q^{82}\) \(+(3.87179 + 4.85507i) q^{83}\) \(+(12.1835 - 1.37275i) q^{84}\) \(+(6.62962 + 18.9464i) q^{85}\) \(+13.0226i q^{86}\) \(+(43.7556 + 19.0131i) q^{87}\) \(+36.0453 q^{88}\) \(+(-19.6772 + 6.88537i) q^{89}\) \(+(-15.3415 - 136.160i) q^{90}\) \(+(-20.7177 + 16.5218i) q^{91}\) \(+(-20.4387 + 42.4413i) q^{92}\) \(+(4.01539 + 8.33804i) q^{93}\) \(+(-109.735 + 137.604i) q^{94}\) \(+(-156.534 + 249.122i) q^{95}\) \(+(48.6299 - 11.0995i) q^{96}\) \(+(5.86295 - 52.0352i) q^{97}\) \(+(-47.3689 - 75.3871i) q^{98}\) \(+(33.8312 + 33.8312i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{25}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.32673 + 0.814157i −1.16336 + 0.407078i −0.841789 0.539806i \(-0.818498\pi\)
−0.321574 + 0.946885i \(0.604212\pi\)
\(3\) 0.184193 + 1.63476i 0.0613977 + 0.544919i 0.986329 + 0.164786i \(0.0526933\pi\)
−0.924932 + 0.380133i \(0.875878\pi\)
\(4\) 1.62348 1.29468i 0.405869 0.323670i
\(5\) −3.83207 + 7.95737i −0.766414 + 1.59147i 0.0393418 + 0.999226i \(0.487474\pi\)
−0.805755 + 0.592248i \(0.798240\pi\)
\(6\) −1.75952 3.65367i −0.293253 0.608945i
\(7\) 2.23777 2.80607i 0.319681 0.400867i −0.595862 0.803087i \(-0.703190\pi\)
0.915543 + 0.402219i \(0.131761\pi\)
\(8\) 2.52264 4.01476i 0.315330 0.501845i
\(9\) 6.13584 1.40047i 0.681761 0.155607i
\(10\) 2.43763 21.6345i 0.243763 2.16345i
\(11\) 4.04453 + 6.43684i 0.367685 + 0.585167i 0.978409 0.206676i \(-0.0662646\pi\)
−0.610725 + 0.791843i \(0.709122\pi\)
\(12\) 2.41552 + 2.41552i 0.201294 + 0.201294i
\(13\) −7.19807 1.64291i −0.553698 0.126378i −0.0634884 0.997983i \(-0.520223\pi\)
−0.490210 + 0.871605i \(0.663080\pi\)
\(14\) −2.92209 + 8.35085i −0.208721 + 0.596489i
\(15\) −13.7142 4.79881i −0.914281 0.319921i
\(16\) −4.44912 + 19.4929i −0.278070 + 1.21830i
\(17\) 1.60706 1.60706i 0.0945331 0.0945331i −0.658259 0.752792i \(-0.728707\pi\)
0.752792 + 0.658259i \(0.228707\pi\)
\(18\) −13.1362 + 8.25404i −0.729791 + 0.458558i
\(19\) 33.1033 + 3.72985i 1.74228 + 0.196308i 0.925008 0.379947i \(-0.124058\pi\)
0.817270 + 0.576254i \(0.195486\pi\)
\(20\) 4.08097 + 17.8799i 0.204049 + 0.893996i
\(21\) 4.99943 + 3.14135i 0.238068 + 0.149588i
\(22\) −14.6511 11.6839i −0.665960 0.531085i
\(23\) −20.4388 + 9.84282i −0.888644 + 0.427948i −0.821774 0.569813i \(-0.807016\pi\)
−0.0668700 + 0.997762i \(0.521301\pi\)
\(24\) 7.02782 + 3.38442i 0.292826 + 0.141017i
\(25\) −33.0478 41.4406i −1.32191 1.65762i
\(26\) 18.0855 2.03775i 0.695597 0.0783750i
\(27\) 8.30969 + 23.7477i 0.307766 + 0.879545i
\(28\) 7.45278i 0.266171i
\(29\) 14.4627 25.1362i 0.498714 0.866766i
\(30\) 35.8162 1.19387
\(31\) 5.30982 1.85799i 0.171284 0.0599350i −0.243275 0.969957i \(-0.578222\pi\)
0.414559 + 0.910022i \(0.363936\pi\)
\(32\) −3.39483 30.1300i −0.106089 0.941562i
\(33\) −9.77769 + 7.79745i −0.296294 + 0.236286i
\(34\) −2.43079 + 5.04759i −0.0714939 + 0.148459i
\(35\) 13.7537 + 28.5598i 0.392962 + 0.815994i
\(36\) 8.14825 10.2176i 0.226340 0.283822i
\(37\) 8.64092 13.7519i 0.233538 0.371674i −0.709310 0.704897i \(-0.750993\pi\)
0.942848 + 0.333223i \(0.108136\pi\)
\(38\) −80.0590 + 18.2729i −2.10682 + 0.480867i
\(39\) 1.35993 12.0697i 0.0348700 0.309480i
\(40\) 22.2800 + 35.4584i 0.557000 + 0.886461i
\(41\) −42.1095 42.1095i −1.02706 1.02706i −0.999624 0.0274377i \(-0.991265\pi\)
−0.0274377 0.999624i \(-0.508735\pi\)
\(42\) −14.1898 3.23874i −0.337853 0.0771129i
\(43\) 1.74483 4.98643i 0.0405774 0.115964i −0.921812 0.387637i \(-0.873291\pi\)
0.962389 + 0.271674i \(0.0875771\pi\)
\(44\) 14.8999 + 5.21368i 0.338633 + 0.118493i
\(45\) −12.3689 + 54.1919i −0.274865 + 1.20426i
\(46\) 39.5419 39.5419i 0.859607 0.859607i
\(47\) 60.4551 37.9864i 1.28628 0.808222i 0.297086 0.954851i \(-0.403985\pi\)
0.989192 + 0.146629i \(0.0468423\pi\)
\(48\) −32.6856 3.68278i −0.680950 0.0767246i
\(49\) 8.03709 + 35.2128i 0.164022 + 0.718629i
\(50\) 110.632 + 69.5148i 2.21264 + 1.39030i
\(51\) 2.92317 + 2.33115i 0.0573170 + 0.0457088i
\(52\) −13.8130 + 6.65197i −0.265634 + 0.127923i
\(53\) −78.2991 37.7068i −1.47734 0.711450i −0.490246 0.871584i \(-0.663093\pi\)
−0.987095 + 0.160134i \(0.948807\pi\)
\(54\) −38.6687 48.4891i −0.716088 0.897946i
\(55\) −66.7192 + 7.51745i −1.21308 + 0.136681i
\(56\) −5.62062 16.0628i −0.100368 0.286836i
\(57\) 54.8029i 0.961454i
\(58\) −13.1859 + 70.2600i −0.227344 + 1.21138i
\(59\) 67.9548 1.15178 0.575888 0.817528i \(-0.304656\pi\)
0.575888 + 0.817528i \(0.304656\pi\)
\(60\) −28.4777 + 9.96476i −0.474628 + 0.166079i
\(61\) 5.72557 + 50.8159i 0.0938619 + 0.833047i 0.949135 + 0.314870i \(0.101961\pi\)
−0.855273 + 0.518178i \(0.826611\pi\)
\(62\) −10.8418 + 8.64605i −0.174868 + 0.139452i
\(63\) 9.80078 20.3515i 0.155568 0.323040i
\(64\) −2.27117 4.71614i −0.0354871 0.0736897i
\(65\) 40.6568 50.9820i 0.625489 0.784338i
\(66\) 16.4017 26.1031i 0.248510 0.395502i
\(67\) −29.4645 + 6.72508i −0.439769 + 0.100374i −0.436672 0.899621i \(-0.643843\pi\)
−0.00309676 + 0.999995i \(0.500986\pi\)
\(68\) 0.528398 4.68966i 0.00777056 0.0689656i
\(69\) −19.8553 31.5995i −0.287758 0.457964i
\(70\) −55.2532 55.2532i −0.789331 0.789331i
\(71\) 17.3364 + 3.95693i 0.244175 + 0.0557314i 0.342857 0.939388i \(-0.388605\pi\)
−0.0986817 + 0.995119i \(0.531463\pi\)
\(72\) 9.85600 28.1668i 0.136889 0.391206i
\(73\) 29.8255 + 10.4364i 0.408569 + 0.142965i 0.526735 0.850029i \(-0.323416\pi\)
−0.118166 + 0.992994i \(0.537702\pi\)
\(74\) −8.90881 + 39.0321i −0.120389 + 0.527460i
\(75\) 61.6582 61.6582i 0.822109 0.822109i
\(76\) 58.5714 36.8029i 0.770677 0.484248i
\(77\) 27.1129 + 3.05489i 0.352116 + 0.0396739i
\(78\) 6.66246 + 29.1901i 0.0854161 + 0.374232i
\(79\) −38.0418 23.9032i −0.481541 0.302572i 0.269299 0.963057i \(-0.413208\pi\)
