Properties

Label 29.3.f.a.10.4
Level 29
Weight 3
Character 29.10
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 10.4
Character \(\chi\) = 29.10
Dual form 29.3.f.a.3.4

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(2.05804 - 1.29315i) q^{2}\) \(+(-2.93183 - 1.02589i) q^{3}\) \(+(0.827740 - 1.71882i) q^{4}\) \(+(5.87720 + 1.34143i) q^{5}\) \(+(-7.36043 + 1.67997i) q^{6}\) \(+(-9.36468 + 4.50979i) q^{7}\) \(+(0.569384 + 5.05343i) q^{8}\) \(+(0.506667 + 0.404053i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(2.05804 - 1.29315i) q^{2}\) \(+(-2.93183 - 1.02589i) q^{3}\) \(+(0.827740 - 1.71882i) q^{4}\) \(+(5.87720 + 1.34143i) q^{5}\) \(+(-7.36043 + 1.67997i) q^{6}\) \(+(-9.36468 + 4.50979i) q^{7}\) \(+(0.569384 + 5.05343i) q^{8}\) \(+(0.506667 + 0.404053i) q^{9}\) \(+(13.8301 - 4.83938i) q^{10}\) \(+(0.977326 - 8.67401i) q^{11}\) \(+(-4.19011 + 4.19011i) q^{12}\) \(+(8.98997 - 7.16926i) q^{13}\) \(+(-13.4410 + 21.3913i) q^{14}\) \(+(-15.8548 - 9.96220i) q^{15}\) \(+(12.4645 + 15.6300i) q^{16}\) \(+(-9.77422 - 9.77422i) q^{17}\) \(+(1.56524 + 0.176360i) q^{18}\) \(+(-4.49203 - 12.8375i) q^{19}\) \(+(7.17047 - 8.99148i) q^{20}\) \(+(32.0822 - 3.61479i) q^{21}\) \(+(-9.20542 - 19.1153i) q^{22}\) \(+(6.44949 + 28.2571i) q^{23}\) \(+(3.51492 - 15.3999i) q^{24}\) \(+(10.2178 + 4.92062i) q^{25}\) \(+(9.23075 - 26.3800i) q^{26}\) \(+(13.8021 + 21.9659i) q^{27}\) \(+19.8291i q^{28}\) \(+(-28.9618 + 1.48885i) q^{29}\) \(-45.5123 q^{30}\) \(+(32.8240 - 20.6247i) q^{31}\) \(+(26.6642 + 9.33019i) q^{32}\) \(+(-11.7639 + 24.4281i) q^{33}\) \(+(-32.7552 - 7.47617i) q^{34}\) \(+(-61.0877 + 13.9429i) q^{35}\) \(+(1.11388 - 0.536418i) q^{36}\) \(+(6.61609 + 58.7194i) q^{37}\) \(+(-25.8456 - 20.6112i) q^{38}\) \(+(-33.7119 + 11.7963i) q^{39}\) \(+(-3.43244 + 30.4638i) q^{40}\) \(+(28.8990 - 28.8990i) q^{41}\) \(+(61.3518 - 48.9264i) q^{42}\) \(+(23.3701 - 37.1932i) q^{43}\) \(+(-14.1001 - 8.85967i) q^{44}\) \(+(2.43577 + 3.05436i) q^{45}\) \(+(49.8139 + 49.8139i) q^{46}\) \(+(-16.5298 - 1.86246i) q^{47}\) \(+(-20.5091 - 58.6116i) q^{48}\) \(+(36.8081 - 46.1559i) q^{49}\) \(+(27.3916 - 3.08629i) q^{50}\) \(+(18.6290 + 38.6836i) q^{51}\) \(+(-4.88131 - 21.3864i) q^{52}\) \(+(-12.8958 + 56.5002i) q^{53}\) \(+(56.8105 + 27.3585i) q^{54}\) \(+(17.3795 - 49.6678i) q^{55}\) \(+(-28.1220 - 44.7559i) q^{56}\) \(+42.2456i q^{57}\) \(+(-57.6790 + 40.5160i) q^{58}\) \(-34.0756 q^{59}\) \(+(-30.2468 + 19.0053i) q^{60}\) \(+(5.90275 + 2.06546i) q^{61}\) \(+(40.8822 - 84.8927i) q^{62}\) \(+(-6.56698 - 1.49887i) q^{63}\) \(+(-11.0199 + 2.51523i) q^{64}\) \(+(62.4529 - 30.0757i) q^{65}\) \(+(7.37854 + 65.4863i) q^{66}\) \(+(-53.1751 - 42.4058i) q^{67}\) \(+(-24.8906 + 8.70961i) q^{68}\) \(+(10.0799 - 89.4613i) q^{69}\) \(+(-107.690 + 107.690i) q^{70}\) \(+(-24.4740 + 19.5174i) q^{71}\) \(+(-1.75337 + 2.79047i) q^{72}\) \(+(-43.4053 - 27.2734i) q^{73}\) \(+(89.5491 + 112.291i) q^{74}\) \(+(-24.9087 - 24.9087i) q^{75}\) \(+(-25.7836 - 2.90511i) q^{76}\) \(+(29.9657 + 85.6369i) q^{77}\) \(+(-54.1259 + 67.8718i) q^{78}\) \(+(36.9784 - 4.16647i) q^{79}\) \(+(52.2897 + 108.581i) q^{80}\) \(+(-19.2286 - 84.2460i) q^{81}\) \(+(22.1045 - 96.8459i) q^{82}\) \(+(62.9075 + 30.2947i) q^{83}\) \(+(20.3425 - 58.1356i) q^{84}\) \(+(-44.3336 - 70.5565i) q^{85}\) \(-106.766i q^{86}\) \(+(86.4382 + 25.3465i) q^{87}\) \(+44.3899 q^{88}\) \(+(23.7527 - 14.9248i) q^{89}\) \(+(8.96265 + 3.13617i) q^{90}\) \(+(-51.8564 + 107.681i) q^{91}\) \(+(53.9073 + 12.3040i) q^{92}\) \(+(-117.393 + 26.7942i) q^{93}\) \(+(-36.4274 + 17.5425i) q^{94}\) \(+(-9.17994 - 81.4742i) q^{95}\) \(+(-68.6029 - 54.7090i) q^{96}\) \(+(-33.9244 + 11.8707i) q^{97}\) \(+(16.0659 - 142.589i) q^{98}\) \(+(3.99994 - 3.99994i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{23}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.05804 1.29315i 1.02902 0.646575i 0.0919649 0.995762i \(-0.470685\pi\)
0.937053 + 0.349188i \(0.113542\pi\)
\(3\) −2.93183 1.02589i −0.977275 0.341963i −0.206061 0.978539i \(-0.566065\pi\)
−0.771214 + 0.636576i \(0.780350\pi\)
\(4\) 0.827740 1.71882i 0.206935 0.429705i
\(5\) 5.87720 + 1.34143i 1.17544 + 0.268286i 0.765262 0.643719i \(-0.222610\pi\)
0.410177 + 0.912006i \(0.365467\pi\)
\(6\) −7.36043 + 1.67997i −1.22674 + 0.279995i
\(7\) −9.36468 + 4.50979i −1.33781 + 0.644256i −0.959575 0.281452i \(-0.909184\pi\)
−0.378237 + 0.925709i \(0.623470\pi\)
\(8\) 0.569384 + 5.05343i 0.0711730 + 0.631678i
\(9\) 0.506667 + 0.404053i 0.0562963 + 0.0448948i
\(10\) 13.8301 4.83938i 1.38301 0.483938i
\(11\) 0.977326 8.67401i 0.0888478 0.788546i −0.867723 0.497048i \(-0.834417\pi\)
0.956571 0.291499i \(-0.0941540\pi\)
\(12\) −4.19011 + 4.19011i −0.349176 + 0.349176i
\(13\) 8.98997 7.16926i 0.691536 0.551482i −0.213433 0.976958i \(-0.568465\pi\)
0.904970 + 0.425476i \(0.139893\pi\)
\(14\) −13.4410 + 21.3913i −0.960073 + 1.52795i
\(15\) −15.8548 9.96220i −1.05698 0.664147i
\(16\) 12.4645 + 15.6300i 0.779031 + 0.976873i
\(17\) −9.77422 9.77422i −0.574954 0.574954i 0.358554 0.933509i \(-0.383270\pi\)
−0.933509 + 0.358554i \(0.883270\pi\)
\(18\) 1.56524 + 0.176360i 0.0869578 + 0.00979779i
\(19\) −4.49203 12.8375i −0.236423 0.675658i −0.999567 0.0294292i \(-0.990631\pi\)
0.763144 0.646228i \(-0.223655\pi\)
\(20\) 7.17047 8.99148i 0.358523 0.449574i
\(21\) 32.0822 3.61479i 1.52772 0.172133i
\(22\) −9.20542 19.1153i −0.418428 0.868875i
\(23\) 6.44949 + 28.2571i 0.280413 + 1.22857i 0.897266 + 0.441490i \(0.145550\pi\)
−0.616853 + 0.787078i \(0.711593\pi\)
\(24\) 3.51492 15.3999i 0.146455 0.641662i
\(25\) 10.2178 + 4.92062i 0.408711 + 0.196825i
\(26\) 9.23075 26.3800i 0.355029 1.01461i
\(27\) 13.8021 + 21.9659i 0.511189 + 0.813553i
\(28\) 19.8291i 0.708184i
\(29\) −28.9618 + 1.48885i −0.998681 + 0.0513395i
\(30\) −45.5123 −1.51708
\(31\) 32.8240 20.6247i 1.05884 0.665313i 0.114212 0.993456i \(-0.463566\pi\)
0.944628 + 0.328144i \(0.106423\pi\)
\(32\) 26.6642 + 9.33019i 0.833255 + 0.291568i
\(33\) −11.7639 + 24.4281i −0.356483 + 0.740244i
\(34\) −32.7552 7.47617i −0.963389 0.219887i
