Properties

Label 29.3.f.a.10.2
Level 29
Weight 3
Character 29.10
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 10.2
Character \(\chi\) = 29.10
Dual form 29.3.f.a.3.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-1.29187 + 0.811733i) q^{2}\) \(+(2.15095 + 0.752648i) q^{3}\) \(+(-0.725528 + 1.50658i) q^{4}\) \(+(3.36294 + 0.767569i) q^{5}\) \(+(-3.38968 + 0.773673i) q^{6}\) \(+(-0.255710 + 0.123143i) q^{7}\) \(+(-0.968958 - 8.59974i) q^{8}\) \(+(-2.97640 - 2.37360i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-1.29187 + 0.811733i) q^{2}\) \(+(2.15095 + 0.752648i) q^{3}\) \(+(-0.725528 + 1.50658i) q^{4}\) \(+(3.36294 + 0.767569i) q^{5}\) \(+(-3.38968 + 0.773673i) q^{6}\) \(+(-0.255710 + 0.123143i) q^{7}\) \(+(-0.968958 - 8.59974i) q^{8}\) \(+(-2.97640 - 2.37360i) q^{9}\) \(+(-4.96753 + 1.73821i) q^{10}\) \(+(1.62739 - 14.4435i) q^{11}\) \(+(-2.69449 + 2.69449i) q^{12}\) \(+(-4.30976 + 3.43692i) q^{13}\) \(+(0.230383 - 0.366653i) q^{14}\) \(+(6.65579 + 4.18211i) q^{15}\) \(+(4.06213 + 5.09375i) q^{16}\) \(+(5.25353 + 5.25353i) q^{17}\) \(+(5.77183 + 0.650330i) q^{18}\) \(+(9.56906 + 27.3468i) q^{19}\) \(+(-3.59631 + 4.50963i) q^{20}\) \(+(-0.642701 + 0.0724150i) q^{21}\) \(+(9.62189 + 19.9801i) q^{22}\) \(+(-6.05686 - 26.5368i) q^{23}\) \(+(4.38841 - 19.2269i) q^{24}\) \(+(-11.8040 - 5.68451i) q^{25}\) \(+(2.77777 - 7.93841i) q^{26}\) \(+(-15.5273 - 24.7115i) q^{27}\) \(-0.474590i q^{28}\) \(+(2.32625 + 28.9065i) q^{29}\) \(-11.9931 q^{30}\) \(+(-12.9513 + 8.13783i) q^{31}\) \(+(23.2916 + 8.15007i) q^{32}\) \(+(14.3713 - 29.8423i) q^{33}\) \(+(-11.0513 - 2.52239i) q^{34}\) \(+(-0.954457 + 0.217849i) q^{35}\) \(+(5.73547 - 2.76205i) q^{36}\) \(+(3.05571 + 27.1202i) q^{37}\) \(+(-34.5602 - 27.5609i) q^{38}\) \(+(-11.8568 + 4.14889i) q^{39}\) \(+(3.34235 - 29.6642i) q^{40}\) \(+(-45.8791 + 45.8791i) q^{41}\) \(+(0.771502 - 0.615252i) q^{42}\) \(+(35.9543 - 57.2209i) q^{43}\) \(+(20.5795 + 12.9310i) q^{44}\) \(+(-8.18755 - 10.2669i) q^{45}\) \(+(29.3655 + 29.3655i) q^{46}\) \(+(17.2732 + 1.94622i) q^{47}\) \(+(4.90362 + 14.0137i) q^{48}\) \(+(-30.5008 + 38.2468i) q^{49}\) \(+(19.8635 - 2.23808i) q^{50}\) \(+(7.34599 + 15.2541i) q^{51}\) \(+(-2.05112 - 8.98655i) q^{52}\) \(+(1.31097 - 5.74372i) q^{53}\) \(+(40.1183 + 19.3199i) q^{54}\) \(+(16.5592 - 47.3235i) q^{55}\) \(+(1.30677 + 2.07972i) q^{56}\) \(+66.0236i q^{57}\) \(+(-26.4696 - 35.4551i) q^{58}\) \(-43.1476 q^{59}\) \(+(-11.1296 + 6.99321i) q^{60}\) \(+(104.863 + 36.6931i) q^{61}\) \(+(10.1256 - 21.0260i) q^{62}\) \(+(1.05339 + 0.240429i) q^{63}\) \(+(-62.1125 + 14.1768i) q^{64}\) \(+(-17.1315 + 8.25011i) q^{65}\) \(+(5.65820 + 50.2179i) q^{66}\) \(+(-67.4283 - 53.7723i) q^{67}\) \(+(-11.7264 + 4.10325i) q^{68}\) \(+(6.94493 - 61.6380i) q^{69}\) \(+(1.05620 - 1.05620i) q^{70}\) \(+(45.1943 - 36.0413i) q^{71}\) \(+(-17.5283 + 27.8962i) q^{72}\) \(+(-42.0399 - 26.4154i) q^{73}\) \(+(-25.9619 - 32.5552i) q^{74}\) \(+(-21.1113 - 21.1113i) q^{75}\) \(+(-48.1426 - 5.42437i) q^{76}\) \(+(1.36248 + 3.89374i) q^{77}\) \(+(11.9497 - 14.9844i) q^{78}\) \(+(96.9173 - 10.9200i) q^{79}\) \(+(9.75090 + 20.2479i) q^{80}\) \(+(-7.17507 - 31.4360i) q^{81}\) \(+(22.0280 - 96.5112i) q^{82}\) \(+(-0.956785 - 0.460763i) q^{83}\) \(+(0.357199 - 1.02082i) q^{84}\) \(+(13.6349 + 21.6998i) q^{85}\) \(+103.107i q^{86}\) \(+(-16.7528 + 63.9272i) q^{87}\) \(-125.787 q^{88}\) \(+(73.6381 - 46.2699i) q^{89}\) \(+(18.9112 + 6.61730i) q^{90}\) \(+(0.678813 - 1.40957i) q^{91}\) \(+(44.3742 + 10.1281i) q^{92}\) \(+(-33.9824 + 7.75627i) q^{93}\) \(+(-23.8944 + 11.5070i) q^{94}\) \(+(11.1896 + 99.3106i) q^{95}\) \(+(43.9648 + 35.0607i) q^{96}\) \(+(54.6355 - 19.1178i) q^{97}\) \(+(8.35675 - 74.1682i) q^{98}\) \(+(-39.1268 + 39.1268i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{23}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.29187 + 0.811733i −0.645933 + 0.405867i −0.814776 0.579776i \(-0.803140\pi\)
0.168843 + 0.985643i \(0.445997\pi\)
\(3\) 2.15095 + 0.752648i 0.716982 + 0.250883i 0.664021 0.747714i \(-0.268849\pi\)
0.0529606 + 0.998597i \(0.483134\pi\)
\(4\) −0.725528 + 1.50658i −0.181382 + 0.376644i
\(5\) 3.36294 + 0.767569i 0.672588 + 0.153514i 0.545158 0.838334i \(-0.316470\pi\)
0.127431 + 0.991847i \(0.459327\pi\)
\(6\) −3.38968 + 0.773673i −0.564947 + 0.128945i
\(7\) −0.255710 + 0.123143i −0.0365299 + 0.0175919i −0.452060 0.891988i \(-0.649311\pi\)
0.415530 + 0.909580i \(0.363596\pi\)
\(8\) −0.968958 8.59974i −0.121120 1.07497i
\(9\) −2.97640 2.37360i −0.330711 0.263733i
\(10\) −4.96753 + 1.73821i −0.496753 + 0.173821i
\(11\) 1.62739 14.4435i 0.147945 1.31305i −0.671978 0.740571i \(-0.734555\pi\)
0.819923 0.572474i \(-0.194016\pi\)
\(12\) −2.69449 + 2.69449i −0.224541 + 0.224541i
\(13\) −4.30976 + 3.43692i −0.331520 + 0.264378i −0.775076 0.631869i \(-0.782288\pi\)
0.443556 + 0.896247i \(0.353717\pi\)
\(14\) 0.230383 0.366653i 0.0164559 0.0261895i
\(15\) 6.65579 + 4.18211i 0.443719 + 0.278807i
\(16\) 4.06213 + 5.09375i 0.253883 + 0.318359i
\(17\) 5.25353 + 5.25353i 0.309031 + 0.309031i 0.844534 0.535503i \(-0.179878\pi\)
−0.535503 + 0.844534i \(0.679878\pi\)
\(18\) 5.77183 + 0.650330i 0.320657 + 0.0361294i
\(19\) 9.56906 + 27.3468i 0.503635 + 1.43930i 0.862568 + 0.505942i \(0.168855\pi\)
−0.358933 + 0.933363i \(0.616859\pi\)
\(20\) −3.59631 + 4.50963i −0.179816 + 0.225482i
\(21\) −0.642701 + 0.0724150i −0.0306048 + 0.00344833i
\(22\) 9.62189 + 19.9801i 0.437359 + 0.908185i
\(23\) −6.05686 26.5368i −0.263342 1.15378i −0.917600 0.397505i \(-0.869876\pi\)
0.654258 0.756271i \(-0.272981\pi\)
\(24\) 4.38841 19.2269i 0.182850 0.801119i
\(25\) −11.8040 5.68451i −0.472160 0.227380i
\(26\) 2.77777 7.93841i 0.106837 0.305323i
\(27\) −15.5273 24.7115i −0.575084 0.915240i
\(28\) 0.474590i 0.0169496i
\(29\) 2.32625 + 28.9065i 0.0802155 + 0.996778i
\(30\) −11.9931 −0.399772
\(31\) −12.9513 + 8.13783i −0.417783 + 0.262511i −0.724479 0.689297i \(-0.757920\pi\)
0.306695 + 0.951808i \(0.400777\pi\)
\(32\) 23.2916 + 8.15007i 0.727862 + 0.254690i
\(33\) 14.3713 29.8423i 0.435494 0.904313i
\(34\) −11.0513 2.52239i −0.325039 0.0741880i
\(35\) −0.954457 + 0.217849i −0.0272702 + 0.00622425i