−0.750840 + 0.660484i \(0.770351\pi\)
\(80\) −138.063 110.101i −1.72578 1.37627i
\(81\) 13.7422 6.61788i 0.169656 0.0817022i
\(82\) 132.261 + 63.6936i 1.61294 + 0.776751i
\(83\) 3.87179 + 4.85507i 0.0466480 + 0.0584948i 0.804608 0.593806i \(-0.202375\pi\)
−0.757960 + 0.652301i \(0.773804\pi\)
\(84\) 12.1835 1.37275i 0.145042 0.0163423i
\(85\) 6.62962 + 18.9464i 0.0779955 + 0.222898i
\(86\) 13.0226i 0.151426i
\(87\) 43.7556 + 19.0131i 0.502938 + 0.218542i
\(88\) 36.0453 0.409605
\(89\) −19.6772 + 6.88537i −0.221093 + 0.0773637i −0.438552 0.898706i \(-0.644509\pi\)
0.217460 + 0.976069i \(0.430223\pi\)
\(90\) −15.3415 136.160i −0.170462 1.51289i
\(91\) −20.7177 + 16.5218i −0.227667 + 0.181559i
\(92\) −20.4387 + 42.4413i −0.222159 + 0.461319i
\(93\) 4.01539 + 8.33804i 0.0431762 + 0.0896563i
\(94\) −109.735 + 137.604i −1.16740 + 1.46387i
\(95\) −156.534 + 249.122i −1.64772 + 2.62234i
\(96\) 48.6299 11.0995i 0.506562 0.115619i
\(97\) 5.86295 52.0352i 0.0604428 0.536445i −0.926607 0.376031i \(-0.877289\pi\)
0.987050 0.160414i \(-0.0512829\pi\)
\(98\) −47.3689 75.3871i −0.483356 0.769256i
\(99\) 33.8312 + 33.8312i 0.341729 + 0.341729i
\(100\) −107.305 24.4916i −1.07305 0.244916i
\(101\) −13.5414 + 38.6991i −0.134073 + 0.383159i −0.991273 0.131825i \(-0.957916\pi\)
0.857200 + 0.514984i \(0.172202\pi\)
\(102\) −8.69933 3.04403i −0.0852875 0.0298434i
\(103\) −18.1203 + 79.3902i −0.175925 + 0.770779i 0.807559 + 0.589786i \(0.200788\pi\)
−0.983485 + 0.180992i \(0.942069\pi\)
\(104\) −24.7541 + 24.7541i −0.238020 + 0.238020i
\(105\) −44.1550 + 27.7444i −0.420524 + 0.264233i
\(106\) 212.880 + 23.9858i 2.00830 + 0.226281i
\(107\) 3.47716 + 15.2344i 0.0324968 + 0.142378i 0.988574 0.150738i \(-0.0481650\pi\)
−0.956077 + 0.293116i \(0.905308\pi\)
\(108\) 44.2363 + 27.7955i 0.409595 + 0.257366i
\(109\) −24.8134 19.7880i −0.227646 0.181542i 0.503024 0.864272i \(-0.332221\pi\)
−0.730670 + 0.682731i \(0.760792\pi\)
\(110\) 149.117 71.8109i 1.35561 0.652827i
\(111\) 24.0727 + 11.5928i 0.216871 + 0.104440i
\(112\) 44.7422 + 56.1050i 0.399484 + 0.500937i
\(113\) 80.1964 9.03596i 0.709703 0.0799643i 0.250269 0.968176i \(-0.419481\pi\)
0.459434 + 0.888212i \(0.348052\pi\)
\(114\) −44.6181 127.511i −0.391387 1.11852i
\(115\) 200.358i 1.74224i
\(116\) −9.06348 59.5327i −0.0781335 0.513213i
\(117\) −46.4671 −0.397155
\(118\) −158.112 + 55.3259i −1.33993 + 0.468863i
\(119\) −0.913300 8.10576i −0.00767479 0.0681156i
\(120\) −53.8621 + 42.9536i −0.448851 + 0.357947i
\(121\) 27.4253 56.9493i 0.226655 0.470655i
\(122\) −54.6939 113.573i −0.448311 0.930927i
\(123\) 61.0826 76.5951i 0.496606 0.622725i
\(124\) 6.21487 9.89091i 0.0501199 0.0797654i
\(125\) 241.135 55.0375i 1.92908 0.440300i
\(126\) −6.23440 + 55.3318i −0.0494793 + 0.439141i
\(127\) −47.5028 75.6003i −0.374038 0.595278i 0.605668 0.795717i \(-0.292906\pi\)
−0.979706 + 0.200439i \(0.935763\pi\)
\(128\) 94.8838 + 94.8838i 0.741279 + 0.741279i
\(129\) 8.47300 + 1.93391i 0.0656821 + 0.0149915i
\(130\) −53.0899 + 151.722i −0.408384 + 1.16709i
\(131\) −122.442 42.8444i −0.934674 0.327057i −0.180383 0.983596i \(-0.557734\pi\)
−0.754291 + 0.656540i \(0.772019\pi\)
\(132\) −5.77866 + 25.3180i −0.0437778 + 0.191803i
\(133\) 84.5437 84.5437i 0.635667 0.635667i
\(134\) 63.0805 39.6361i 0.470750 0.295792i
\(135\) −220.813 24.8796i −1.63565 0.184293i
\(136\) −2.39793 10.5060i −0.0176318 0.0772501i
\(137\) −104.753 65.8204i −0.764618 0.480441i 0.0924040 0.995722i \(-0.470545\pi\)
−0.857022 + 0.515281i \(0.827688\pi\)
\(138\) 71.9248 + 57.3581i 0.521195 + 0.415639i
\(139\) 40.2937 19.4044i 0.289883 0.139600i −0.283291 0.959034i \(-0.591426\pi\)
0.573174 + 0.819434i \(0.305712\pi\)
\(140\) 59.3046 + 28.5596i 0.423604 + 0.203997i
\(141\) 73.2340 + 91.8326i 0.519390 + 0.651295i
\(142\) −43.5587 + 4.90789i −0.306751 + 0.0345626i
\(143\) −18.5377 52.9776i −0.129634 0.370473i
\(144\) 125.836i 0.873861i
\(145\) 144.596 + 211.409i 0.997215 + 1.45799i
\(146\) −77.8928 −0.533512
\(147\) −56.0840 + 19.6247i −0.381524 + 0.133501i
\(148\) −3.77603 33.5132i −0.0255137 0.226440i
\(149\) −92.6321 + 73.8716i −0.621692 + 0.495783i −0.882938 0.469489i \(-0.844438\pi\)
0.261246 + 0.965272i \(0.415867\pi\)
\(150\) −93.2623 + 193.661i −0.621748 + 1.29107i
\(151\) −79.3234 164.717i −0.525320 1.09084i −0.979781 0.200072i \(-0.935882\pi\)
0.454461 0.890767i \(-0.349832\pi\)
\(152\) 98.4822 123.493i 0.647909 0.812453i
\(153\) 7.61005 12.1113i 0.0497389 0.0791589i
\(154\) −65.5715 + 14.9663i −0.425789 + 0.0971836i
\(155\) −5.56290 + 49.3721i −0.0358897 + 0.318530i
\(156\) −13.4186 21.3556i −0.0860167 0.136895i
\(157\) −78.3608 78.3608i −0.499113 0.499113i 0.412049 0.911162i \(-0.364813\pi\)
−0.911162 + 0.412049i \(0.864813\pi\)
\(158\) 107.974 + 24.6443i 0.683378 + 0.155977i
\(159\) 47.2194 134.945i 0.296978 0.848713i
\(160\) 252.765 + 88.4462i 1.57978 + 0.552789i
\(161\) −18.1177 + 79.3787i −0.112532 + 0.493035i
\(162\) −26.5863 + 26.5863i −0.164113 + 0.164113i
\(163\) −12.8408 + 8.06844i −0.0787782 + 0.0494996i −0.570845 0.821058i \(-0.693384\pi\)
0.492067 + 0.870557i \(0.336242\pi\)
\(164\) −122.882 13.8455i −0.749282 0.0844238i
\(165\) −24.5784 107.685i −0.148960 0.652637i
\(166\) −12.9614 8.14417i −0.0780806 0.0490613i
\(167\) 205.173 + 163.620i 1.22858 + 0.979760i 0.999981 + 0.00623948i \(0.00198610\pi\)
0.228600 + 0.973521i \(0.426585\pi\)
\(168\) 25.2235 12.1470i 0.150140 0.0723036i
\(169\) −103.151 49.6747i −0.610359 0.293933i
\(170\) −30.8506 38.6854i −0.181474 0.227561i
\(171\) 208.340 23.4743i 1.21836 0.137277i
\(172\) −3.62315 10.3544i −0.0210648 0.0601998i
\(173\) 61.9144i 0.357887i 0.983859 + 0.178943i \(0.0572679\pi\)