\(35\) −61.0877 + 13.9429i −1.74536 + 0.398367i
\(36\) 1.11388 0.536418i 0.0309412 0.0149005i
\(37\) 6.61609 + 58.7194i 0.178813 + 1.58701i 0.687581 + 0.726107i \(0.258672\pi\)
−0.508768 + 0.860904i \(0.669899\pi\)
\(38\) −25.8456 20.6112i −0.680146 0.542399i
\(39\) −33.7119 + 11.7963i −0.864408 + 0.302469i
\(40\) −3.43244 + 30.4638i −0.0858110 + 0.761594i
\(41\) 28.8990 28.8990i 0.704854 0.704854i −0.260594 0.965448i \(-0.583919\pi\)
0.965448 + 0.260594i \(0.0839185\pi\)
\(42\) 61.3518 48.9264i 1.46076 1.16491i
\(43\) 23.3701 37.1932i 0.543490 0.864959i −0.456200 0.889877i \(-0.650790\pi\)
0.999689 + 0.0249182i \(0.00793254\pi\)
\(44\) −14.1001 8.85967i −0.320457 0.201356i
\(45\) 2.43577 + 3.05436i 0.0541282 + 0.0678747i
\(46\) 49.8139 + 49.8139i 1.08291 + 1.08291i
\(47\) −16.5298 1.86246i −0.351698 0.0396269i −0.0656518 0.997843i \(-0.520913\pi\)
−0.286047 + 0.958216i \(0.592341\pi\)
\(48\) −20.5091 58.6116i −0.427272 1.22107i
\(49\) 36.8081 46.1559i 0.751185 0.941956i
\(50\) 27.3916 3.08629i 0.547832 0.0617259i
\(51\) 18.6290 + 38.6836i 0.365275 + 0.758502i
\(52\) −4.88131 21.3864i −0.0938714 0.411278i
\(53\) −12.8958 + 56.5002i −0.243317 + 1.06604i 0.694659 + 0.719340i \(0.255555\pi\)
−0.937975 + 0.346702i \(0.887302\pi\)
\(54\) 56.8105 + 27.3585i 1.05205 + 0.506638i
\(55\) 17.3795 49.6678i 0.315991 0.903052i
\(56\) −28.1220 44.7559i −0.502179 0.799213i
\(57\) 42.2456i 0.741151i
\(58\) −57.6790 + 40.5160i −0.994466 + 0.698551i
\(59\) −34.0756 −0.577552 −0.288776 0.957397i \(-0.593248\pi\)
−0.288776 + 0.957397i \(0.593248\pi\)
\(60\) −30.2468 + 19.0053i −0.504114 + 0.316756i
\(61\) 5.90275 + 2.06546i 0.0967664 + 0.0338600i 0.378228 0.925712i \(-0.376534\pi\)
−0.281462 + 0.959572i \(0.590819\pi\)
\(62\) 40.8822 84.8927i 0.659390 1.36924i
\(63\) −6.56698 1.49887i −0.104238 0.0237916i
\(64\) −11.0199 + 2.51523i −0.172186 + 0.0393004i
\(65\) 62.4529 30.0757i 0.960814 0.462704i
\(66\) 7.37854 + 65.4863i 0.111796 + 0.992217i
\(67\) −53.1751 42.4058i −0.793659 0.632922i 0.140378 0.990098i \(-0.455168\pi\)
−0.934037 + 0.357176i \(0.883740\pi\)
\(68\) −24.8906 + 8.70961i −0.366039 + 0.128083i
\(69\) 10.0799 89.4613i 0.146085 1.29654i
\(70\) −107.690 + 107.690i −1.53843 + 1.53843i
\(71\) −24.4740 + 19.5174i −0.344704 + 0.274893i −0.780504 0.625151i \(-0.785037\pi\)
0.435799 + 0.900044i \(0.356466\pi\)
\(72\) −1.75337 + 2.79047i −0.0243523 + 0.0387565i
\(73\) −43.4053 27.2734i −0.594593 0.373608i 0.200862 0.979619i \(-0.435626\pi\)
−0.795456 + 0.606012i \(0.792768\pi\)
\(74\) 89.5491 + 112.291i 1.21012 + 1.51745i
\(75\) −24.9087 24.9087i −0.332116 0.332116i
\(76\) −25.7836 2.90511i −0.339258 0.0382252i
\(77\) 29.9657 + 85.6369i 0.389164 + 1.11217i
\(78\) −54.1259 + 67.8718i −0.693922 + 0.870151i
\(79\) 36.9784 4.16647i 0.468081 0.0527401i 0.125226 0.992128i \(-0.460034\pi\)
0.342855 + 0.939388i \(0.388606\pi\)
\(80\) 52.2897 + 108.581i 0.653621 + 1.35726i
\(81\) −19.2286 84.2460i −0.237390 1.04007i
\(82\) 22.1045 96.8459i 0.269566 1.18105i
\(83\) 62.9075 + 30.2947i 0.757922 + 0.364996i 0.772597 0.634896i \(-0.218957\pi\)
−0.0146754 + 0.999892i \(0.504671\pi\)
\(84\) 20.3425 58.1356i 0.242173 0.692090i
\(85\) −44.3336 70.5565i −0.521571 0.830076i
\(86\) 106.766i 1.24147i
\(87\) 86.4382 + 25.3465i 0.993543 + 0.291340i
\(88\) 44.3899 0.504431
\(89\) 23.7527 14.9248i 0.266885 0.167695i −0.391941 0.919990i \(-0.628196\pi\)
0.658826 + 0.752296i \(0.271053\pi\)
\(90\) 8.96265 + 3.13617i 0.0995850 + 0.0348463i
\(91\) −51.8564 + 107.681i −0.569850 + 1.18331i
\(92\) 53.9073 + 12.3040i 0.585949 + 0.133739i
\(93\) −117.393 + 26.7942i −1.26229 + 0.288109i
\(94\) −36.4274 + 17.5425i −0.387526 + 0.186623i
\(95\) −9.17994 81.4742i −0.0966310 0.857623i
\(96\) −68.6029 54.7090i −0.714614 0.569885i
\(97\) −33.9244 + 11.8707i −0.349736 + 0.122378i −0.499430 0.866354i \(-0.666457\pi\)
0.149693 + 0.988732i \(0.452171\pi\)
\(98\) 16.0659 142.589i 0.163938 1.45499i
\(99\) 3.99994 3.99994i 0.0404035 0.0404035i
\(100\) 16.9153 13.4895i 0.169153 0.134895i
\(101\) −33.1691 + 52.7883i −0.328407 + 0.522657i −0.969591 0.244730i \(-0.921301\pi\)
0.641184 + 0.767387i \(0.278443\pi\)
\(102\) 88.3629 + 55.5221i 0.866303 + 0.544334i
\(103\) −73.2496 91.8521i −0.711161 0.891768i 0.286641 0.958038i \(-0.407461\pi\)
−0.997802 + 0.0662704i \(0.978890\pi\)
\(104\) 41.3481 + 41.3481i 0.397578 + 0.397578i
\(105\) 193.402 + 21.7912i 1.84193 + 0.207535i
\(106\) 46.5232 + 132.956i 0.438898 + 1.25430i
\(107\) −42.6207 + 53.4447i −0.398324 + 0.499483i −0.940033 0.341083i \(-0.889206\pi\)
0.541709 + 0.840566i \(0.317778\pi\)
\(108\) 49.1800 5.54126i 0.455371 0.0513080i
\(109\) 5.04985 + 10.4861i 0.0463289 + 0.0962029i 0.922848 0.385163i \(-0.125855\pi\)
−0.876519 + 0.481366i \(0.840141\pi\)
\(110\) −28.4603 124.693i −0.258730 1.13357i
\(111\) 40.8424 178.942i 0.367950 1.61209i
\(112\) −187.214 90.1575i −1.67155 0.804978i
\(113\) −14.1909 + 40.5554i −0.125584 + 0.358897i −0.989460 0.144807i \(-0.953744\pi\)
0.863876 + 0.503704i \(0.168030\pi\)
\(114\) 54.6299 + 86.9430i 0.479210 + 0.762658i
\(115\) 174.724i 1.51934i
\(116\) −21.4137 + 51.0124i −0.184601 + 0.439762i
\(117\) 7.45169 0.0636896
\(118\) −70.1287 + 44.0648i −0.594311 + 0.373431i
\(119\) 135.612 + 47.4528i 1.13960 + 0.398763i
\(120\) 41.3158 85.7931i 0.344298 0.714943i
\(121\) 43.6830 + 9.97036i 0.361016 + 0.0823996i
\(122\) 14.8190 3.38234i 0.121467 0.0277241i
\(123\) −114.374 + 55.0796i −0.929870 + 0.447802i
\(124\) −8.28039 73.4905i −0.0667773 0.592665i
\(125\) −64.3775 51.3393i −0.515020 0.410715i
\(126\) −15.4533 + 5.40735i −0.122645 + 0.0429155i
\(127\) 14.8633 131.916i 0.117034 1.03871i −0.788676 0.614809i \(-0.789233\pi\)
0.905710 0.423897i \(-0.139338\pi\)
\(128\) −99.3283 + 99.3283i −0.776002 + 0.776002i
\(129\) −106.673 + 85.0690i −0.826924 + 0.659450i
\(130\) 89.6379 142.658i 0.689522 1.09737i
\(131\) 66.7432 + 41.9375i 0.509490 + 0.320134i 0.762127 0.647427i \(-0.224155\pi\)
−0.252637 + 0.967561i \(0.581298\pi\)
\(132\) 32.2500 + 40.4402i 0.244318 + 0.306365i
\(133\) 99.9609 + 99.9609i 0.751586 + 0.751586i