\(36\) 5.73547 2.76205i 0.159318 0.0767237i
\(37\) 3.05571 + 27.1202i 0.0825867 + 0.732977i 0.964955 + 0.262417i \(0.0845196\pi\)
−0.882368 + 0.470560i \(0.844052\pi\)
\(38\) −34.5602 27.5609i −0.909480 0.725286i
\(39\) −11.8568 + 4.14889i −0.304022 + 0.106382i
\(40\) 3.34235 29.6642i 0.0835587 0.741604i
\(41\) −45.8791 + 45.8791i −1.11900 + 1.11900i −0.127114 + 0.991888i \(0.540571\pi\)
−0.991888 + 0.127114i \(0.959429\pi\)
\(42\) 0.771502 0.615252i 0.0183691 0.0146489i
\(43\) 35.9543 57.2209i 0.836146 1.33072i −0.105605 0.994408i \(-0.533678\pi\)
0.941751 0.336311i \(-0.109179\pi\)
\(44\) 20.5795 + 12.9310i 0.467716 + 0.293885i
\(45\) −8.18755 10.2669i −0.181946 0.228153i
\(46\) 29.3655 + 29.3655i 0.638380 + 0.638380i
\(47\) 17.2732 + 1.94622i 0.367514 + 0.0414089i 0.293791 0.955870i \(-0.405083\pi\)
0.0737238 + 0.997279i \(0.476512\pi\)
\(48\) 4.90362 + 14.0137i 0.102159 + 0.291953i
\(49\) −30.5008 + 38.2468i −0.622465 + 0.780546i
\(50\) 19.8635 2.23808i 0.397270 0.0447616i
\(51\) 7.34599 + 15.2541i 0.144039 + 0.299100i
\(52\) −2.05112 8.98655i −0.0394447 0.172818i
\(53\) 1.31097 5.74372i 0.0247352 0.108372i −0.961053 0.276363i \(-0.910871\pi\)
0.985789 + 0.167991i \(0.0537279\pi\)
\(54\) 40.1183 + 19.3199i 0.742931 + 0.357777i
\(55\) 16.5592 47.3235i 0.301077 0.860427i
\(56\) 1.30677 + 2.07972i 0.0233352 + 0.0371378i
\(57\) 66.0236i 1.15831i
\(58\) −26.4696 35.4551i −0.456372 0.611295i
\(59\) −43.1476 −0.731315 −0.365658 0.930749i \(-0.619156\pi\)
−0.365658 + 0.930749i \(0.619156\pi\)
\(60\) −11.1296 + 6.99321i −0.185494 + 0.116554i
\(61\) 104.863 + 36.6931i 1.71906 + 0.601526i 0.996008 0.0892649i \(-0.0284518\pi\)
0.723055 + 0.690791i \(0.242737\pi\)
\(62\) 10.1256 21.0260i 0.163316 0.339129i
\(63\) 1.05339 + 0.240429i 0.0167204 + 0.00381633i
\(64\) −62.1125 + 14.1768i −0.970507 + 0.221512i
\(65\) −17.1315 + 8.25011i −0.263562 + 0.126925i
\(66\) 5.65820 + 50.2179i 0.0857303 + 0.760878i
\(67\) −67.4283 53.7723i −1.00639 0.802571i −0.0260070 0.999662i \(-0.508279\pi\)
−0.980385 + 0.197091i \(0.936851\pi\)
\(68\) −11.7264 + 4.10325i −0.172447 + 0.0603419i
\(69\) 6.94493 61.6380i 0.100651 0.893304i
\(70\) 1.05620 1.05620i 0.0150885 0.0150885i
\(71\) 45.1943 36.0413i 0.636540 0.507623i −0.251220 0.967930i \(-0.580832\pi\)
0.887760 + 0.460306i \(0.152260\pi\)
\(72\) −17.5283 + 27.8962i −0.243449 + 0.387447i
\(73\) −42.0399 26.4154i −0.575889 0.361855i 0.212379 0.977187i \(-0.431879\pi\)
−0.788268 + 0.615332i \(0.789022\pi\)
\(74\) −25.9619 32.5552i −0.350836 0.439935i
\(75\) −21.1113 21.1113i −0.281485 0.281485i
\(76\) −48.1426 5.42437i −0.633456 0.0713733i
\(77\) 1.36248 + 3.89374i 0.0176945 + 0.0505681i
\(78\) 11.9497 14.9844i 0.153201 0.192108i
\(79\) 96.9173 10.9200i 1.22680 0.138227i 0.525314 0.850909i \(-0.323948\pi\)
0.701488 + 0.712681i \(0.252519\pi\)
\(80\) 9.75090 + 20.2479i 0.121886 + 0.253099i
\(81\) −7.17507 31.4360i −0.0885811 0.388099i
\(82\) 22.0280 96.5112i 0.268635 1.17697i
\(83\) −0.956785 0.460763i −0.0115275 0.00555137i 0.428111 0.903726i \(-0.359179\pi\)
−0.439639 + 0.898175i \(0.644893\pi\)
\(84\) 0.357199 1.02082i 0.00425237 0.0121526i