−0.983859 + 0.178943i \(0.942732\pi\)
\(174\) −117.287 8.61443i −0.674063 0.0495082i
\(175\) −190.238 −1.08708
\(176\) −143.467 + 50.2012i −0.815153 + 0.285234i
\(177\) 12.5168 + 111.090i 0.0707164 + 0.627625i
\(178\) 40.1778 32.0407i 0.225718 0.180004i
\(179\) 139.692 290.074i 0.780403 1.62052i −0.00377939 0.999993i \(-0.501203\pi\)
0.784182 0.620531i \(-0.213083\pi\)
\(180\) 50.0805 + 103.993i 0.278225 + 0.577740i
\(181\) −185.369 + 232.445i −1.02414 + 1.28423i −0.0660276 + 0.997818i \(0.521033\pi\)
−0.958108 + 0.286408i \(0.907539\pi\)
\(182\) 34.7531 55.3093i 0.190951 0.303897i
\(183\) −82.0171 + 18.7199i −0.448181 + 0.102294i
\(184\) −12.0433 + 106.887i −0.0654525 + 0.580907i
\(185\) 76.3167 + 121.457i 0.412523 + 0.656526i
\(186\) −16.1312 16.1312i −0.0867267 0.0867267i
\(187\) 16.8442 + 3.84458i 0.0900760 + 0.0205593i
\(188\) 48.9672 139.940i 0.260464 0.744362i
\(189\) 85.2329 + 29.8243i 0.450968 + 0.157800i
\(190\) 161.387 707.082i 0.849405 3.72149i
\(191\) −191.734 + 191.734i −1.00384 + 1.00384i −0.00384775 + 0.999993i \(0.501225\pi\)
−0.999993 + 0.00384775i \(0.998775\pi\)
\(192\) 7.29142 4.58150i 0.0379761 0.0238620i
\(193\) 134.893 + 15.1987i 0.698925 + 0.0787500i 0.454275 0.890861i \(-0.349898\pi\)
0.244650 + 0.969611i \(0.421327\pi\)
\(194\) 28.7233 + 125.845i 0.148058 + 0.648685i
\(195\) 90.8319 + 57.0735i 0.465805 + 0.292684i
\(196\) 58.6374 + 46.7617i 0.299170 + 0.238580i
\(197\) −102.900 + 49.5541i −0.522336 + 0.251544i −0.676423 0.736514i \(-0.736471\pi\)
0.154087 + 0.988057i \(0.450756\pi\)
\(198\) −106.260 51.1720i −0.536666 0.258445i
\(199\) −50.0688 62.7843i −0.251602 0.315499i 0.639951 0.768416i \(-0.278955\pi\)
−0.891553 + 0.452917i \(0.850383\pi\)
\(200\) −249.742 + 28.1391i −1.24871 + 0.140696i
\(201\) −16.4210 46.9286i −0.0816967 0.233476i
\(202\) 101.067i 0.500332i
\(203\) −38.1698 96.8324i −0.188029 0.477007i
\(204\) 7.76379 0.0380578
\(205\) 496.447 173.714i 2.42170 0.847388i
\(206\) −22.4751 199.472i −0.109102 0.968311i
\(207\) −111.625 + 89.0179i −0.539251 + 0.430038i
\(208\) 64.0501 133.001i 0.307933 0.639430i
\(209\) 109.879 + 228.166i 0.525737 + 1.09170i
\(210\) 80.1483 100.503i 0.381659 0.478585i
\(211\) −34.1531 + 54.3543i −0.161863 + 0.257604i −0.917802 0.397039i \(-0.870038\pi\)
0.755939 + 0.654642i \(0.227181\pi\)
\(212\) −175.935 + 40.1560i −0.829883 + 0.189415i
\(213\) −3.27537 + 29.0697i −0.0153773 + 0.136478i
\(214\) −20.4936 32.6154i −0.0957645 0.152408i
\(215\) 32.9926 + 32.9926i 0.153454 + 0.153454i
\(216\) 116.304 + 26.5456i 0.538444 + 0.122896i
\(217\) 6.66849 19.0575i 0.0307304 0.0878224i
\(218\) 73.8446 + 25.8393i 0.338736 + 0.118529i
\(219\) −11.5673 + 50.6799i −0.0528189 + 0.231415i
\(220\) −98.5845 + 98.5845i −0.448111 + 0.448111i
\(221\) −14.2080 + 8.92749i −0.0642897 + 0.0403959i
\(222\) −65.4489 7.37432i −0.294815 0.0332177i
\(223\) −47.0630 206.196i −0.211045 0.924648i −0.963859 0.266414i \(-0.914161\pi\)
0.752814 0.658234i \(-0.228696\pi\)
\(224\) −92.1437 57.8977i −0.411356 0.258472i
\(225\) −260.812 207.991i −1.15916 0.924403i
\(226\) −179.238 + 86.3166i −0.793090 + 0.381932i
\(227\) 276.625 + 133.216i 1.21861 + 0.586853i 0.928925 0.370268i \(-0.120734\pi\)
0.289688 + 0.957121i \(0.406448\pi\)
\(228\) 70.9522 + 88.9713i 0.311194 + 0.390225i
\(229\) 85.7684 9.66378i 0.374535 0.0421999i 0.0773089 0.997007i \(-0.475367\pi\)
0.297226 + 0.954807i \(0.403939\pi\)
\(230\) 163.122 + 466.177i 0.709228 + 2.02686i
\(231\) 44.8858i 0.194311i
\(232\) −64.4317 121.474i −0.277723 0.523595i
\(233\) −141.899 −0.609008 −0.304504 0.952511i \(-0.598491\pi\)
−0.304504 + 0.952511i \(0.598491\pi\)
\(234\) 108.116 37.8315i 0.462035 0.161673i
\(235\) 70.6042 + 626.630i 0.300444 + 2.66651i
\(236\) 110.323 87.9797i 0.467471 0.372796i
\(237\) 32.0690 66.5919i 0.135312 0.280978i
\(238\) 8.72436 + 18.1163i 0.0366570 + 0.0761190i
\(239\) 86.5736 108.560i 0.362233 0.454225i −0.567002 0.823717i \(-0.691897\pi\)
0.929234 + 0.369491i \(0.120468\pi\)
\(240\) 154.559 245.979i 0.643994 1.02491i
\(241\) −178.803 + 40.8106i −0.741922 + 0.169339i −0.576744 0.816925i \(-0.695677\pi\)
−0.165178 + 0.986264i \(0.552820\pi\)
\(242\) −17.4456 + 154.834i −0.0720892 + 0.639809i
\(243\) 133.821 + 212.975i 0.550705 + 0.876442i
\(244\) 75.0857 + 75.0857i 0.307728 + 0.307728i
\(245\) −311.000 70.9837i −1.26939 0.289730i
\(246\) −79.7620 + 227.947i −0.324236 + 0.926613i
\(247\) −232.152 81.2336i −0.939887 0.328881i
\(248\) 5.93540 26.0047i 0.0239331 0.104858i
\(249\) −7.22371 + 7.22371i −0.0290109 + 0.0290109i
\(250\) −516.246 + 324.379i −2.06498 + 1.29752i
\(251\) −253.427 28.5543i −1.00967 0.113762i −0.408394 0.912806i \(-0.633911\pi\)
−0.601273 + 0.799043i \(0.705340\pi\)
\(252\) −10.4374 45.7291i −0.0414182 0.181465i
\(253\) −146.022 91.7517i −0.577162 0.362655i
\(254\) 172.077 + 137.227i 0.677467 + 0.540262i
\(255\) −29.7516 + 14.3276i −0.116673 + 0.0561867i
\(256\) −279.154 134.434i −1.09045 0.525131i
\(257\) −9.57230 12.0033i −0.0372463 0.0467054i 0.762859 0.646564i \(-0.223795\pi\)
−0.800106 + 0.599859i \(0.795223\pi\)
\(258\) −21.2888 + 2.39868i −0.0825149 + 0.00929720i
\(259\) −19.2526 55.0206i −0.0743342 0.212435i
\(260\) 135.406i 0.520791i
\(261\) 53.5385 174.487i 0.205128 0.668531i
\(262\) 319.772 1.22050
\(263\) 210.667 73.7155i 0.801014 0.280287i 0.101435 0.994842i \(-0.467657\pi\)
0.699579 + 0.714555i \(0.253371\pi\)
\(264\) 6.63929 + 58.9253i 0.0251488 + 0.223202i
\(265\) 600.095 478.560i 2.26451 1.80589i
\(266\) −127.878 + 265.542i −0.480745 + 0.998277i
\(267\) −14.8803 30.8993i −0.0557315 0.115728i
\(268\) −39.1281 + 49.0651i −0.146000 + 0.183079i