\(134\) −164.273 18.5092i −1.22592 0.138128i
\(135\) 51.6519 + 147.613i 0.382607 + 1.09343i
\(136\) 43.8280 54.9586i 0.322265 0.404107i
\(137\) −160.789 + 18.1166i −1.17364 + 0.132238i −0.677179 0.735819i \(-0.736798\pi\)
−0.496465 + 0.868057i \(0.665369\pi\)
\(138\) −94.9421 197.149i −0.687986 1.42862i
\(139\) 24.4796 + 107.252i 0.176112 + 0.771599i 0.983401 + 0.181443i \(0.0580767\pi\)
−0.807289 + 0.590156i \(0.799066\pi\)
\(140\) −26.5994 + 116.540i −0.189996 + 0.832427i
\(141\) 46.5519 + 22.4182i 0.330155 + 0.158994i
\(142\) −25.1295 + 71.8160i −0.176968 + 0.505747i
\(143\) −53.4001 84.9858i −0.373428 0.594306i
\(144\) 12.9555i 0.0899688i
\(145\) −172.211 30.1000i −1.18766 0.207586i
\(146\) −124.598 −0.853412
\(147\) −155.266 + 97.5599i −1.05623 + 0.663673i
\(148\) 106.404 + 37.2325i 0.718949 + 0.251571i
\(149\) 62.5002 129.783i 0.419464 0.871027i −0.578984 0.815339i \(-0.696551\pi\)
0.998448 0.0556878i \(-0.0177351\pi\)
\(150\) −83.4736 19.0523i −0.556491 0.127015i
\(151\) 279.422 63.7763i 1.85048 0.422359i 0.855105 0.518454i \(-0.173492\pi\)
0.995372 + 0.0960946i \(0.0306351\pi\)
\(152\) 62.3156 30.0096i 0.409971 0.197432i
\(153\) −1.00297 8.90159i −0.00655535 0.0581803i
\(154\) 172.412 + 137.494i 1.11956 + 0.892817i
\(155\) 220.580 77.1842i 1.42310 0.497963i
\(156\) −7.62897 + 67.7090i −0.0489037 + 0.434032i
\(157\) 181.866 181.866i 1.15838 1.15838i 0.173555 0.984824i \(-0.444474\pi\)
0.984824 0.173555i \(-0.0555255\pi\)
\(158\) 70.7150 56.3934i 0.447564 0.356920i
\(159\) 95.7712 152.419i 0.602335 0.958610i
\(160\) 144.195 + 90.6035i 0.901216 + 0.566272i
\(161\) −187.831 235.533i −1.16665 1.46294i
\(162\) −148.516 148.516i −0.916764 0.916764i
\(163\) 59.4854 + 6.70239i 0.364941 + 0.0411190i 0.292531 0.956256i \(-0.405502\pi\)
0.0724098 + 0.997375i \(0.476931\pi\)
\(164\) −25.7513 73.5931i −0.157020 0.448738i
\(165\) −101.907 + 127.788i −0.617621 + 0.774472i
\(166\) 168.641 19.0013i 1.01591 0.114466i
\(167\) 79.8635 + 165.838i 0.478225 + 0.993044i 0.990917 + 0.134472i \(0.0429337\pi\)
−0.512693 + 0.858572i \(0.671352\pi\)
\(168\) 36.5342 + 160.067i 0.217465 + 0.952778i
\(169\) −8.18478 + 35.8598i −0.0484306 + 0.212188i
\(170\) −182.480 87.8778i −1.07341 0.516928i
\(171\) 2.91107 8.31936i 0.0170238 0.0486512i
\(172\) −44.5842 70.9553i −0.259210 0.412531i
\(173\) 24.3883i 0.140973i −0.997513 0.0704864i \(-0.977545\pi\)
0.997513 0.0704864i \(-0.0224551\pi\)
\(174\) 210.670 59.6134i 1.21075 0.342606i
\(175\) −117.877 −0.673584
\(176\) 147.756 92.8415i 0.839525 0.527509i
\(177\) 99.9036 + 34.9578i 0.564427 + 0.197502i
\(178\) 29.5840 61.4317i 0.166202 0.345122i
\(179\) −109.960 25.0977i −0.614303 0.140211i −0.0959623 0.995385i \(-0.530593\pi\)
−0.518340 + 0.855174i \(0.673450\pi\)
\(180\) 7.26608 1.65844i 0.0403671 0.00921353i
\(181\) −181.835 + 87.5671i −1.00461 + 0.483796i −0.862501 0.506055i \(-0.831103\pi\)
−0.142111 + 0.989851i \(0.545389\pi\)
\(182\) 32.5252 + 288.669i 0.178710 + 1.58609i
\(183\) −15.1869 12.1111i −0.0829885 0.0661811i
\(184\) −139.123 + 48.6812i −0.756102 + 0.264572i
\(185\) −39.8840 + 353.980i −0.215589 + 1.91341i
\(186\) −206.950 + 206.950i −1.11263 + 1.11263i
\(187\) −94.3343 + 75.2291i −0.504462 + 0.402295i
\(188\) −16.8836 + 26.8702i −0.0898066 + 0.142926i
\(189\) −228.314 143.459i −1.20801 0.759044i
\(190\) −124.251 155.806i −0.653953 0.820031i
\(191\) −9.18326 9.18326i −0.0480799 0.0480799i 0.682658 0.730738i \(-0.260824\pi\)
−0.730738 + 0.682658i \(0.760824\pi\)
\(192\) 34.8889 + 3.93103i 0.181713 + 0.0204741i
\(193\) −38.7349 110.698i −0.200699 0.573564i 0.798912 0.601447i \(-0.205409\pi\)
−0.999611 + 0.0278831i \(0.991123\pi\)
\(194\) −54.4671 + 68.2996i −0.280758 + 0.352060i
\(195\) −213.955 + 24.1070i −1.09721 + 0.123626i
\(196\) −48.8661 101.471i −0.249317 0.517712i
\(197\) −42.3417 185.511i −0.214932 0.941681i −0.961160 0.275990i \(-0.910994\pi\)
0.746228 0.665690i \(-0.231863\pi\)
\(198\) 3.05950 13.4045i 0.0154520 0.0676997i
\(199\) 134.765 + 64.8992i 0.677209 + 0.326127i 0.740681 0.671857i \(-0.234503\pi\)
−0.0634720 + 0.997984i \(0.520217\pi\)
\(200\) −19.0481 + 54.4364i −0.0952407 + 0.272182i
\(201\) 112.397 + 178.878i 0.559187 + 0.889941i
\(202\) 151.533i 0.750163i
\(203\) 264.503 144.554i 1.30297 0.712089i
\(204\) 81.9101 0.401520
\(205\) 208.611 131.079i 1.01762 0.639410i
\(206\) −269.529 94.3122i −1.30839 0.457826i
\(207\) −8.14963 + 16.9229i −0.0393702 + 0.0817530i
\(208\) 224.111 + 51.1518i 1.07746 + 0.245922i
\(209\) −115.743 + 26.4175i −0.553793 + 0.126400i
\(210\) 426.208 205.251i 2.02956 0.977385i
\(211\) −6.26902 55.6391i −0.0297110 0.263692i −0.999782 0.0208716i \(-0.993356\pi\)
0.970071 0.242821i \(-0.0780727\pi\)
\(212\) 86.4393 + 68.9330i 0.407732 + 0.325156i
\(213\) 91.7762 32.1139i 0.430874 0.150769i
\(214\) −18.6030 + 165.106i −0.0869298 + 0.771523i
\(215\) 187.243 187.243i 0.870896 0.870896i
\(216\) −103.144 + 82.2550i −0.477521 + 0.380810i
\(217\) −214.373 + 341.173i −0.987896 + 1.57223i
\(218\) 23.9529 + 15.0506i 0.109876 + 0.0690394i
\(219\) 99.2773 + 124.490i 0.453321 + 0.568447i
\(220\) −70.9843 70.9843i −0.322656 0.322656i
\(221\) −157.944 17.7960i −0.714679 0.0805250i
\(222\) −147.344 421.085i −0.663712 1.89678i
\(223\) 83.8099 105.094i 0.375829 0.471275i −0.557562 0.830135i \(-0.688263\pi\)
0.933391 + 0.358860i \(0.116835\pi\)
\(224\) −291.779 + 32.8756i −1.30258 + 0.146766i
\(225\) 3.18881 + 6.62164i 0.0141725 + 0.0294295i
\(226\) 23.2387 + 101.815i 0.102826 + 0.450511i
\(227\) −37.6983 + 165.167i −0.166072 + 0.727609i 0.821470 + 0.570252i \(0.193154\pi\)
−0.987542 + 0.157357i \(0.949703\pi\)
\(228\) 72.6126 + 34.9684i 0.318476 + 0.153370i
\(229\) 51.6406 147.580i 0.225505 0.644456i −0.774426 0.632665i \(-0.781961\pi\)
0.999930 0.0117911i \(-0.00375331\pi\)
\(230\) 225.944 + 359.588i 0.982366 + 1.56343i
\(231\) 281.814i 1.21997i
\(232\) −24.0141 145.508i −0.103509 0.627191i
\(233\) 296.039 1.27055 0.635276 0.772285i \(-0.280886\pi\)
0.635276 + 0.772285i \(0.280886\pi\)
\(234\) 15.3358 9.63615i 0.0655378 0.0411801i