\(85\) 13.6349 + 21.6998i 0.160410 + 0.255291i
\(86\) 103.107i 1.19892i
\(87\) −16.7528 + 63.9272i −0.192561 + 0.734796i
\(88\) −125.787 −1.42940
\(89\) 73.6381 46.2699i 0.827394 0.519886i −0.0505095 0.998724i \(-0.516085\pi\)
0.877904 + 0.478837i \(0.158942\pi\)
\(90\) 18.9112 + 6.61730i 0.210124 + 0.0735256i
\(91\) 0.678813 1.40957i 0.00745949 0.0154898i
\(92\) 44.3742 + 10.1281i 0.482328 + 0.110088i
\(93\) −33.9824 + 7.75627i −0.365403 + 0.0834007i
\(94\) −23.8944 + 11.5070i −0.254196 + 0.122414i
\(95\) 11.1896 + 99.3106i 0.117785 + 1.04537i
\(96\) 43.9648 + 35.0607i 0.457966 + 0.365216i
\(97\) 54.6355 19.1178i 0.563252 0.197091i −0.0336088 0.999435i \(-0.510700\pi\)
0.596861 + 0.802345i \(0.296414\pi\)
\(98\) 8.35675 74.1682i 0.0852729 0.756818i
\(99\) −39.1268 + 39.1268i −0.395220 + 0.395220i
\(100\) 17.1283 13.6594i 0.171283 0.136594i
\(101\) −43.1797 + 68.7201i −0.427522 + 0.680397i −0.989136 0.147002i \(-0.953038\pi\)
0.561614 + 0.827399i \(0.310181\pi\)
\(102\) −21.8723 13.7433i −0.214434 0.134738i
\(103\) 117.601 + 147.466i 1.14175 + 1.43171i 0.885217 + 0.465179i \(0.154010\pi\)
0.256537 + 0.966534i \(0.417419\pi\)
\(104\) 33.7326 + 33.7326i 0.324352 + 0.324352i
\(105\) −2.21695 0.249790i −0.0211138 0.00237895i
\(106\) 2.96878 + 8.48427i 0.0280073 + 0.0800403i
\(107\) 17.2592 21.6423i 0.161300 0.202264i −0.694613 0.719384i \(-0.744424\pi\)
0.855913 + 0.517119i \(0.172996\pi\)
\(108\) 48.4952 5.46409i 0.449029 0.0505935i
\(109\) −40.5822 84.2699i −0.372314 0.773118i 0.627672 0.778478i \(-0.284008\pi\)
−0.999986 + 0.00536026i \(0.998294\pi\)
\(110\) 17.0218 + 74.5773i 0.154743 + 0.677975i
\(111\) −13.8393 + 60.6338i −0.124678 + 0.546251i
\(112\) −1.66599 0.802297i −0.0148749 0.00716336i
\(113\) 49.3986 141.173i 0.437156 1.24932i −0.489035 0.872264i \(-0.662651\pi\)
0.926191 0.377055i \(-0.123063\pi\)
\(114\) −53.5935 85.2936i −0.470119 0.748189i
\(115\) 93.8909i 0.816443i
\(116\) −45.2377 17.4679i −0.389980 0.150585i
\(117\) 20.9854 0.179362
\(118\) 55.7409 35.0243i 0.472381 0.296816i
\(119\) −1.99031 0.696441i −0.0167253 0.00585245i
\(120\) 29.5159 61.2904i 0.245966 0.510753i
\(121\) −88.0000 20.0854i −0.727272 0.165995i
\(122\) −165.254 + 37.7181i −1.35454 + 0.309165i
\(123\) −133.214 + 64.1526i −1.08304 + 0.521566i
\(124\) −2.86373 25.4163i −0.0230946 0.204970i
\(125\) −102.755 81.9441i −0.822037 0.655553i
\(126\) −1.55600 + 0.544467i −0.0123492 + 0.00432117i
\(127\) −10.7711 + 95.5964i −0.0848120 + 0.752727i 0.877276 + 0.479987i \(0.159359\pi\)
−0.962088 + 0.272740i \(0.912070\pi\)
\(128\) −1.06196 + 1.06196i −0.00829659 + 0.00829659i
\(129\) 120.403 96.0181i 0.933356 0.744327i
\(130\) 15.4348 24.5643i 0.118729 0.188956i
\(131\) −86.3851 54.2793i −0.659428 0.414346i 0.160324 0.987064i \(-0.448746\pi\)
−0.819752 + 0.572718i \(0.805889\pi\)
\(132\) 34.5329 + 43.3029i 0.261613 + 0.328052i
\(133\) −5.81447 5.81447i −0.0437178 0.0437178i
\(134\) 130.757 + 14.7328i 0.975798 + 0.109946i
\(135\) −33.2495 95.0215i −0.246292 0.703863i
\(136\) 40.0885 50.2694i 0.294769 0.369628i