\(269\) 206.896 329.273i 0.769129 1.22406i −0.200551 0.979683i \(-0.564273\pi\)
0.969680 0.244379i \(-0.0785840\pi\)
\(270\) 534.027 121.888i 1.97788 0.451437i
\(271\) 43.4468 385.601i 0.160320 1.42288i −0.613608 0.789611i \(-0.710283\pi\)
0.773929 0.633273i \(-0.218289\pi\)
\(272\) 24.1762 + 38.4762i 0.0888831 + 0.141457i
\(273\) −30.8253 30.8253i −0.112913 0.112913i
\(274\) 297.319 + 67.8611i 1.08511 + 0.247668i
\(275\) 133.084 380.331i 0.483940 1.38302i
\(276\) −73.1460 25.5949i −0.265022 0.0927351i
\(277\) −73.9544 + 324.015i −0.266983 + 1.16973i 0.646519 + 0.762897i \(0.276224\pi\)
−0.913503 + 0.406833i \(0.866633\pi\)
\(278\) −77.9542 + 77.9542i −0.280411 + 0.280411i
\(279\) 29.9782 18.8365i 0.107449 0.0675144i
\(280\) 149.356 + 16.8284i 0.533415 + 0.0601015i
\(281\) −0.644237 2.82259i −0.00229266 0.0100448i 0.973769 0.227540i \(-0.0730684\pi\)
−0.976061 + 0.217496i \(0.930211\pi\)
\(282\) −245.162 154.045i −0.869367 0.546260i
\(283\) 275.054 + 219.348i 0.971921 + 0.775081i 0.974378 0.224916i \(-0.0722107\pi\)
−0.00245718 + 0.999997i \(0.500782\pi\)
\(284\) 33.2683 16.0212i 0.117142 0.0564125i
\(285\) −436.087 210.008i −1.53013 0.736872i
\(286\) 86.2642 + 108.172i 0.301623 + 0.378223i
\(287\) −212.393 + 23.9310i −0.740047 + 0.0833833i
\(288\) −63.0262 180.118i −0.218841 0.625411i
\(289\) 283.835i 0.982127i
\(290\) −508.556 374.167i −1.75364 1.29023i
\(291\) 86.1448 0.296030
\(292\) 61.9329 21.6713i 0.212099 0.0742167i
\(293\) −10.4159 92.4441i −0.0355493 0.315509i −0.998885 0.0472098i \(-0.984967\pi\)
0.963336 0.268299i \(-0.0864615\pi\)
\(294\) 114.515 91.3224i 0.389506 0.310620i
\(295\) −260.407 + 540.742i −0.882737 + 1.83302i
\(296\) −33.4128 69.3824i −0.112881 0.234400i
\(297\) −119.251 + 149.537i −0.401520 + 0.503490i
\(298\) 155.386 247.296i 0.521431 0.829853i
\(299\) 163.291 37.2701i 0.546124 0.124649i
\(300\) 20.2730 179.928i 0.0675768 0.599761i
\(301\) −10.0878 16.0546i −0.0335142 0.0533375i
\(302\) 318.669 + 318.669i 1.05520 + 1.05520i
\(303\) −65.7579 15.0088i −0.217023 0.0495340i
\(304\) −219.986 + 628.683i −0.723637 + 2.06804i
\(305\) −426.302 149.169i −1.39771 0.489080i
\(306\) −7.84598 + 34.3755i −0.0256405 + 0.112338i
\(307\) −32.6117 + 32.6117i −0.106227 + 0.106227i −0.758223 0.651996i \(-0.773932\pi\)
0.651996 + 0.758223i \(0.273932\pi\)
\(308\) 47.9724 30.1430i 0.155754 0.0978670i
\(309\) −133.121 14.9992i −0.430814 0.0485410i
\(310\) −27.2533 119.404i −0.0879138 0.385176i
\(311\) 55.7972 + 35.0597i 0.179412 + 0.112732i 0.618744 0.785593i \(-0.287642\pi\)
−0.439332 + 0.898325i \(0.644785\pi\)
\(312\) −45.0264 35.9074i −0.144315 0.115088i
\(313\) −145.236 + 69.9418i −0.464012 + 0.223456i −0.651257 0.758857i \(-0.725758\pi\)
0.187246 + 0.982313i \(0.440044\pi\)
\(314\) 246.122 + 118.526i 0.783828 + 0.377472i
\(315\) 124.387 + 155.977i 0.394881 + 0.495165i
\(316\) −92.7070 + 10.4456i −0.293377 + 0.0330556i
\(317\) 92.7815 + 265.154i 0.292686 + 0.836449i 0.992513 + 0.122137i \(0.0389747\pi\)
−0.699827 + 0.714312i \(0.746740\pi\)
\(318\) 352.425i 1.10825i
\(319\) 220.293 8.57016i 0.690573 0.0268657i
\(320\) 46.2314 0.144473
\(321\) −24.2641 + 8.49038i −0.0755891 + 0.0264498i
\(322\) −22.4718 199.443i −0.0697883 0.619388i
\(323\) 59.1931 47.2050i 0.183261 0.146145i
\(324\) 13.7421 28.5357i 0.0424138 0.0880731i
\(325\) 169.797 + 352.587i 0.522452 + 1.08488i
\(326\) 23.3082 29.2275i 0.0714974 0.0896549i
\(327\) 27.7782 44.2087i 0.0849486 0.135195i
\(328\) −275.287 + 62.8324i −0.839289 + 0.191562i
\(329\) 28.6917 254.646i 0.0872088 0.774000i
\(330\) 144.860 + 230.543i 0.438969 + 0.698615i
\(331\) −35.3548 35.3548i −0.106812 0.106812i 0.651681 0.758493i \(-0.274064\pi\)
−0.758493 + 0.651681i \(0.774064\pi\)
\(332\) 12.5715 + 2.86937i 0.0378660 + 0.00864268i
\(333\) 33.7602 96.4811i 0.101382 0.289733i
\(334\) −610.593 213.656i −1.82812 0.639688i
\(335\) 59.3960 260.231i 0.177301 0.776808i
\(336\) −83.4769 + 83.4769i −0.248443 + 0.248443i
\(337\) −233.227 + 146.546i −0.692069 + 0.434856i −0.831610 0.555361i \(-0.812580\pi\)
0.139541 + 0.990216i \(0.455437\pi\)
\(338\) 280.446 + 31.5987i 0.829723 + 0.0934873i
\(339\) 29.5432 + 129.437i 0.0871482 + 0.381821i
\(340\) 35.2925 + 22.1758i 0.103802 + 0.0652228i
\(341\) 33.4353 + 26.6637i 0.0980506 + 0.0781928i
\(342\) −465.639 + 224.240i −1.36152 + 0.655672i
\(343\) 275.244 + 132.551i 0.802462 + 0.386445i
\(344\) −15.6178 19.5841i −0.0454005 0.0569304i
\(345\) 327.536 36.9045i 0.949380 0.106969i
\(346\) −50.4080 144.058i −0.145688 0.416352i
\(347\) 506.789i 1.46049i −0.683186 0.730244i \(-0.739406\pi\)
0.683186 0.730244i \(-0.260594\pi\)
\(348\) 95.6521 25.7821i 0.274862 0.0740865i
\(349\) −308.138 −0.882917 −0.441459 0.897282i \(-0.645539\pi\)
−0.441459 + 0.897282i \(0.645539\pi\)
\(350\) 442.633 154.884i 1.26466 0.442525i
\(351\) −20.7983 184.590i −0.0592544 0.525897i
\(352\) 180.211 143.714i 0.511964 0.408277i
\(353\) 48.7910 101.316i 0.138218 0.287013i −0.820358 0.571851i \(-0.806226\pi\)
0.958576 + 0.284838i \(0.0919398\pi\)
\(354\) −119.568 248.285i −0.337761 0.701369i
\(355\) −97.9212 + 122.789i −0.275834 + 0.345885i
\(356\) −23.0312 + 36.6540i −0.0646945 + 0.102961i
\(357\) 13.0827 2.98605i 0.0366463 0.00836428i
\(358\) −88.8599 + 788.653i −0.248212 + 2.20294i
\(359\) −38.4941 61.2630i −0.107226 0.170649i 0.788801 0.614648i \(-0.210702\pi\)
−0.896027 + 0.443999i \(0.853559\pi\)
\(360\) 186.365 + 186.365i 0.517681 + 0.517681i
\(361\) 729.968 + 166.610i 2.02207 + 0.461525i
\(362\) 242.055 691.754i 0.668661 1.91092i
\(363\) 98.1498 + 34.3441i 0.270385 + 0.0946118i
\(364\) −12.2443 + 53.6457i −0.0336381 + 0.147378i
\(365\) −197.340 + 197.340i −0.540657 + 0.540657i
\(366\) 175.590 110.331i 0.479755 0.301450i