\(235\) −94.6506 33.1197i −0.402769 0.140935i
\(236\) −28.2057 + 58.5698i −0.119516 + 0.248177i
\(237\) −112.689 25.7204i −0.475479 0.108525i
\(238\) 340.458 77.7074i 1.43050 0.326502i
\(239\) −231.857 + 111.656i −0.970113 + 0.467182i −0.850693 0.525662i \(-0.823818\pi\)
−0.119420 + 0.992844i \(0.538103\pi\)
\(240\) −41.9124 371.983i −0.174635 1.54993i
\(241\) −18.6581 14.8793i −0.0774196 0.0617400i 0.584015 0.811743i \(-0.301481\pi\)
−0.661435 + 0.750003i \(0.730052\pi\)
\(242\) 102.794 35.9693i 0.424770 0.148633i
\(243\) −3.91073 + 34.7087i −0.0160935 + 0.142834i
\(244\) 8.43610 8.43610i 0.0345742 0.0345742i
\(245\) 278.243 221.892i 1.13569 0.905680i
\(246\) −164.160 + 261.259i −0.667316 + 1.06203i
\(247\) −132.419 83.2042i −0.536108 0.336859i
\(248\) 122.915 + 154.130i 0.495625 + 0.621493i
\(249\) −153.355 153.355i −0.615883 0.615883i
\(250\) −198.881 22.4085i −0.795522 0.0896338i
\(251\) 47.2947 + 135.160i 0.188425 + 0.538487i 0.998880 0.0473132i \(-0.0150659\pi\)
−0.810455 + 0.585801i \(0.800780\pi\)
\(252\) −8.01203 + 10.0468i −0.0317938 + 0.0398681i
\(253\) 251.405 28.3266i 0.993697 0.111963i
\(254\) −139.997 290.708i −0.551171 1.14452i
\(255\) 57.5951 + 252.341i 0.225863 + 0.989571i
\(256\) −65.9139 + 288.788i −0.257476 + 1.12808i
\(257\) 78.7944 + 37.9454i 0.306593 + 0.147647i 0.580854 0.814008i \(-0.302719\pi\)
−0.274261 + 0.961655i \(0.588433\pi\)
\(258\) −109.530 + 313.019i −0.424536 + 1.21325i
\(259\) −326.770 520.051i −1.26166 2.00792i
\(260\) 132.240i 0.508616i
\(261\) −15.2755 10.9477i −0.0585270 0.0419454i
\(262\) 191.591 0.731265
\(263\) −82.7439 + 51.9914i −0.314615 + 0.197686i −0.680077 0.733140i \(-0.738054\pi\)
0.365462 + 0.930826i \(0.380911\pi\)
\(264\) −130.144 45.5392i −0.492968 0.172497i
\(265\) −151.582 + 314.764i −0.572009 + 1.18779i
\(266\) 334.988 + 76.4587i 1.25935 + 0.287439i
\(267\) −84.9502 + 19.3893i −0.318165 + 0.0726192i
\(268\) −116.903 + 56.2975i −0.436205 + 0.210065i
\(269\) −2.99923 26.6189i −0.0111496 0.0989551i 0.986905 0.161303i \(-0.0515697\pi\)
−0.998054 + 0.0623480i \(0.980141\pi\)
\(270\) 297.187 + 236.998i 1.10069 + 0.877772i
\(271\) −164.750 + 57.6486i −0.607935 + 0.212725i −0.616651 0.787237i \(-0.711511\pi\)
0.00871663 + 0.999962i \(0.497225\pi\)
\(272\) 30.9402 274.602i 0.113751 1.00956i
\(273\) 262.502 262.502i 0.961547 0.961547i
\(274\) −307.482 + 245.209i −1.12220 + 0.894924i
\(275\) 52.6676 83.8200i 0.191518 0.304800i
\(276\) −145.424 91.3762i −0.526900 0.331073i
\(277\) 270.444 + 339.126i 0.976331 + 1.22428i 0.974524 + 0.224282i \(0.0720037\pi\)
0.00180677 + 0.999998i \(0.499425\pi\)
\(278\) 189.073 + 189.073i 0.680119 + 0.680119i
\(279\) 24.9643 + 2.81280i 0.0894779 + 0.0100817i
\(280\) −105.242 300.763i −0.375863 1.07415i
\(281\) 246.662 309.305i 0.877802 1.10073i −0.116400 0.993202i \(-0.537136\pi\)
0.994202 0.107526i \(-0.0342930\pi\)
\(282\) 124.796 14.0611i 0.442537 0.0498620i
\(283\) 70.0980 + 145.560i 0.247696 + 0.514346i 0.987333 0.158660i \(-0.0507172\pi\)
−0.739637 + 0.673006i \(0.765003\pi\)
\(284\) 13.2887 + 58.2217i 0.0467913 + 0.205006i
\(285\) −56.6696 + 248.286i −0.198841 + 0.871178i
\(286\) −219.799 105.849i −0.768527 0.370103i
\(287\) −140.302 + 400.959i −0.488855 + 1.39707i
\(288\) 9.73995 + 15.5010i 0.0338193 + 0.0538231i
\(289\) 97.9291i 0.338855i
\(290\) −393.340 + 160.748i −1.35635 + 0.554303i
\(291\) 111.638 0.383637
\(292\) −82.8063 + 52.0307i −0.283583 + 0.178187i
\(293\) −497.689 174.149i −1.69860 0.594365i −0.705191 0.709018i \(-0.749139\pi\)
−0.993406 + 0.114653i \(0.963424\pi\)
\(294\) −193.383 + 401.563i −0.657765 + 1.36586i
\(295\) −200.269 45.7100i −0.678877 0.154949i
\(296\) −292.967 + 66.8678i −0.989754 + 0.225905i
\(297\) 204.022 98.2517i 0.686942 0.330814i
\(298\) −39.2012 347.920i −0.131548 1.16752i
\(299\) 260.563 + 207.792i 0.871449 + 0.694957i
\(300\) −63.4315 + 22.1956i −0.211438 + 0.0739855i
\(301\) −51.1194 + 453.697i −0.169832 + 1.50730i
\(302\) 492.588 492.588i 1.63109 1.63109i
\(303\) 151.401 120.738i 0.499673 0.398476i
\(304\) 144.659 230.223i 0.475851 0.757313i
\(305\) 31.9209 + 20.0573i 0.104659 + 0.0657615i
\(306\) −13.5752 17.0228i −0.0443635 0.0556300i
\(307\) −263.183 263.183i −0.857275 0.857275i 0.133742 0.991016i \(-0.457301\pi\)
−0.991016 + 0.133742i \(0.957301\pi\)
\(308\) 171.998 + 19.3795i 0.558436 + 0.0629206i
\(309\) 120.525 + 344.440i 0.390048 + 1.11469i
\(310\) 354.150 444.091i 1.14242 1.43255i
\(311\) −286.428 + 32.2726i −0.920989 + 0.103771i −0.559711 0.828688i \(-0.689088\pi\)
−0.361278 + 0.932458i \(0.617659\pi\)
\(312\) −78.8068 163.644i −0.252586 0.524500i
\(313\) 41.7918 + 183.102i 0.133520 + 0.584990i 0.996777 + 0.0802250i \(0.0255639\pi\)
−0.863257 + 0.504765i \(0.831579\pi\)
\(314\) 139.106 609.465i 0.443014 1.94097i
\(315\) −36.5848 17.6183i −0.116142 0.0559311i
\(316\) 23.4471 67.0080i 0.0741997 0.212051i
\(317\) 299.014 + 475.878i 0.943261 + 1.50119i 0.863482 + 0.504379i \(0.168279\pi\)
0.0797787 + 0.996813i \(0.474579\pi\)
\(318\) 437.530i 1.37588i
\(319\) −15.3908 + 252.670i −0.0482471 + 0.792068i
\(320\) −68.1403 −0.212938
\(321\) 179.785 112.966i 0.560077 0.351920i
\(322\) −691.142 241.841i −2.14640 0.751059i
\(323\) −81.5704 + 169.383i −0.252540 + 0.524405i
\(324\) −160.720 36.6833i −0.496049 0.113220i
\(325\) 127.135 29.0176i 0.391183 0.0892851i
\(326\) 131.090 63.1297i 0.402117 0.193649i
\(327\) −4.04767 35.9241i −0.0123782 0.109860i
\(328\) 162.494 + 129.584i 0.495407 + 0.395074i
\(329\) 163.196 57.1047i 0.496036 0.173571i
\(330\) −44.4803 + 394.774i −0.134789 + 1.19628i
\(331\) −301.118 + 301.118i −0.909723 + 0.909723i −0.996250 0.0865265i \(-0.972423\pi\)
0.0865265 + 0.996250i \(0.472423\pi\)
\(332\) 104.142 83.0506i 0.313681 0.250152i
\(333\) −20.3736 + 32.4244i −0.0611821 + 0.0973707i
\(334\) 378.816 + 238.026i 1.13418 + 0.712652i
\(335\) −255.636 320.558i −0.763093 0.956889i
\(336\) 456.387 + 456.387i 1.35829 + 1.35829i
\(337\) 354.089 + 39.8962i 1.05071 + 0.118386i 0.620392 0.784292i \(-0.286973\pi\)
0.430316 + 0.902678i \(0.358402\pi\)