\(137\) −43.6939 + 4.92312i −0.318933 + 0.0359351i −0.269980 0.962866i \(-0.587017\pi\)
−0.0489532 + 0.998801i \(0.515589\pi\)
\(138\) 41.0617 + 85.2654i 0.297548 + 0.617865i
\(139\) 13.4998 + 59.1466i 0.0971211 + 0.425515i 0.999990 0.00439991i \(-0.00140054\pi\)
−0.902869 + 0.429915i \(0.858543\pi\)
\(140\) 0.364281 1.59602i 0.00260200 0.0114001i
\(141\) 35.6888 + 17.1868i 0.253112 + 0.121892i
\(142\) −29.1291 + 83.2462i −0.205135 + 0.586241i
\(143\) 42.6274 + 67.8412i 0.298094 + 0.474414i
\(144\) 24.8029i 0.172242i
\(145\) −14.3647 + 98.9966i −0.0990672 + 0.682735i
\(146\) 75.7522 0.518851
\(147\) −94.3919 + 59.3103i −0.642121 + 0.403472i
\(148\) −43.0756 15.0728i −0.291051 0.101843i
\(149\) −42.6095 + 88.4796i −0.285970 + 0.593823i −0.993625 0.112735i \(-0.964039\pi\)
0.707655 + 0.706558i \(0.249753\pi\)
\(150\) 44.4098 + 10.1362i 0.296065 + 0.0675750i
\(151\) 2.28538 0.521624i 0.0151350 0.00345446i −0.214947 0.976626i \(-0.568958\pi\)
0.230082 + 0.973171i \(0.426101\pi\)
\(152\) 225.903 108.789i 1.48621 0.715719i
\(153\) −3.16683 28.1064i −0.0206982 0.183702i
\(154\) −4.92082 3.92422i −0.0319534 0.0254820i
\(155\) −49.8008 + 17.4260i −0.321295 + 0.112426i
\(156\) 2.35186 20.8734i 0.0150760 0.133804i
\(157\) 55.3939 55.3939i 0.352828 0.352828i −0.508333 0.861161i \(-0.669738\pi\)
0.861161 + 0.508333i \(0.169738\pi\)
\(158\) −116.340 + 92.7781i −0.736330 + 0.587203i
\(159\) 7.14282 11.3677i 0.0449234 0.0714952i
\(160\) 72.0724 + 45.2861i 0.450453 + 0.283038i
\(161\) 4.81663 + 6.03986i 0.0299170 + 0.0375147i
\(162\) 34.7869 + 34.7869i 0.214734 + 0.214734i
\(163\) −59.0143 6.64931i −0.362051 0.0407933i −0.0709343 0.997481i \(-0.522598\pi\)
−0.291116 + 0.956688i \(0.594027\pi\)
\(164\) −35.8337 102.407i −0.218498 0.624432i
\(165\) 71.2359 89.3270i 0.431733 0.541376i
\(166\) 1.61005 0.181410i 0.00969913 0.00109283i
\(167\) 35.2685 + 73.2358i 0.211189 + 0.438538i 0.979474 0.201569i \(-0.0646042\pi\)
−0.768285 + 0.640107i \(0.778890\pi\)
\(168\) 1.24550 + 5.45690i 0.00741370 + 0.0324815i
\(169\) −30.8444 + 135.138i −0.182511 + 0.799635i
\(170\) −35.2288 16.9653i −0.207228 0.0997959i
\(171\) 36.4290 104.108i 0.213035 0.608819i
\(172\) 60.1218 + 95.6833i 0.349545 + 0.556298i
\(173\) 34.1362i 0.197319i −0.995121 0.0986597i \(-0.968544\pi\)
0.995121 0.0986597i \(-0.0314555\pi\)
\(174\) −30.2495 96.1842i −0.173847 0.552783i
\(175\) 3.71841 0.0212481
\(176\) 80.1822 50.3818i 0.455581 0.286260i
\(177\) −92.8081 32.4750i −0.524340 0.183474i
\(178\) −57.5717 + 119.549i −0.323437 + 0.671623i
\(179\) −71.0369 16.2137i −0.396854 0.0905793i 0.0194363 0.999811i \(-0.493813\pi\)
−0.416290 + 0.909232i \(0.636670\pi\)
\(180\) 21.4081 4.88626i 0.118934 0.0271459i
\(181\) 113.506 54.6618i 0.627107 0.301999i −0.0932070 0.995647i \(-0.529712\pi\)
0.720314 + 0.693648i \(0.243998\pi\)
\(182\) 0.267259 + 2.37199i 0.00146846 + 0.0130329i
\(183\) 197.937 + 157.850i 1.08162 + 0.862566i
\(184\) −222.341 + 77.8005i −1.20838 + 0.422829i
\(185\) −10.5404 + 93.5489i −0.0569753 + 0.505670i
\(186\) 37.6047 37.6047i 0.202176 0.202176i
\(187\) 84.4289 67.3298i 0.451491 0.360052i