\(367\) 39.4991 + 4.45048i 0.107627 + 0.0121267i 0.165614 0.986191i \(-0.447040\pi\)
−0.0579866 + 0.998317i \(0.518468\pi\)
\(368\) −100.930 442.203i −0.274266 1.20164i
\(369\) −317.350 199.404i −0.860028 0.540391i
\(370\) −276.453 220.464i −0.747171 0.595849i
\(371\) −281.023 + 135.334i −0.757475 + 0.364781i
\(372\) 17.3140 + 8.33798i 0.0465430 + 0.0224139i
\(373\) −312.636 392.033i −0.838165 1.05103i −0.997958 0.0638753i \(-0.979654\pi\)
0.159793 0.987151i \(-0.448917\pi\)
\(374\) −42.3220 + 4.76854i −0.113160 + 0.0127501i
\(375\) 134.388 + 384.060i 0.358369 + 1.02416i
\(376\) 338.539i 0.900369i
\(377\) −145.400 + 157.171i −0.385677 + 0.416900i
\(378\) −222.595 −0.588876
\(379\) −296.798 + 103.854i −0.783109 + 0.274022i −0.692075 0.721826i \(-0.743303\pi\)
−0.0910346 + 0.995848i \(0.529017\pi\)
\(380\) 68.4044 + 607.106i 0.180012 + 1.59765i
\(381\) 114.839 91.5807i 0.301414 0.240369i
\(382\) 290.010 602.212i 0.759189 1.57647i
\(383\) 184.851 + 383.847i 0.482639 + 1.00221i 0.990077 + 0.140522i \(0.0448782\pi\)
−0.507438 + 0.861688i \(0.669407\pi\)
\(384\) −137.635 + 172.589i −0.358425 + 0.449450i
\(385\) −128.208 + 204.041i −0.333007 + 0.529977i
\(386\) −326.232 + 74.4604i −0.845161 + 0.192903i
\(387\) 3.72266 33.0395i 0.00961928 0.0853735i
\(388\) −57.8505 92.0686i −0.149099 0.237290i
\(389\) 11.1950 + 11.1950i 0.0287790 + 0.0287790i 0.721350 0.692571i \(-0.243522\pi\)
−0.692571 + 0.721350i \(0.743522\pi\)
\(390\) −257.808 58.8429i −0.661045 0.150879i
\(391\) −17.0284 + 48.6645i −0.0435510 + 0.124462i
\(392\) 161.646 + 56.5623i 0.412362 + 0.144292i
\(393\) 47.4872 208.055i 0.120833 0.529403i
\(394\) 199.076 199.076i 0.505268 0.505268i
\(395\) 335.985 211.114i 0.850596 0.534465i
\(396\) 98.7248 + 11.1236i 0.249305 + 0.0280899i
\(397\) 56.3270 + 246.785i 0.141882 + 0.621624i 0.994997 + 0.0999023i \(0.0318530\pi\)
−0.853116 + 0.521722i \(0.825290\pi\)
\(398\) 167.613 + 105.318i 0.421137 + 0.264618i
\(399\) 153.781 + 122.636i 0.385415 + 0.307359i
\(400\) 954.829 459.821i 2.38707 1.14955i
\(401\) −400.299 192.774i −0.998253 0.480733i −0.137908 0.990445i \(-0.544038\pi\)
−0.860345 + 0.509712i \(0.829752\pi\)
\(402\) 76.4145 + 95.8207i 0.190086 + 0.238360i
\(403\) −41.2730 + 4.65035i −0.102414 + 0.0115393i
\(404\) 28.1188 + 80.3589i 0.0696010 + 0.198908i
\(405\) 134.712i 0.332621i
\(406\) 167.648 + 194.226i 0.412925 + 0.478390i
\(407\) 123.467 0.303360
\(408\) 16.7331 5.85517i 0.0410125 0.0143509i
\(409\) −60.3508 535.628i −0.147557 1.30960i −0.821240 0.570583i \(-0.806717\pi\)
0.673683 0.739021i \(-0.264711\pi\)
\(410\) −1013.67 + 808.372i −2.47236 + 1.97164i
\(411\) 88.3058 183.369i 0.214856 0.446153i
\(412\) 73.3670 + 152.348i 0.178075 + 0.369777i
\(413\) 152.067 190.686i 0.368201 0.461709i
\(414\) 187.246 298.000i 0.452285 0.719808i
\(415\) −53.4705 + 12.2043i −0.128845 + 0.0294080i
\(416\) −25.0647 + 222.455i −0.0602516 + 0.534748i
\(417\) 39.1434 + 62.2963i 0.0938690 + 0.149392i
\(418\) −441.421 441.421i −1.05603 1.05603i
\(419\) −428.228 97.7402i −1.02202 0.233270i −0.321508 0.946907i \(-0.604190\pi\)
−0.700516 + 0.713637i \(0.747047\pi\)
\(420\) −35.7645 + 102.209i −0.0851536 + 0.243355i
\(421\) 736.985 + 257.882i 1.75056 + 0.612547i 0.998895 0.0469987i \(-0.0149657\pi\)
0.751664 + 0.659546i \(0.229251\pi\)
\(422\) 35.2120 154.274i 0.0834407 0.365577i
\(423\) 317.744 317.744i 0.751168 0.751168i
\(424\) −348.905 + 219.231i −0.822888 + 0.517055i
\(425\) −119.707 13.4878i −0.281664 0.0317360i
\(426\) −16.0464 70.3039i −0.0376676 0.165033i
\(427\) 155.405 + 97.6477i 0.363947 + 0.228683i
\(428\) 25.3688 + 20.2309i 0.0592729 + 0.0472685i
\(429\) 83.1911 40.0627i 0.193919 0.0933863i
\(430\) −103.626 49.9036i −0.240990 0.116055i
\(431\) 476.007 + 596.893i 1.10442 + 1.38490i 0.915215 + 0.402967i \(0.132021\pi\)
0.189209 + 0.981937i \(0.439408\pi\)
\(432\) −499.882 + 56.3231i −1.15713 + 0.130378i
\(433\) −91.9842 262.876i −0.212435 0.607104i 0.787523 0.616285i \(-0.211363\pi\)
−0.999958 + 0.00918154i \(0.997077\pi\)
\(434\) 49.7707i 0.114679i
\(435\) −318.969 + 275.320i −0.733262 + 0.632919i
\(436\) −65.9032 −0.151154
\(437\) −713.304 + 249.596i −1.63228 + 0.571158i
\(438\) −14.3473 127.336i −0.0327564 0.290721i
\(439\) −116.941 + 93.2577i −0.266382 + 0.212432i −0.747567 0.664187i \(-0.768778\pi\)
0.481185 + 0.876619i \(0.340207\pi\)
\(440\) −138.128 + 286.826i −0.313927 + 0.651876i
\(441\) 98.6287 + 204.805i 0.223648 + 0.464410i
\(442\) 25.7898 32.3394i 0.0583479 0.0731660i
\(443\) −391.882 + 623.676i −0.884609 + 1.40785i 0.0282635 + 0.999601i \(0.491002\pi\)
−0.912872 + 0.408246i \(0.866141\pi\)
\(444\) 54.0904 12.3458i 0.121825 0.0278058i
\(445\) 20.6151 182.964i 0.0463261 0.411156i
\(446\) 277.379 + 441.446i 0.621926 + 0.989790i
\(447\) −137.824 137.824i −0.308332 0.308332i
\(448\) −18.3162 4.18055i −0.0408843 0.00933158i
\(449\) −24.4486 + 69.8700i −0.0544511 + 0.155612i −0.967897 0.251349i \(-0.919126\pi\)
0.913445 + 0.406961i \(0.133412\pi\)
\(450\) 776.175 + 271.596i 1.72483 + 0.603546i
\(451\) 100.739 441.365i 0.223367 0.978637i
\(452\) 118.498 118.498i 0.262165 0.262165i
\(453\) 254.661 160.014i 0.562166 0.353232i
\(454\) −752.089 84.7401i −1.65658 0.186652i
\(455\) −52.0787 228.172i −0.114459 0.501476i
\(456\) 220.021 + 138.248i 0.482501 + 0.303176i
\(457\) 617.662 + 492.569i 1.35156 + 1.07783i 0.989322 + 0.145746i \(0.0465582\pi\)
0.362237 + 0.932086i \(0.382013\pi\)
\(458\) −191.692 + 92.3139i −0.418541 + 0.201559i
\(459\) 51.5182 + 24.8099i 0.112240 + 0.0540520i
\(460\) −259.399 325.276i −0.563911 0.707122i
\(461\) 444.021 50.0291i 0.963169 0.108523i 0.383647 0.923480i \(-0.374668\pi\)