\(338\) 29.5276 + 84.3850i 0.0873597 + 0.249660i
\(339\) 83.2108 104.343i 0.245459 0.307796i
\(340\) −157.971 + 17.7990i −0.464619 + 0.0523500i
\(341\) −146.819 304.873i −0.430554 0.894056i
\(342\) −4.76709 20.8860i −0.0139389 0.0610701i
\(343\) −23.2111 + 101.695i −0.0676709 + 0.296485i
\(344\) 201.260 + 96.9216i 0.585058 + 0.281749i
\(345\) 179.248 512.260i 0.519558 1.48481i
\(346\) −31.5377 50.1920i −0.0911495 0.145064i
\(347\) 8.03629i 0.0231593i −0.999933 0.0115797i \(-0.996314\pi\)
0.999933 0.0115797i \(-0.00368600\pi\)
\(348\) 115.115 127.591i 0.330789 0.366642i
\(349\) 635.847 1.82191 0.910956 0.412504i \(-0.135346\pi\)
0.910956 + 0.412504i \(0.135346\pi\)
\(350\) −242.595 + 152.433i −0.693129 + 0.435522i
\(351\) 281.560 + 98.5221i 0.802166 + 0.280690i
\(352\) 106.990 222.167i 0.303948 0.631155i
\(353\) −466.124 106.390i −1.32047 0.301388i −0.496505 0.868034i \(-0.665383\pi\)
−0.823961 + 0.566646i \(0.808241\pi\)
\(354\) 250.811 57.2459i 0.708505 0.161712i
\(355\) −170.020 + 81.8772i −0.478929 + 0.230640i
\(356\) −5.99201 53.1806i −0.0168315 0.149384i
\(357\) −348.910 278.247i −0.977339 0.779402i
\(358\) −258.757 + 90.5430i −0.722785 + 0.252913i
\(359\) 9.68103 85.9215i 0.0269666 0.239336i −0.972997 0.230817i \(-0.925860\pi\)
0.999964 0.00851817i \(-0.00271145\pi\)
\(360\) −14.0481 + 14.0481i −0.0390225 + 0.0390225i
\(361\) 137.618 109.747i 0.381214 0.304008i
\(362\) −260.985 + 415.356i −0.720954 + 1.14739i
\(363\) −117.842 74.0453i −0.324635 0.203982i
\(364\) 142.160 + 178.263i 0.390550 + 0.489735i
\(365\) −218.516 218.516i −0.598674 0.598674i
\(366\) −46.9167 5.28624i −0.128188 0.0144433i
\(367\) −170.932 488.497i −0.465756 1.33105i −0.902198 0.431322i \(-0.858047\pi\)
0.436442 0.899732i \(-0.356238\pi\)
\(368\) −361.268 + 453.015i −0.981706 + 1.23102i
\(369\) 26.3189 2.96543i 0.0713250 0.00803640i
\(370\) 375.667 + 780.080i 1.01532 + 2.10833i
\(371\) −134.039 587.264i −0.361291 1.58292i
\(372\) −51.1165 + 223.956i −0.137410 + 0.602032i
\(373\) −148.476 71.5023i −0.398059 0.191695i 0.224135 0.974558i \(-0.428044\pi\)
−0.622194 + 0.782863i \(0.713759\pi\)
\(374\) −96.8609 + 276.813i −0.258986 + 0.740141i
\(375\) 136.075 + 216.562i 0.362867 + 0.577499i
\(376\) 84.5927i 0.224981i
\(377\) −249.691 + 221.019i −0.662312 + 0.586258i
\(378\) −655.393 −1.73384
\(379\) −385.472 + 242.208i −1.01708 + 0.639072i −0.933927 0.357465i \(-0.883641\pi\)
−0.0831508 + 0.996537i \(0.526498\pi\)
\(380\) −147.638 51.6608i −0.388521 0.135950i
\(381\) −178.908 + 371.506i −0.469574 + 0.975080i
\(382\) −30.7748 7.02415i −0.0805623 0.0183878i
\(383\) 280.279 63.9719i 0.731799 0.167028i 0.159645 0.987174i \(-0.448965\pi\)
0.572154 + 0.820146i \(0.306108\pi\)
\(384\) 393.113 189.313i 1.02373 0.493003i
\(385\) 61.2379 + 543.502i 0.159060 + 1.41169i
\(386\) −222.867 177.730i −0.577375 0.460441i
\(387\) 26.8689 9.40184i 0.0694287 0.0242941i
\(388\) −7.67706 + 68.1358i −0.0197862 + 0.175608i
\(389\) −60.4535 + 60.4535i −0.155408 + 0.155408i −0.780528 0.625121i \(-0.785050\pi\)
0.625121 + 0.780528i \(0.285050\pi\)
\(390\) −409.154 + 326.289i −1.04911 + 0.836639i
\(391\) 213.152 339.230i 0.545146 0.867595i
\(392\) 254.203 + 159.726i 0.648477 + 0.407465i
\(393\) −152.656 191.425i −0.388438 0.487086i
\(394\) −327.034 327.034i −0.830036 0.830036i
\(395\) 222.918 + 25.1169i 0.564350 + 0.0635870i
\(396\) −3.56427 10.1861i −0.00900068 0.0257225i
\(397\) −303.313 + 380.342i −0.764012 + 0.958040i −0.999906 0.0137384i \(-0.995627\pi\)
0.235894 + 0.971779i \(0.424198\pi\)
\(398\) 361.275 40.7059i 0.907725 0.102276i
\(399\) −190.519 395.617i −0.477491 0.991521i
\(400\) 50.4501 + 221.036i 0.126125 + 0.552591i
\(401\) −122.942 + 538.643i −0.306588 + 1.34325i 0.553392 + 0.832921i \(0.313333\pi\)
−0.859980 + 0.510328i \(0.829524\pi\)
\(402\) 462.632 + 222.792i 1.15083 + 0.554209i
\(403\) 147.223 420.740i 0.365318 1.04402i
\(404\) 63.2782 + 100.707i 0.156629 + 0.249274i
\(405\) 520.924i 1.28623i
\(406\) 357.427 639.540i 0.880362 1.57522i
\(407\) 515.799 1.26732
\(408\) −184.878 + 116.166i −0.453131 + 0.284721i
\(409\) 137.784 + 48.2128i 0.336881 + 0.117880i 0.493418 0.869792i \(-0.335747\pi\)
−0.156537 + 0.987672i \(0.550033\pi\)
\(410\) 259.824 539.531i 0.633718 1.31593i
\(411\) 489.991 + 111.837i 1.19219 + 0.272110i
\(412\) −218.509 + 49.8732i −0.530361 + 0.121051i
\(413\) 319.107 153.674i 0.772656 0.372092i
\(414\) 5.11158 + 45.3666i 0.0123468 + 0.109581i
\(415\) 329.082 + 262.434i 0.792968 + 0.632371i
\(416\) 306.601 107.284i 0.737021 0.257895i
\(417\) 38.2590 339.558i 0.0917483 0.814289i
\(418\) −204.041 + 204.041i −0.488136 + 0.488136i
\(419\) −148.931 + 118.769i −0.355444 + 0.283457i −0.784890 0.619635i \(-0.787280\pi\)
0.429445 + 0.903093i \(0.358709\pi\)
\(420\) 197.542 314.386i 0.470338 0.748538i
\(421\) −357.054 224.352i −0.848108 0.532902i 0.0364479 0.999336i \(-0.488396\pi\)
−0.884556 + 0.466434i \(0.845539\pi\)
\(422\) −84.8515 106.400i −0.201070 0.252134i
\(423\) −7.62258 7.62258i −0.0180203 0.0180203i
\(424\) −292.862 32.9976i −0.690713 0.0778246i
\(425\) −51.7755 147.966i −0.121825 0.348155i
\(426\) 147.351 184.772i 0.345894 0.433737i
\(427\) −64.5922 + 7.27779i −0.151270 + 0.0170440i
\(428\) 56.5829 + 117.496i 0.132203 + 0.274522i
\(429\) 69.3738 + 303.946i 0.161710 + 0.708499i
\(430\) 143.219 627.485i 0.333068 1.45927i
\(431\) −95.2983 45.8932i −0.221110 0.106481i 0.320050 0.947401i \(-0.396300\pi\)
−0.541160 + 0.840920i \(0.682015\pi\)
\(432\) −171.291 + 489.521i −0.396506 + 1.13315i
\(433\) −408.562 650.223i −0.943562 1.50167i −0.863174 0.504907i \(-0.831527\pi\)
−0.0803883 0.996764i \(-0.525616\pi\)
\(434\) 979.364i 2.25660i
\(435\) 474.014 + 264.918i 1.08969 + 0.609006i
\(436\) 22.2037 0.0509260
\(437\) 333.779 209.727i 0.763796 0.479925i
\(438\) 365.300 + 127.824i 0.834019 + 0.291836i
\(439\) 228.661 474.820i 0.520869 1.08160i −0.460179 0.887826i \(-0.652215\pi\)
0.981047 0.193769i \(-0.0620711\pi\)
\(440\) 260.888 + 59.5461i 0.592928 + 0.135332i
\(441\) 37.2989 8.51322i 0.0845779 0.0193044i
\(442\) −348.067 + 167.620i −0.787483 + 0.379232i