\(188\) −15.4643 + 24.6113i −0.0822570 + 0.130911i
\(189\) 7.01352 + 4.40689i 0.0371086 + 0.0233169i
\(190\) −95.0691 119.213i −0.500364 0.627437i
\(191\) −107.857 107.857i −0.564698 0.564698i 0.365940 0.930638i \(-0.380747\pi\)
−0.930638 + 0.365940i \(0.880747\pi\)
\(192\) −144.271 16.2554i −0.751410 0.0846635i
\(193\) 66.7211 + 190.678i 0.345705 + 0.987969i 0.977151 + 0.212548i \(0.0681763\pi\)
−0.631445 + 0.775420i \(0.717538\pi\)
\(194\) −55.0632 + 69.0470i −0.283831 + 0.355913i
\(195\) −43.0584 + 4.85152i −0.220812 + 0.0248796i
\(196\) −35.4925 73.7008i −0.181084 0.376025i
\(197\) −76.3058 334.317i −0.387339 1.69704i −0.673769 0.738942i \(-0.735326\pi\)
0.286431 0.958101i \(-0.407531\pi\)
\(198\) 18.7861 82.3071i 0.0948791 0.415693i
\(199\) 267.208 + 128.681i 1.34275 + 0.646636i 0.960722 0.277513i \(-0.0895101\pi\)
0.382032 + 0.924149i \(0.375224\pi\)
\(200\) −37.4477 + 107.020i −0.187239 + 0.535098i
\(201\) −104.563 166.411i −0.520214 0.827915i
\(202\) 123.828i 0.613008i
\(203\) −4.15449 7.10522i −0.0204655 0.0350011i
\(204\) −28.3112 −0.138780
\(205\) −189.504 + 119.073i −0.924410 + 0.580845i
\(206\) −271.628 95.0466i −1.31858 0.461391i
\(207\) −44.9602 + 93.3608i −0.217199 + 0.451018i
\(208\) −35.0136 7.99162i −0.168335 0.0384213i
\(209\) 410.556 93.7067i 1.96438 0.448357i
\(210\) 3.06676 1.47688i 0.0146036 0.00703274i
\(211\) −23.1896 205.814i −0.109903 0.975420i −0.920748 0.390158i \(-0.872420\pi\)
0.810845 0.585262i \(-0.199008\pi\)
\(212\) 7.70221 + 6.14231i 0.0363312 + 0.0289731i
\(213\) 124.337 43.5074i 0.583741 0.204260i
\(214\) −4.72874 + 41.9688i −0.0220969 + 0.196116i
\(215\) 164.833 164.833i 0.766666 0.766666i
\(216\) −197.467 + 157.475i −0.914200 + 0.729050i
\(217\) 2.30965 3.67579i 0.0106435 0.0169391i
\(218\) 120.831 + 75.9234i 0.554273 + 0.348272i
\(219\) −70.5440 88.4594i −0.322119 0.403924i
\(220\) 59.2822 + 59.2822i 0.269465 + 0.269465i
\(221\) −40.6974 4.58549i −0.184151 0.0207488i
\(222\) −31.3400 89.5646i −0.141171 0.403444i
\(223\) −17.9820 + 22.5487i −0.0806367 + 0.101115i −0.820513 0.571627i \(-0.806312\pi\)
0.739877 + 0.672742i \(0.234884\pi\)
\(224\) −6.95951 + 0.784148i −0.0310692 + 0.00350066i
\(225\) 21.6407 + 44.9373i 0.0961808 + 0.199722i
\(226\) 50.7785 + 222.475i 0.224684 + 0.984403i
\(227\) −34.9328 + 153.050i −0.153889 + 0.674231i 0.837844 + 0.545910i \(0.183816\pi\)
−0.991733 + 0.128321i \(0.959041\pi\)
\(228\) −99.4695 47.9020i −0.436270 0.210096i
\(229\) −104.546 + 298.776i −0.456534 + 1.30470i 0.453902 + 0.891051i \(0.350031\pi\)
−0.910437 + 0.413648i \(0.864254\pi\)
\(230\) 76.2143 + 121.294i 0.331367 + 0.527367i
\(231\) 9.40070i 0.0406957i
\(232\) 246.335 48.0144i 1.06179 0.206959i
\(233\) 421.117 1.80737 0.903684 0.428200i \(-0.140852\pi\)
0.903684 + 0.428200i \(0.140852\pi\)
\(234\) −27.1103 + 17.0346i −0.115856 + 0.0727972i
\(235\) 56.5948 + 19.8034i 0.240829 + 0.0842697i
\(236\) 31.3048 65.0051i 0.132648 0.275445i
\(237\) 216.683 + 49.4564i 0.914273 + 0.208677i
\(238\) 3.13654 0.715895i 0.0131788 0.00300796i
\(239\) −187.354 + 90.2247i −0.783906 + 0.377509i −0.782628 0.622490i \(-0.786121\pi\)