0.579522 + 0.814957i \(0.303239\pi\)
\(462\) −36.5441 104.437i −0.0790997 0.226054i
\(463\) 515.055i 1.11243i 0.831039 + 0.556215i \(0.187747\pi\)
−0.831039 + 0.556215i \(0.812253\pi\)
\(464\) 425.630 + 393.754i 0.917307 + 0.848607i
\(465\) −81.7361 −0.175777
\(466\) 330.160 115.528i 0.708498 0.247914i
\(467\) 62.2491 + 552.476i 0.133296 + 1.18303i 0.865129 + 0.501549i \(0.167236\pi\)
−0.731834 + 0.681483i \(0.761335\pi\)
\(468\) −75.4383 + 60.1600i −0.161193 + 0.128547i
\(469\) −47.0636 + 97.7286i −0.100349 + 0.208376i
\(470\) −674.452 1400.51i −1.43500 2.97982i
\(471\) 113.667 142.534i 0.241332 0.302621i
\(472\) 171.426 272.822i 0.363190 0.578013i
\(473\) 39.1539 8.93661i 0.0827777 0.0188935i
\(474\) −20.3995 + 181.050i −0.0430368 + 0.381963i
\(475\) −939.423 1495.08i −1.97773 3.14754i
\(476\) −11.9771 11.9771i −0.0251619 0.0251619i
\(477\) −533.238 121.708i −1.11790 0.255153i
\(478\) −113.048 + 323.074i −0.236503 + 0.675886i
\(479\) 47.7444 + 16.7065i 0.0996752 + 0.0348779i 0.379656 0.925128i \(-0.376042\pi\)
−0.279981 + 0.960006i \(0.590328\pi\)
\(480\) −98.0306 + 429.500i −0.204230 + 0.894792i
\(481\) −84.7912 + 84.7912i −0.176281 + 0.176281i
\(482\) 382.800 240.529i 0.794190 0.499023i
\(483\) −133.102 14.9970i −0.275574 0.0310497i
\(484\) −29.2067 127.963i −0.0603444 0.264386i
\(485\) 391.596 + 246.056i 0.807414 + 0.507332i
\(486\) −484.761 386.584i −0.997450 0.795440i
\(487\) 565.353 272.260i 1.16089 0.559055i 0.248603 0.968606i \(-0.420029\pi\)
0.912288 + 0.409550i \(0.134314\pi\)
\(488\) 218.457 + 105.203i 0.447658 + 0.215581i
\(489\) −15.5551 19.5055i −0.0318101 0.0398886i
\(490\) 781.404 88.0431i 1.59470 0.179680i
\(491\) −213.075 608.934i −0.433962 1.24019i −0.928596 0.371091i \(-0.878984\pi\)
0.494634 0.869101i \(-0.335302\pi\)
\(492\) 203.433i 0.413482i
\(493\) −17.1530 63.6380i −0.0347931 0.129083i
\(494\) 606.291 1.22731
\(495\) −398.851 + 139.564i −0.805759 + 0.281947i
\(496\) 12.5934 + 111.770i 0.0253900 + 0.225342i
\(497\) 49.8983 39.7926i 0.100399 0.0800655i
\(498\) 10.9264 22.6888i 0.0219405 0.0455599i
\(499\) 59.2142 + 122.960i 0.118666 + 0.246412i 0.951838 0.306602i \(-0.0991920\pi\)
−0.833172 + 0.553014i \(0.813478\pi\)
\(500\) 320.221 401.545i 0.640443 0.803090i
\(501\) −229.688 + 365.546i −0.458458 + 0.729632i
\(502\) 612.902 139.891i 1.22092 0.278667i
\(503\) 0.982486 8.71980i 0.00195325 0.0173356i −0.992698 0.120628i \(-0.961509\pi\)
0.994651 + 0.103292i \(0.0329377\pi\)
\(504\) −56.9827 90.6874i −0.113061 0.179935i
\(505\) −256.052 256.052i −0.507033 0.507033i
\(506\) 414.454 + 94.5963i 0.819078 + 0.186949i
\(507\) 62.2065 177.776i 0.122695 0.350643i
\(508\) −174.998 61.2345i −0.344484 0.120540i
\(509\) −29.4818 + 129.168i −0.0579210 + 0.253768i −0.995596 0.0937442i \(-0.970116\pi\)
0.937675 + 0.347512i \(0.112974\pi\)
\(510\) 57.5589 57.5589i 0.112861 0.112861i
\(511\) 96.0279 60.3383i 0.187922 0.118079i
\(512\) 225.597 + 25.4186i 0.440619 + 0.0496458i
\(513\) 186.503 + 817.122i 0.363553 + 1.59283i
\(514\) 32.0447 + 20.1350i 0.0623437 + 0.0391732i
\(515\) −562.299 448.419i −1.09184 0.870716i
\(516\) 16.2595 7.83017i 0.0315107 0.0151747i
\(517\) 489.025 + 235.502i 0.945889 + 0.455516i
\(518\) 89.5908 + 112.343i 0.172955 + 0.216879i
\(519\) −101.215 + 11.4042i −0.195019 + 0.0219734i
\(520\) −102.118 291.837i −0.196381 0.561224i
\(521\) 754.287i 1.44777i −0.689921 0.723884i \(-0.742355\pi\)
0.689921 0.723884i \(-0.257645\pi\)
\(522\) 17.4899 + 449.571i 0.0335055 + 0.861247i
\(523\) −645.744 −1.23469 −0.617346 0.786692i \(-0.711792\pi\)
−0.617346 + 0.786692i \(0.711792\pi\)
\(524\) −254.252 + 88.9667i −0.485214 + 0.169784i
\(525\) −35.0406 310.994i −0.0667440 0.592369i
\(526\) −430.148 + 343.031i −0.817771 + 0.652151i
\(527\) 5.54731 11.5191i 0.0105262 0.0218579i
\(528\) −108.492 225.287i −0.205478 0.426680i
\(529\) −8.96189 + 11.2379i −0.0169412 + 0.0212436i
\(530\) −1006.63 + 1602.05i −1.89931 + 3.02273i
\(531\) 416.960 95.1684i 0.785236 0.179225i
\(532\) 27.7977 246.712i 0.0522514 0.463744i
\(533\) 233.925 + 372.290i 0.438884 + 0.698480i
\(534\) 59.7793 + 59.7793i 0.111946 + 0.111946i
\(535\) −134.551 30.7103i −0.251496 0.0574024i
\(536\) −47.3288 + 135.258i −0.0883000 + 0.252347i
\(537\) 499.931 + 174.933i 0.930969 + 0.325760i
\(538\) −213.310 + 934.573i −0.396487 + 1.73712i
\(539\) −194.153 + 194.153i −0.360209 + 0.360209i
\(540\) −390.696 + 245.490i −0.723511 + 0.454612i
\(541\) 447.985 + 50.4757i 0.828068 + 0.0933008i 0.515817 0.856699i \(-0.327488\pi\)
0.312251 + 0.950000i \(0.398917\pi\)
\(542\) 212.851 + 932.561i 0.392714 + 1.72059i
\(543\) −414.135 260.218i −0.762679 0.479223i
\(544\) −53.8764 42.9650i −0.0990376 0.0789798i
\(545\) 252.547 121.620i 0.463390 0.223157i
\(546\) 96.8186 + 46.6254i 0.177323 + 0.0853945i
\(547\) −506.301 634.881i −0.925596 1.16066i −0.986704 0.162530i \(-0.948035\pi\)
0.0611077 0.998131i \(-0.480537\pi\)
\(548\) −255.280 + 28.7631i −0.465839 + 0.0524875i
\(549\) 106.297 + 303.780i 0.193620 + 0.553333i
\(550\) 993.277i 1.80596i
\(551\) 572.518 778.148i 1.03905 1.41225i
\(552\) −176.952 −0.320566
\(553\) −152.203 + 53.2580i −0.275231 + 0.0963075i
\(554\) −91.7276 814.105i −0.165573 1.46950i
\(555\) −184.496 + 147.131i −0.332426 + 0.265101i
\(556\) 40.2934 83.6702i 0.0724702 0.150486i
\(557\) −293.291 609.025i −0.526554 1.09340i −0.979422 0.201824i \(-0.935313\pi\)
0.452868 0.891578i \(-0.350401\pi\)
\(558\) −54.4151 + 68.2344i −0.0975181 + 0.122284i
\(559\) −20.7517 + 33.0261i −0.0371229 + 0.0590807i
\(560\) −617.903 + 141.032i −1.10340 + 0.251844i
\(561\) −3.18237 + 28.2443i −0.00567268 + 0.0503464i
\(562\) 3.79699 + 6.04288i 0.00675622 + 0.0107525i