\(443\) 26.7609 + 237.510i 0.0604084 + 0.536139i 0.987075 + 0.160256i \(0.0512320\pi\)
−0.926667 + 0.375883i \(0.877339\pi\)
\(444\) −273.763 218.319i −0.616583 0.491709i
\(445\) 159.620 55.8535i 0.358697 0.125514i
\(446\) 36.5811 324.666i 0.0820204 0.727952i
\(447\) −316.383 + 316.383i −0.707791 + 0.707791i
\(448\) 91.8550 73.2519i 0.205034 0.163509i
\(449\) 162.359 258.393i 0.361601 0.575485i −0.615532 0.788112i \(-0.711059\pi\)
0.977133 + 0.212627i \(0.0682019\pi\)
\(450\) 15.1255 + 9.50395i 0.0336121 + 0.0211199i
\(451\) −222.427 278.914i −0.493185 0.618435i
\(452\) 57.9610 + 57.9610i 0.128232 + 0.128232i
\(453\) −884.644 99.6755i −1.95286 0.220034i
\(454\) 136.001 + 388.670i 0.299563 + 0.856100i
\(455\) −449.216 + 563.299i −0.987289 + 1.23802i
\(456\) −213.485 + 24.0540i −0.468169 + 0.0527500i
\(457\) 181.449 + 376.783i 0.397045 + 0.824472i 0.999651 + 0.0264327i \(0.00841477\pi\)
−0.602606 + 0.798039i \(0.705871\pi\)
\(458\) −84.5653 370.505i −0.184640 0.808963i
\(459\) 79.7950 349.605i 0.173845 0.761666i
\(460\) 300.319 + 144.626i 0.652867 + 0.314404i
\(461\) −196.436 + 561.383i −0.426109 + 1.21775i 0.508185 + 0.861248i \(0.330317\pi\)
−0.934294 + 0.356502i \(0.883969\pi\)
\(462\) −364.428 579.983i −0.788804 1.25537i
\(463\) 903.693i 1.95182i 0.218171 + 0.975910i \(0.429991\pi\)
−0.218171 + 0.975910i \(0.570009\pi\)
\(464\) −384.264 434.114i −0.828155 0.935590i
\(465\) −725.884 −1.56104
\(466\) 609.258 382.822i 1.30742 0.821507i
\(467\) 674.139 + 235.892i 1.44355 + 0.505121i 0.934609 0.355678i \(-0.115750\pi\)
0.508945 + 0.860799i \(0.330036\pi\)
\(468\) 6.16806 12.8081i 0.0131796 0.0273678i
\(469\) 689.210 + 157.308i 1.46953 + 0.335411i
\(470\) −237.623 + 54.2359i −0.505581 + 0.115396i
\(471\) −719.772 + 346.624i −1.52818 + 0.735932i
\(472\) −19.4021 172.198i −0.0411061 0.364827i
\(473\) −299.774 239.062i −0.633773 0.505417i
\(474\) −265.178 + 92.7896i −0.559446 + 0.195759i
\(475\) 17.2698 153.274i 0.0363576 0.322682i
\(476\) 193.814 193.814i 0.407173 0.407173i
\(477\) −29.3630 + 23.4162i −0.0615576 + 0.0490905i
\(478\) −332.781 + 529.619i −0.696196 + 1.10799i
\(479\) 9.59607 + 6.02961i 0.0200336 + 0.0125879i 0.542012 0.840371i \(-0.317663\pi\)
−0.521978 + 0.852959i \(0.674806\pi\)
\(480\) −329.804 413.561i −0.687092 0.861586i
\(481\) 480.453 + 480.453i 0.998863 + 0.998863i
\(482\) −57.6403 6.49450i −0.119586 0.0134741i
\(483\) 309.057 + 883.235i 0.639870 + 1.82864i
\(484\) 53.2954 66.8303i 0.110114 0.138079i
\(485\) −215.304 + 24.2589i −0.443926 + 0.0500185i
\(486\) 36.8351 + 76.4889i 0.0757924 + 0.157385i
\(487\) −178.718 783.016i −0.366978 1.60784i −0.735033 0.678031i \(-0.762833\pi\)
0.368055 0.929804i \(-0.380024\pi\)
\(488\) −7.07672 + 31.0051i −0.0145015 + 0.0635351i
\(489\) −167.525 80.6757i −0.342587 0.164981i
\(490\) 285.695 816.471i 0.583052 1.66627i
\(491\) 197.816 + 314.823i 0.402885 + 0.641187i 0.985127 0.171828i \(-0.0549673\pi\)
−0.582242 + 0.813015i \(0.697824\pi\)
\(492\) 242.180i 0.492236i
\(493\) 297.631 + 268.526i 0.603714 + 0.544678i
\(494\) −380.118 −0.769469
\(495\) 28.8741 18.1428i 0.0583315 0.0366521i
\(496\) 731.498 + 255.962i 1.47479 + 0.516053i
\(497\) 141.172 293.147i 0.284048 0.589833i
\(498\) −513.921 117.299i −1.03197 0.235540i
\(499\) 468.476 106.927i 0.938830 0.214282i 0.274386 0.961620i \(-0.411526\pi\)
0.664444 + 0.747338i \(0.268668\pi\)
\(500\) −141.531 + 68.1577i −0.283062 + 0.136315i
\(501\) −64.0140 568.140i −0.127773 1.13401i
\(502\) 272.117 + 217.006i 0.542065 + 0.432282i
\(503\) −344.807 + 120.653i −0.685501 + 0.239867i −0.650485 0.759519i \(-0.725434\pi\)
−0.0350167 + 0.999387i \(0.511148\pi\)
\(504\) 3.83529 34.0392i 0.00760971 0.0675380i
\(505\) −265.753 + 265.753i −0.526244 + 0.526244i
\(506\) 480.771 383.402i 0.950140 0.757711i
\(507\) 60.7846 96.7381i 0.119891 0.190805i
\(508\) −214.436 134.739i −0.422119 0.265235i
\(509\) 525.388 + 658.816i 1.03220 + 1.29433i 0.954773 + 0.297335i \(0.0960978\pi\)
0.0774230 + 0.996998i \(0.475331\pi\)
\(510\) 444.847 + 444.847i 0.872249 + 0.872249i
\(511\) 529.474 + 59.6574i 1.03615 + 0.116746i
\(512\) 52.2135 + 149.217i 0.101979 + 0.291440i
\(513\) 219.988 275.856i 0.428826 0.537731i
\(514\) 211.231 23.8000i 0.410955 0.0463035i
\(515\) −307.289 638.092i −0.596677 1.23901i
\(516\) 57.9206 + 253.767i 0.112249 + 0.491796i
\(517\) −32.3101 + 141.560i −0.0624953 + 0.273810i
\(518\) −1345.01 647.722i −2.59654 1.25043i
\(519\) −25.0197 + 71.5022i −0.0482075 + 0.137769i
\(520\) 187.545 + 298.476i 0.360664 + 0.573993i
\(521\) 150.865i 0.289569i 0.989463 + 0.144784i \(0.0462489\pi\)
−0.989463 + 0.144784i \(0.953751\pi\)
\(522\) −45.5947 2.77730i −0.0873461 0.00532050i
\(523\) −792.504 −1.51530 −0.757652 0.652659i \(-0.773653\pi\)
−0.757652 + 0.652659i \(0.773653\pi\)
\(524\) 127.329 80.0062i 0.242994 0.152684i
\(525\) 345.595 + 120.929i 0.658276 + 0.230341i
\(526\) −103.057 + 214.000i −0.195926 + 0.406845i
\(527\) −522.420 119.239i −0.991309 0.226260i
\(528\) −528.441 + 120.613i −1.00084 + 0.228434i
\(529\) −280.254 + 134.963i −0.529781 + 0.255129i
\(530\) 95.0750 + 843.814i 0.179387 + 1.59210i
\(531\) −17.2650 13.7684i −0.0325141 0.0259291i
\(532\) 254.557 89.0732i 0.478490 0.167431i
\(533\) 52.6167 466.986i 0.0987180 0.876146i
\(534\) −149.757 + 149.757i −0.280444 + 0.280444i
\(535\) −322.183 + 256.932i −0.602210 + 0.480247i
\(536\) 184.017 292.862i 0.343316 0.546384i
\(537\) 296.637 + 186.389i 0.552396 + 0.347093i
\(538\) −40.5948 50.9042i −0.0754550 0.0946176i
\(539\) −364.383 364.383i −0.676035 0.676035i
\(540\) 296.474 + 33.4046i 0.549026 + 0.0618603i
\(541\) −71.8125 205.228i −0.132740 0.379350i 0.858259 0.513217i \(-0.171546\pi\)
−0.990999 + 0.133867i \(0.957261\pi\)
\(542\) −264.514 + 331.690i −0.488033 + 0.611973i
\(543\) 622.942 70.1888i 1.14722 0.129261i
\(544\) −169.426 351.817i −0.311445 0.646722i
\(545\) 15.6125 + 68.4030i 0.0286469 + 0.125510i
\(546\) 200.784 879.694i 0.367737 1.61116i
\(547\) −396.400 190.896i −0.724680 0.348987i 0.0349094 0.999390i \(-0.488886\pi\)
−0.759589 + 0.650403i \(0.774600\pi\)