−0.00127824 + 0.999999i \(0.500407\pi\)
\(240\) 5.73406 + 50.8912i 0.0238919 + 0.212047i
\(241\) 10.8085 + 8.61948i 0.0448485 + 0.0357655i 0.645658 0.763627i \(-0.276583\pi\)
−0.600809 + 0.799393i \(0.705155\pi\)
\(242\) 129.988 45.4848i 0.537141 0.187954i
\(243\) −21.1819 + 187.994i −0.0871682 + 0.773639i
\(244\) −131.362 + 131.362i −0.538368 + 0.538368i
\(245\) −131.929 + 105.210i −0.538487 + 0.429429i
\(246\) 120.020 191.011i 0.487886 0.776467i
\(247\) −135.229 84.9700i −0.547486 0.344008i
\(248\) 82.5325 + 103.493i 0.332792 + 0.417309i
\(249\) −1.71120 1.71120i −0.00687229 0.00687229i
\(250\) 199.262 + 22.4514i 0.797048 + 0.0898057i
\(251\) −20.8320 59.5343i −0.0829959 0.237189i 0.894905 0.446256i \(-0.147243\pi\)
−0.977901 + 0.209067i \(0.932957\pi\)
\(252\) −1.12649 + 1.41257i −0.00447018 + 0.00560543i
\(253\) −393.142 + 44.2964i −1.55392 + 0.175085i
\(254\) −63.6839 132.241i −0.250724 0.520634i
\(255\) 12.9956 + 56.9372i 0.0509629 + 0.223283i
\(256\) 57.2170 250.684i 0.223504 0.979234i
\(257\) −387.505 186.613i −1.50780 0.726120i −0.516325 0.856393i \(-0.672700\pi\)
−0.991478 + 0.130273i \(0.958415\pi\)
\(258\) −77.6033 + 221.778i −0.300788 + 0.859603i
\(259\) −4.12104 6.55859i −0.0159113 0.0253228i
\(260\) 31.7956i 0.122291i
\(261\) 61.6887 91.5590i 0.236355 0.350801i
\(262\) 155.658 0.594116
\(263\) 10.7365 6.74620i 0.0408232 0.0256509i −0.511466 0.859304i \(-0.670897\pi\)
0.552289 + 0.833653i \(0.313754\pi\)
\(264\) −270.561 94.6735i −1.02485 0.358612i
\(265\) 8.81741 18.3095i 0.0332733 0.0690926i
\(266\) 12.2313 + 2.79172i 0.0459824 + 0.0104952i
\(267\) 193.216 44.1004i 0.723657 0.165170i
\(268\) 129.933 62.5725i 0.484825 0.233479i
\(269\) −28.0878 249.286i −0.104416 0.926714i −0.931278 0.364310i \(-0.881305\pi\)
0.826862 0.562404i \(-0.190124\pi\)
\(270\) 120.086 + 95.7654i 0.444763 + 0.354687i
\(271\) 214.664 75.1142i 0.792119 0.277174i 0.0962629 0.995356i \(-0.469311\pi\)
0.695856 + 0.718182i \(0.255025\pi\)
\(272\) −5.41964 + 48.1007i −0.0199252 + 0.176841i
\(273\) 2.52100 2.52100i 0.00923444 0.00923444i
\(274\) 52.4503 41.8278i 0.191425 0.152656i
\(275\) −101.314 + 161.240i −0.368415 + 0.586328i
\(276\) 87.8235 + 55.1832i 0.318201 + 0.199939i
\(277\) −266.485 334.162i −0.962040 1.20636i −0.978448 0.206495i \(-0.933794\pi\)
0.0164075 0.999865i \(-0.494777\pi\)
\(278\) −65.4513 65.4513i −0.235436 0.235436i
\(279\) 57.8641 + 6.51972i 0.207398 + 0.0233682i
\(280\) 2.79827 + 7.99700i 0.00999383 + 0.0285607i
\(281\) −259.886 + 325.887i −0.924862 + 1.15974i 0.0619844 + 0.998077i \(0.480257\pi\)
−0.986846 + 0.161663i \(0.948314\pi\)
\(282\) −60.0563 + 6.76672i −0.212966 + 0.0239955i
\(283\) −202.446 420.383i −0.715356 1.48545i −0.867681 0.497121i \(-0.834390\pi\)
0.152325 0.988330i \(-0.451324\pi\)
\(284\) 21.5091 + 94.2376i 0.0757363 + 0.331823i
\(285\) −50.6777 + 222.033i −0.177816 + 0.779065i
\(286\) −110.138 53.0396i −0.385097 0.185453i
\(287\) 6.08202 17.3814i 0.0211917 0.0605624i
\(288\) −49.9800 79.5427i −0.173542 0.276190i
\(289\) 233.801i 0.809000i
\(290\) −61.8015 139.551i −0.213109 0.481209i