\(563\) 429.885 + 429.885i 0.763562 + 0.763562i 0.976964 0.213403i \(-0.0684546\pi\)
−0.213403 + 0.976964i \(0.568455\pi\)
\(564\) 237.788 + 54.2735i 0.421609 + 0.0962296i
\(565\) −235.416 + 672.779i −0.416665 + 1.19076i
\(566\) −818.558 286.426i −1.44622 0.506053i
\(567\) 12.1815 53.3707i 0.0214842 0.0941283i
\(568\) 59.6197 59.6197i 0.104964 0.104964i
\(569\) 630.677 396.281i 1.10840 0.696451i 0.151958 0.988387i \(-0.451442\pi\)
0.956438 + 0.291936i \(0.0942994\pi\)
\(570\) 1185.63 + 133.589i 2.08006 + 0.234367i
\(571\) 30.9764 + 135.717i 0.0542495 + 0.237682i 0.994782 0.102020i \(-0.0325307\pi\)
−0.940533 + 0.339703i \(0.889674\pi\)
\(572\) −98.6846 62.0076i −0.172526 0.108405i
\(573\) −348.754 278.122i −0.608645 0.485379i
\(574\) 474.698 228.602i 0.827000 0.398262i
\(575\) 1083.35 + 521.714i 1.88409 + 0.907328i
\(576\) −20.5404 25.7568i −0.0356604 0.0447167i
\(577\) −751.398 + 84.6622i −1.30225 + 0.146728i −0.735705 0.677302i \(-0.763149\pi\)
−0.566545 + 0.824031i \(0.691720\pi\)
\(578\) −231.086 660.406i −0.399803 1.14257i
\(579\) 223.316i 0.385693i
\(580\) 508.456 + 156.012i 0.876648 + 0.268986i
\(581\) 22.2878 0.0383611
\(582\) −200.435 + 70.1354i −0.344391 + 0.120508i
\(583\) −73.9703 656.505i −0.126879 1.12608i
\(584\) 117.139 93.4151i 0.200580 0.159957i
\(585\) 178.065 369.756i 0.304385 0.632062i
\(586\) 99.4990 + 206.612i 0.169794 + 0.352580i
\(587\) −481.461 + 603.732i −0.820205 + 1.02850i 0.178799 + 0.983886i \(0.442779\pi\)
−0.999004 + 0.0446193i \(0.985793\pi\)
\(588\) −65.6435 + 104.471i −0.111639 + 0.177672i
\(589\) 182.702 41.7006i 0.310191 0.0707990i
\(590\) 165.648 1470.17i 0.280760 2.49181i
\(591\) −99.9625 159.089i −0.169141 0.269187i
\(592\) 229.620 + 229.620i 0.387872 + 0.387872i
\(593\) −636.417 145.258i −1.07322 0.244954i −0.350826 0.936441i \(-0.614099\pi\)
−0.722390 + 0.691486i \(0.756956\pi\)
\(594\) 155.719 445.020i 0.262154 0.749192i
\(595\) 68.0004 + 23.7944i 0.114286 + 0.0399905i
\(596\) −54.7460 + 239.858i −0.0918557 + 0.402446i
\(597\) 93.4148 93.4148i 0.156474 0.156474i
\(598\) −349.590 + 219.662i −0.584598 + 0.367327i
\(599\) −106.941 12.0494i −0.178533 0.0201158i 0.0222453 0.999753i \(-0.492919\pi\)
−0.200778 + 0.979637i \(0.564347\pi\)
\(600\) −92.0014 403.084i −0.153336 0.671807i
\(601\) 561.034 + 352.521i 0.933500 + 0.586557i 0.910649 0.413182i \(-0.135583\pi\)
0.0228515 + 0.999739i \(0.492726\pi\)
\(602\) 36.5424 + 29.1416i 0.0607017 + 0.0484080i
\(603\) −171.371 + 82.5281i −0.284198 + 0.136862i
\(604\) −342.035 164.715i −0.566283 0.272708i
\(605\) 348.071 + 436.467i 0.575323 + 0.721433i
\(606\) 165.220 18.6158i 0.272641 0.0307192i
\(607\) −170.406 486.993i −0.280735 0.802294i −0.994766 0.102180i \(-0.967418\pi\)
0.714031 0.700114i \(-0.246868\pi\)
\(608\) 1010.06i 1.66129i
\(609\) 151.267 80.2343i 0.248386 0.131748i
\(610\) 1113.33 1.82514
\(611\) −497.568 + 174.107i −0.814351 + 0.284954i
\(612\) −3.32555 29.5150i −0.00543390 0.0482272i
\(613\) 437.145 348.611i 0.713124 0.568697i −0.198313 0.980139i \(-0.563546\pi\)
0.911436 + 0.411442i \(0.134975\pi\)
\(614\) 49.3275 102.430i 0.0803380 0.166824i
\(615\) 375.423 + 779.575i 0.610444 + 1.26760i
\(616\) 80.6609 101.146i 0.130943 0.164197i
\(617\) 365.703 582.013i 0.592711 0.943295i −0.406844 0.913497i \(-0.633371\pi\)
0.999556 0.0297975i \(-0.00948624\pi\)
\(618\) 321.949 73.4827i 0.520953 0.118904i
\(619\) −113.508 + 1007.42i −0.183374 + 1.62749i 0.478650 + 0.878006i \(0.341126\pi\)
−0.662024 + 0.749483i \(0.730302\pi\)
\(620\) 54.8898 + 87.3567i 0.0885320 + 0.140898i
\(621\) −403.585 403.585i −0.649895 0.649895i
\(622\) −158.369 36.1467i −0.254612 0.0581136i
\(623\) −24.7123 + 70.6236i −0.0396665 + 0.113360i
\(624\) 229.223 + 80.2085i 0.367344 + 0.128539i
\(625\) −191.227 + 837.819i −0.305963 + 1.34051i
\(626\) 280.980 280.980i 0.448850 0.448850i
\(627\) −352.757 + 221.652i −0.562611 + 0.353512i
\(628\) −228.669 25.7648i −0.364123 0.0410268i
\(629\) −8.21373 35.9867i −0.0130584 0.0572126i
\(630\) −416.405 261.645i −0.660960 0.415309i
\(631\) −402.770 321.198i −0.638304 0.509030i 0.250025 0.968240i \(-0.419561\pi\)
−0.888328 + 0.459209i \(0.848133\pi\)
\(632\) −191.931 + 92.4293i −0.303689 + 0.146249i
\(633\) −95.1470 45.8204i −0.150311 0.0723860i
\(634\) −431.754 541.403i −0.681001 0.853948i
\(635\) 783.614 88.2921i 1.23404 0.139043i
\(636\) −98.0514 280.215i −0.154169 0.440589i
\(637\) 266.669i 0.418632i
\(638\) −505.583 + 199.293i −0.792450 + 0.312372i
\(639\) 111.915 0.175141
\(640\) −1118.63 + 391.424i −1.74785 + 0.611600i
\(641\) 44.9011 + 398.508i 0.0700485 + 0.621698i 0.978866 + 0.204504i \(0.0655580\pi\)
−0.908817 + 0.417194i \(0.863013\pi\)
\(642\) 49.5435 39.5096i 0.0771705 0.0615414i
\(643\) −470.130 + 976.234i −0.731150 + 1.51825i 0.119683 + 0.992812i \(0.461812\pi\)
−0.850833 + 0.525437i \(0.823902\pi\)
\(644\) 73.3564 + 152.326i 0.113907 + 0.236531i
\(645\) −47.8579 + 60.0119i −0.0741983 + 0.0930417i
\(646\) −99.2940 + 158.026i −0.153706 + 0.244622i
\(647\) −625.852 + 142.847i −0.967313 + 0.220783i −0.676865 0.736108i \(-0.736662\pi\)
−0.290449 + 0.956891i \(0.593805\pi\)
\(648\) 8.09736 71.8660i 0.0124959 0.110904i
\(649\) 274.845 + 437.414i 0.423491 + 0.673981i
\(650\) −682.132 682.132i −1.04943 1.04943i
\(651\) 32.3826 + 7.39112i 0.0497429 + 0.0113535i
\(652\) −10.4008 + 29.7237i −0.0159521 + 0.0455885i
\(653\) −459.623 160.829i −0.703863 0.246292i −0.0454690 0.998966i \(-0.514478\pi\)
−0.658394 + 0.752673i \(0.728764\pi\)
\(654\) −28.6394 + 125.477i −0.0437911 + 0.191861i
\(655\) 810.136 810.136i 1.23685 1.23685i
\(656\) 1008.18 633.484i 1.53687 0.965677i
\(657\) 197.621 + 22.2665i 0.300793 + 0.0338912i
\(658\) 140.564 + 615.851i 0.213623 + 0.935943i