\(548\) −101.952 + 291.363i −0.186045 + 0.531685i
\(549\) 2.15617 + 3.43153i 0.00392745 + 0.00625051i
\(550\) 240.611i 0.437475i
\(551\) 149.210 + 365.108i 0.270799 + 0.662629i
\(552\) 457.825 0.829394
\(553\) −327.501 + 205.783i −0.592227 + 0.372121i
\(554\) 995.123 + 348.209i 1.79625 + 0.628535i
\(555\) 480.078 996.892i 0.865005 1.79620i
\(556\) 204.610 + 46.7009i 0.368004 + 0.0839945i
\(557\) 593.083 135.367i 1.06478 0.243029i 0.345977 0.938243i \(-0.387547\pi\)
0.718803 + 0.695214i \(0.244690\pi\)
\(558\) 55.0149 26.4938i 0.0985929 0.0474799i
\(559\) −56.5520 501.912i −0.101166 0.897876i
\(560\) −979.353 781.008i −1.74884 1.39466i
\(561\) 353.749 123.782i 0.630568 0.220645i
\(562\) 107.663 955.532i 0.191570 1.70023i
\(563\) 498.815 498.815i 0.885995 0.885995i −0.108141 0.994136i \(-0.534490\pi\)
0.994136 + 0.108141i \(0.0344897\pi\)
\(564\) 77.0657 61.4579i 0.136641 0.108968i
\(565\) −137.805 + 219.316i −0.243903 + 0.388170i
\(566\) 332.495 + 208.920i 0.587447 + 0.369117i
\(567\) 560.002 + 702.220i 0.987657 + 1.23848i
\(568\) −112.565 112.565i −0.198177 0.198177i
\(569\) −315.227 35.5176i −0.554002 0.0624210i −0.169474 0.985535i \(-0.554207\pi\)
−0.384527 + 0.923114i \(0.625636\pi\)
\(570\) 204.443 + 584.263i 0.358671 + 1.02502i
\(571\) −321.408 + 403.033i −0.562886 + 0.705836i −0.979088 0.203436i \(-0.934789\pi\)
0.416203 + 0.909272i \(0.363361\pi\)
\(572\) −190.277 + 21.4390i −0.332652 + 0.0374808i
\(573\) 17.5027 + 36.3447i 0.0305457 + 0.0634289i
\(574\) 229.754 + 1006.62i 0.400268 + 1.75369i
\(575\) −73.1428 + 320.460i −0.127205 + 0.557321i
\(576\) −6.59972 3.17826i −0.0114579 0.00551781i
\(577\) 325.366 929.842i 0.563892 1.61151i −0.209657 0.977775i \(-0.567235\pi\)
0.773549 0.633736i \(-0.218480\pi\)
\(578\) −126.637 201.542i −0.219095 0.348688i
\(579\) 364.285i 0.629162i
\(580\) −194.282 + 271.085i −0.334970 + 0.467388i
\(581\) −725.732 −1.24911
\(582\) 229.756 144.365i 0.394770 0.248050i
\(583\) 477.480 + 167.077i 0.819005 + 0.286582i
\(584\) 113.110 234.875i 0.193681 0.402182i
\(585\) 43.7950 + 9.99593i 0.0748633 + 0.0170871i
\(586\) −1249.46 + 285.181i −2.13219 + 0.486658i
\(587\) 758.249 365.153i 1.29174 0.622067i 0.343356 0.939205i \(-0.388436\pi\)
0.948379 + 0.317138i \(0.102722\pi\)
\(588\) 39.1683 + 347.628i 0.0666127 + 0.591204i
\(589\) −412.216 328.731i −0.699858 0.558118i
\(590\) −471.270 + 164.905i −0.798763 + 0.279499i
\(591\) −66.1755 + 587.324i −0.111972 + 0.993780i
\(592\) −835.317 + 835.317i −1.41101 + 1.41101i
\(593\) −27.0486 + 21.5706i −0.0456132 + 0.0363753i −0.646031 0.763311i \(-0.723572\pi\)
0.600418 + 0.799686i \(0.295001\pi\)
\(594\) 292.830 466.036i 0.492980 0.784573i
\(595\) 733.365 + 460.804i 1.23255 + 0.774460i
\(596\) −171.340 214.853i −0.287483 0.360492i
\(597\) −328.527 328.527i −0.550296 0.550296i
\(598\) 804.955 + 90.6966i 1.34608 + 0.151667i
\(599\) 3.54858 + 10.1412i 0.00592417 + 0.0169303i 0.946807 0.321801i \(-0.104288\pi\)
−0.940883 + 0.338731i \(0.890002\pi\)
\(600\) 111.692 140.057i 0.186153 0.233428i
\(601\) 368.282 41.4954i 0.612783 0.0690440i 0.199882 0.979820i \(-0.435944\pi\)
0.412901 + 0.910776i \(0.364516\pi\)
\(602\) 481.493 + 999.830i 0.799822 + 1.66085i
\(603\) −9.80790 42.9712i −0.0162652 0.0712624i
\(604\) 121.669 533.067i 0.201439 0.882560i
\(605\) 243.359 + 117.195i 0.402246 + 0.193712i
\(606\) 155.456 444.268i 0.256528 0.733115i
\(607\) −219.680 349.619i −0.361912 0.575979i 0.615288 0.788302i \(-0.289040\pi\)
−0.977199 + 0.212324i \(0.931897\pi\)
\(608\) 384.212i 0.631928i
\(609\) −923.774 + 152.456i −1.51687 + 0.250339i
\(610\) 91.6314 0.150215
\(611\) −161.955 + 101.763i −0.265066 + 0.166552i
\(612\) −16.1304 5.64428i −0.0263569 0.00922268i
\(613\) −443.542 + 921.025i −0.723560 + 1.50249i 0.135591 + 0.990765i \(0.456707\pi\)
−0.859151 + 0.511722i \(0.829008\pi\)
\(614\) −881.976 201.305i −1.43644 0.327859i
\(615\) −746.084 + 170.289i −1.21315 + 0.276892i
\(616\) −415.698 + 200.190i −0.674834 + 0.324983i
\(617\) 12.9759 + 115.164i 0.0210306 + 0.186652i 0.999835 0.0181438i \(-0.00577566\pi\)
−0.978805 + 0.204795i \(0.934347\pi\)
\(618\) 693.457 + 553.014i 1.12210 + 0.894844i
\(619\) 36.6784 12.8343i 0.0592543 0.0207340i −0.300489 0.953785i \(-0.597150\pi\)
0.359743 + 0.933051i \(0.382864\pi\)
\(620\) 49.9170 443.025i 0.0805113 0.714557i
\(621\) −531.676 + 531.676i −0.856162 + 0.856162i
\(622\) −547.745 + 436.812i −0.880619 + 0.702270i
\(623\) −155.129 + 246.886i −0.249003 + 0.396286i
\(624\) −604.578 379.881i −0.968875 0.608784i
\(625\) −486.264 609.755i −0.778022 0.975609i
\(626\) 322.787 + 322.787i 0.515635 + 0.515635i
\(627\) 366.439 + 41.2878i 0.584432 + 0.0658497i
\(628\) −162.057 463.132i −0.258052 0.737471i
\(629\) 509.269 638.604i 0.809649 1.01527i
\(630\) −98.0758 + 11.0505i −0.155676 + 0.0175405i
\(631\) 116.281 + 241.460i 0.184280 + 0.382662i 0.972559 0.232656i \(-0.0747417\pi\)
−0.788279 + 0.615318i \(0.789027\pi\)
\(632\) 42.1099 + 184.495i 0.0666295 + 0.291923i
\(633\) −38.6999 + 169.555i −0.0611373 + 0.267860i
\(634\) 1230.76 + 592.704i 1.94127 + 0.934864i
\(635\) 264.310 755.356i 0.416237 1.18954i
\(636\) −182.707 290.777i −0.287275 0.457196i
\(637\) 678.827i 1.06566i
\(638\) 295.065 + 539.906i 0.462484 + 0.846247i
\(639\) −20.2862 −0.0317469
\(640\) −717.014 + 450.530i −1.12033 + 0.703952i
\(641\) −937.367 327.999i −1.46235 0.511699i −0.522309 0.852756i \(-0.674929\pi\)
−0.940043 + 0.341057i \(0.889215\pi\)
\(642\) 223.921 464.977i 0.348787 0.724264i
\(643\) 311.987 + 71.2090i 0.485206 + 0.110745i 0.458124 0.888888i \(-0.348522\pi\)
0.0270814 + 0.999633i \(0.491379\pi\)
\(644\) −560.314 + 127.888i −0.870052 + 0.198584i
\(645\) −741.053 + 356.872i −1.14892 + 0.553291i
\(646\) 51.1623 + 454.078i 0.0791987 + 0.702908i
\(647\) −288.416 230.004i −0.445774 0.355493i 0.374730 0.927134i \(-0.377736\pi\)
−0.820504 + 0.571641i \(0.806307\pi\)
\(648\) 414.782 145.139i 0.640096 0.223979i
\(649\) −33.3029 + 295.572i −0.0513142 + 0.455427i
\(650\) 224.123 224.123i 0.344805 0.344805i
\(651\) 978.512 780.337i 1.50309 1.19867i
\(652\) 60.7586 96.6968i 0.0931881 0.148308i
\(653\) −257.346 161.701i −0.394098 0.247628i 0.320375 0.947291i \(-0.396191\pi\)
−0.714474 + 0.699662i \(0.753334\pi\)
\(654\) −54.7854 68.6988i −0.0837698 0.105044i
\(655\) 336.007 + 336.007i 0.512987 + 0.512987i
\(656\) 811.902 + 91.4794i 1.23766 + 0.139450i
\(657\) −10.9721 31.3566i −0.0167004 0.0477269i
\(658\) 262.018 328.560i 0.398204 0.499332i
\(659\) −331.819 + 37.3870i −0.503518 + 0.0567329i −0.360071 0.932925i \(-0.617247\pi\)
−0.143448 + 0.989658i \(0.545819\pi\)
\(660\) 135.292 + 280.936i 0.204987 + 0.425660i
\(661\) −231.074 1012.40i −0.349583 1.53162i −0.778131 0.628103i \(-0.783832\pi\)
0.428548 0.903519i \(-0.359025\pi\)
\(662\) −230.321 + 1009.10i −0.347917 + 1.52433i
\(663\) 444.807 + 214.208i 0.670901 + 0.323089i
\(664\) −117.273 + 335.148i −0.176616 + 0.504741i
\(665\) 453.399 + 721.581i 0.681803 + 1.08508i
\(666\) 93.0768i 0.139755i
\(667\) −228.859 808.772i −0.343117 1.21255i
\(668\) 351.152 0.525677
\(669\) −353.531 + 222.138i −0.528447 + 0.332045i
\(670\) −940.638 329.143i −1.40394 0.491259i
\(671\) 23.6847 49.1819i 0.0352977 0.0732964i
\(672\) 889.171 + 202.947i 1.32317 + 0.302005i
\(673\) 145.913 33.3038i 0.216810 0.0494856i −0.112736 0.993625i \(-0.535961\pi\)
0.329546 + 0.944139i \(0.393104\pi\)
\(674\) 780.319 375.782i 1.15774 0.557540i
\(675\) 32.9408 + 292.358i 0.0488012 + 0.433122i
\(676\) 54.8617 + 43.7508i 0.0811564 + 0.0647201i
\(677\) 458.596 160.470i 0.677395 0.237031i 0.0304143 0.999537i \(-0.490317\pi\)
0.646980 + 0.762507i \(0.276032\pi\)
\(678\) 36.3196 322.346i 0.0535688 0.475436i
\(679\) 264.157 264.157i 0.389039 0.389039i
\(680\) 331.309 264.210i 0.487219 0.388544i
\(681\) 279.968 445.567i 0.411114 0.654284i
\(682\) −696.405 437.580i −1.02112 0.641613i
\(683\) 431.703 + 541.338i 0.632069 + 0.792589i 0.989986 0.141164i \(-0.0450846\pi\)
−0.357918 + 0.933753i \(0.616513\pi\)
\(684\) −11.8899 11.8899i −0.0173828 0.0173828i
\(685\) −969.292 109.213i −1.41502 0.159435i
\(686\) 83.7369 + 239.306i 0.122065 + 0.348843i
\(687\) −302.803 + 379.703i −0.440761 + 0.552697i
\(688\) 872.626 98.3213i 1.26835 0.142909i
\(689\) 289.132 + 600.389i 0.419640 + 0.871391i
\(690\) −293.531 1286.04i −0.425407 1.86383i
\(691\) 126.440 553.969i 0.182981 0.801691i −0.797221 0.603688i \(-0.793697\pi\)
0.980201 0.198003i \(-0.0634456\pi\)
\(692\) −41.9191 20.1872i −0.0605767 0.0291722i
\(693\) −19.4193 + 55.4971i −0.0280221 + 0.0800824i
\(694\) −10.3921 16.5390i −0.0149742 0.0238314i
\(695\) 663.180i 0.954216i
\(696\) −78.8703 + 451.241i −0.113319 + 0.648335i
\(697\) −564.931 −0.810518
\(698\) 1308.60 822.245i 1.87478 1.17800i
\(699\) −867.933 303.703i −1.24168 0.434482i
\(700\) −97.5716 + 202.610i −0.139388 + 0.289442i
\(701\) 669.767 + 152.870i 0.955445 + 0.218074i 0.671698 0.740825i \(-0.265565\pi\)
0.283747 + 0.958899i \(0.408422\pi\)
\(702\) 706.865 161.337i 1.00693 0.229825i
\(703\) 724.090 348.704i 1.03000 0.496022i
\(704\) 11.0470 + 98.0452i 0.0156918 + 0.139269i
\(705\) 243.522 + 194.202i 0.345421 + 0.275464i
\(706\) −1096.88 + 383.814i −1.55365 + 0.543646i
\(707\) 72.5537 643.932i 0.102622 0.910795i
\(708\) 142.780 142.780i 0.201667 0.201667i
\(709\) 361.110 287.976i 0.509324 0.406172i −0.334826 0.942280i \(-0.608677\pi\)
0.844149 + 0.536108i \(0.180106\pi\)
\(710\) −244.027 + 388.367i −0.343700 + 0.546996i
\(711\) 20.4192 + 12.8302i 0.0287190 + 0.0180454i
\(712\) 88.9460 + 111.535i 0.124924 + 0.156650i
\(713\) 794.492 + 794.492i 1.11429 + 1.11429i
\(714\) −1077.88 121.448i −1.50964 0.170096i
\(715\) −199.840 571.111i −0.279497 0.798757i
\(716\) −134.157 + 168.227i −0.187370 + 0.234954i
\(717\) 794.312 89.4974i 1.10783 0.124822i
\(718\) −91.1854 189.349i −0.126999 0.263717i
\(719\) −115.701 506.920i −0.160920 0.705035i −0.989424 0.145052i \(-0.953665\pi\)
0.828504 0.559983i \(-0.189192\pi\)
\(720\) −17.3789 + 76.1421i −0.0241374 + 0.105753i
\(721\) 1100.19 + 529.825i 1.52593 + 0.734848i
\(722\) 141.304 403.824i 0.195712 0.559313i
\(723\) 39.4378 + 62.7648i 0.0545474 + 0.0868117i
\(724\) 385.024i 0.531801i
\(725\) −303.250 127.297i −0.418276 0.175582i
\(726\) −338.276 −0.465944
\(727\) −1047.82 + 658.389i −1.44129 + 0.905624i −0.441327 + 0.897346i \(0.645492\pi\)
−0.999966 + 0.00827820i \(0.997365\pi\)
\(728\) −573.683 200.740i −0.788026 0.275742i
\(729\) −290.364 + 602.947i −0.398304 + 0.827088i
\(730\) −732.288 167.140i −1.00313 0.228959i
\(731\) −591.959 + 135.111i −0.809794 + 0.184830i
\(732\) −33.3877 + 16.0787i −0.0456116 + 0.0219654i
\(733\) 11.3513 + 100.746i 0.0154861 + 0.137443i 0.999076 0.0429750i \(-0.0136836\pi\)
−0.983590 + 0.180418i \(0.942255\pi\)
\(734\) −983.484 784.303i −1.33990 1.06853i
\(735\) −1043.40 + 365.100i −1.41959 + 0.496735i
\(736\) −91.6736 + 813.626i −0.124557 + 1.10547i
\(737\) −419.797 + 419.797i −0.569603 + 0.569603i
\(738\) 50.3305 40.1373i 0.0681986 0.0543865i
\(739\) −408.803 + 650.606i −0.553184 + 0.880387i −0.999898 0.0142895i \(-0.995451\pi\)
0.446714 + 0.894677i \(0.352594\pi\)
\(740\) 575.415 + 361.557i 0.777588 + 0.488591i
\(741\) 302.870 + 379.787i 0.408732 + 0.512533i
\(742\) −1035.28 1035.28i −1.39525 1.39525i
\(743\) −576.403 64.9450i −0.775778 0.0874091i −0.284807 0.958585i \(-0.591929\pi\)
−0.490971 + 0.871176i \(0.663358\pi\)
\(744\) −202.244 577.981i −0.271834 0.776856i
\(745\) 541.421 678.920i 0.726739 0.911302i
\(746\) −398.032 + 44.8475i −0.533555 + 0.0601172i
\(747\) 19.6325 + 40.7673i 0.0262818 + 0.0545747i
\(748\) 51.2210 + 224.414i 0.0684773 + 0.300019i
\(749\) 158.105 692.703i 0.211088 0.924837i
\(750\) 560.095 + 269.727i 0.746793 + 0.359636i
\(751\) −322.426 + 921.441i −0.429329 + 1.22695i 0.502666 + 0.864481i \(0.332353\pi\)
−0.931995 + 0.362471i \(0.881933\pi\)
\(752\) −176.926 281.575i −0.235273 0.374435i
\(753\) 444.786i 0.590685i
\(754\) −228.063 + 777.754i −0.302471 + 1.03150i
\(755\) 1727.77 2.28844
\(756\) −435.566 + 273.684i −0.576145 + 0.362016i
\(757\) 804.590 + 281.538i 1.06287 + 0.371913i 0.804388 0.594104i \(-0.202493\pi\)
0.258478 + 0.966017i \(0.416779\pi\)
\(758\) −480.104 + 996.947i