\(659\) 782.367 + 491.594i 1.18720 + 0.745969i 0.972997 0.230820i \(-0.0741407\pi\)
0.214206 + 0.976788i \(0.431284\pi\)
\(660\) −179.320 143.003i −0.271697 0.216671i
\(661\) −504.495 + 242.952i −0.763229 + 0.367552i −0.774656 0.632383i \(-0.782077\pi\)
0.0114268 + 0.999935i \(0.496363\pi\)
\(662\) 111.045 + 53.4767i 0.167742 + 0.0807805i
\(663\) −17.2113 21.5823i −0.0259597 0.0325525i
\(664\) 29.2591 3.29671i 0.0440649 0.00496492i
\(665\) 348.768 + 996.722i 0.524463 + 1.49883i
\(666\) 251.971i 0.378335i
\(667\) −48.1895 + 656.109i −0.0722482 + 0.983671i
\(668\) 544.929 0.815762
\(669\) 328.413 114.917i 0.490901 0.171774i
\(670\) 73.6705 + 653.844i 0.109956 + 0.975886i
\(671\) −303.936 + 242.381i −0.452960 + 0.361224i
\(672\) 77.6765 161.297i 0.115590 0.240025i
\(673\) −326.415 677.808i −0.485015 1.00714i −0.989609 0.143787i \(-0.954072\pi\)
0.504594 0.863357i \(-0.331642\pi\)
\(674\) 423.344 530.857i 0.628107 0.787621i
\(675\) 709.503 1129.17i 1.05112 1.67284i
\(676\) −231.776 + 52.9013i −0.342863 + 0.0782563i
\(677\) 34.5918 307.011i 0.0510957 0.453487i −0.941950 0.335754i \(-0.891009\pi\)
0.993045 0.117733i \(-0.0375626\pi\)
\(678\) −174.121 277.112i −0.256816 0.408720i
\(679\) −132.894 132.894i −0.195721 0.195721i
\(680\) 92.7893 + 21.1785i 0.136455 + 0.0311449i
\(681\) −166.823 + 476.753i −0.244968 + 0.700077i
\(682\) −99.5032 34.8177i −0.145899 0.0510523i
\(683\) −39.2932 + 172.155i −0.0575304 + 0.252057i −0.995513 0.0946254i \(-0.969835\pi\)
0.937983 + 0.346682i \(0.112692\pi\)
\(684\) 307.844 307.844i 0.450064 0.450064i
\(685\) 925.177 581.327i 1.35062 0.848653i
\(686\) −748.335 84.3171i −1.09087 0.122911i
\(687\) 31.5959 + 138.431i 0.0459911 + 0.201500i
\(688\) 89.4368 + 56.1969i 0.129995 + 0.0816815i
\(689\) 501.653 + 400.055i 0.728089 + 0.580632i
\(690\) −732.041 + 352.532i −1.06093 + 0.510916i
\(691\) −1218.08 586.597i −1.76278 0.848910i −0.971351 0.237651i \(-0.923623\pi\)
−0.791430 0.611260i \(-0.790663\pi\)
\(692\) 80.1593 + 100.517i 0.115837 + 0.145255i
\(693\) 170.639 19.2264i 0.246232 0.0277437i
\(694\) 412.606 + 1179.16i 0.594533 + 1.69908i
\(695\) 394.991i 0.568333i
\(696\) 186.713 127.705i 0.268266 0.183484i
\(697\) −135.345 −0.194182
\(698\) 716.953 250.873i 1.02715 0.359417i
\(699\) −26.1368 231.970i −0.0373917 0.331860i
\(700\) −308.848 + 246.298i −0.441211 + 0.351854i
\(701\) −358.817 + 745.091i −0.511865 + 1.06290i 0.471602 + 0.881811i \(0.343676\pi\)
−0.983467 + 0.181087i \(0.942039\pi\)
\(702\) 198.677 + 412.557i 0.283016 + 0.587688i
\(703\) 337.335 423.005i 0.479851 0.601714i
\(704\) 21.1712 33.6938i 0.0300727 0.0478605i
\(705\) −1011.38 + 230.842i −1.43459 + 0.327435i
\(706\) −31.0366 + 275.457i −0.0439611 + 0.390166i
\(707\) 78.2899 + 124.598i 0.110735 + 0.176234i
\(708\) 164.146 + 164.146i 0.231845 + 0.231845i
\(709\) −149.080 34.0265i −0.210268 0.0479923i 0.116089 0.993239i \(-0.462964\pi\)
−0.326357 + 0.945246i \(0.605821\pi\)
\(710\) 127.866 365.420i 0.180093 0.514676i
\(711\) −266.894 93.3902i −0.375378 0.131351i
\(712\) −21.9955 + 96.3688i −0.0308926 + 0.135349i
\(713\) −90.2386 + 90.2386i −0.126562 + 0.126562i
\(714\) −28.0088 + 17.5991i −0.0392280 + 0.0246486i
\(715\) 492.600 + 55.5027i 0.688952 + 0.0776262i
\(716\) −148.766 651.785i −0.207773 0.910314i
\(717\) 193.415 + 121.531i 0.269756 + 0.169499i
\(718\) 139.443 + 111.202i 0.194210 + 0.154877i
\(719\) 188.055 90.5627i 0.261551 0.125957i −0.298513 0.954406i \(-0.596491\pi\)
0.560064 + 0.828449i \(0.310776\pi\)
\(720\) −1001.32 482.212i −1.39073 0.669739i
\(721\) 182.226 + 228.504i 0.252740 + 0.316926i
\(722\) −1834.08 + 206.651i −2.54028 + 0.286221i
\(723\) −99.6498 284.783i −0.137828 0.393890i
\(724\) 617.362i 0.852710i
\(725\) −1519.62 + 231.353i −2.09603 + 0.319107i
\(726\) −256.329 −0.353070
\(727\) 1244.50 435.470i 1.71183 0.598996i 0.716686 0.697396i \(-0.245658\pi\)
0.995147 + 0.0984004i \(0.0313726\pi\)
\(728\) 14.0678 + 124.855i 0.0193239 + 0.171505i
\(729\) −216.189 + 172.405i −0.296556 + 0.236495i
\(730\) 298.490 619.822i 0.408891 0.849071i
\(731\) −5.20946 10.8176i −0.00712648 0.0147983i
\(732\) −108.917 + 136.577i −0.148793 + 0.186581i
\(733\) 63.1015 100.425i 0.0860866 0.137006i −0.800905 0.598791i \(-0.795648\pi\)
0.886992 + 0.461785i \(0.152791\pi\)
\(734\) −95.5271 + 21.8034i −0.130146 + 0.0297050i
\(735\) 58.7572 521.485i 0.0799418 0.709503i
\(736\) 365.950 + 582.406i 0.497215 + 0.791313i
\(737\) −162.458 162.458i −0.220432 0.220432i
\(738\) 900.734 + 205.587i 1.22051 + 0.278573i
\(739\) 235.151 672.023i 0.318202 0.909369i −0.668050 0.744117i \(-0.732871\pi\)
0.986251 0.165252i \(-0.0528437\pi\)
\(740\) 281.147 + 98.3776i 0.379928 + 0.132943i
\(741\) 90.0364 394.475i 0.121507 0.532355i
\(742\) 543.681 543.681i 0.732724 0.732724i
\(743\) −1147.96 + 721.309i −1.54503 + 0.970806i −0.554702 + 0.832049i \(0.687168\pi\)
−0.990326 + 0.138757i \(0.955689\pi\)
\(744\) 43.6046 + 4.91306i 0.0586084 + 0.00660358i
\(745\) −232.852 1020.19i −0.312552 1.36938i
\(746\) 1046.59 + 657.618i 1.40294 + 0.881526i
\(747\) 30.5561 + 24.3676i 0.0409050 + 0.0326207i
\(748\) 32.3237 15.5663i 0.0432135 0.0208105i
\(749\) 50.5299 + 24.3339i 0.0674632 + 0.0324885i
\(750\) −625.370 784.189i −0.833826 1.04559i
\(751\) 601.896 67.8174i 0.801460 0.0903028i 0.298273 0.954481i \(-0.403589\pi\)
0.503187 + 0.864178i \(0.332161\pi\)
\(752\) 471.492 + 1347.45i 0.626984 + 1.79182i
\(753\) 419.551i 0.557172i
\(754\) 210.345 484.074i 0.278972 0.642007i
\(755\) 1614.68 2.13866
\(756\) 176.987 61.9303i 0.234109 0.0819184i
\(757\) −84.2696 747.913i −0.111320 0.987997i −0.917884 0.396849i \(-0.870104\pi\)
0.806563 0.591148i \(-0.201325\pi\)
\(758\) 606.015