\(291\) 131.907 0.453288
\(292\) 70.2980 44.1712i 0.240747 0.151271i
\(293\) 285.468 + 99.8897i 0.974295 + 0.340921i 0.770039 0.637997i \(-0.220237\pi\)
0.204256 + 0.978917i \(0.434522\pi\)
\(294\) 73.7974 153.242i 0.251012 0.521231i
\(295\) −145.103 33.1188i −0.491874 0.112267i
\(296\) 230.265 52.5566i 0.777924 0.177556i
\(297\) −382.189 + 184.053i −1.28683 + 0.619706i
\(298\) −16.7760 148.891i −0.0562954 0.499635i
\(299\) 117.309 + 93.5504i 0.392336 + 0.312878i
\(300\) 47.1227 16.4889i 0.157076 0.0549632i
\(301\) −2.14749 + 19.0595i −0.00713451 + 0.0633205i
\(302\) −2.52899 + 2.52899i −0.00837414 + 0.00837414i
\(303\) −144.599 + 115.314i −0.477225 + 0.380575i
\(304\) −100.427 + 159.829i −0.330352 + 0.525752i
\(305\) 324.483 + 203.886i 1.06388 + 0.668479i
\(306\) 26.9060 + 33.7390i 0.0879280 + 0.110258i
\(307\) −271.866 271.866i −0.885558 0.885558i 0.108534 0.994093i \(-0.465384\pi\)
−0.994093 + 0.108534i \(0.965384\pi\)
\(308\) −6.85474 0.772343i −0.0222556 0.00250761i
\(309\) 141.962 + 405.704i 0.459424 + 1.31296i
\(310\) 50.1906 62.9370i 0.161905 0.203023i
\(311\) −124.784 + 14.0597i −0.401233 + 0.0452081i −0.310276 0.950647i \(-0.600421\pi\)
−0.0909576 + 0.995855i \(0.528993\pi\)
\(312\) 47.1682 + 97.9457i 0.151180 + 0.313928i
\(313\) 13.5770 + 59.4846i 0.0433769 + 0.190047i 0.991975 0.126438i \(-0.0403545\pi\)
−0.948598 + 0.316485i \(0.897497\pi\)
\(314\) −26.5964 + 116.527i −0.0847020 + 0.371104i
\(315\) 3.35793 + 1.61709i 0.0106601 + 0.00513363i
\(316\) −53.8645 + 153.936i −0.170457 + 0.487139i
\(317\) 239.824 + 381.678i 0.756543 + 1.20403i 0.973686 + 0.227892i \(0.0731833\pi\)
−0.217143 + 0.976140i \(0.569674\pi\)
\(318\) 20.4837i 0.0644140i
\(319\) 421.297 + 13.4431i 1.32068 + 0.0421413i
\(320\) −219.762 −0.686757
\(321\) 53.4125 33.5613i 0.166394 0.104552i
\(322\) −11.1252 3.89288i −0.0345503 0.0120897i
\(323\) −93.3958 + 193.938i −0.289151 + 0.600429i
\(324\) 52.5665 + 11.9980i 0.162242 + 0.0370307i
\(325\) 70.4096 16.0705i 0.216645 0.0494478i
\(326\) 81.6360 39.3138i 0.250417 0.120594i
\(327\) −23.8646 211.804i −0.0729804 0.647719i
\(328\) 439.003 + 350.093i 1.33842 + 1.06736i
\(329\) −4.65658 + 1.62941i −0.0141537 + 0.00495261i
\(330\) −19.5175 + 173.223i −0.0591441 + 0.524918i
\(331\) 295.773 295.773i 0.893575 0.893575i −0.101283 0.994858i \(-0.532295\pi\)
0.994858 + 0.101283i \(0.0322946\pi\)
\(332\) 1.38835 1.10717i 0.00418178 0.00333486i
\(333\) 55.2773 87.9734i 0.165998 0.264184i
\(334\) −105.010 65.9822i −0.314402 0.197552i
\(335\) −185.483 232.589i −0.553682 0.694295i
\(336\) −2.97960 2.97960i −0.00886785 0.00886785i
\(337\) −90.2891 10.1731i −0.267920 0.0301873i −0.0230176 0.999735i \(-0.507327\pi\)
−0.244902 + 0.969548i \(0.578756\pi\)
\(338\) −69.8493 199.618i −0.206655 0.590586i
\(339\) 212.507 266.476i 0.626865 0.786064i
\(340\) −42.5848 + 4.79815i −0.125249 + 0.0141122i
\(341\) 96.4620 + 200.305i 0.282880 + 0.587406i
\(342\) 37.4466 + 164.064i 0.109493 + 0.479720i
\(343\) 6.18411 27.0944i 0.0180295 0.0789923i
\(344\) −526.923 253.753i −1.53175 0.737654i
\(345\) 70.6668 201.954i 0.204831 0.585374i
\(346\) 27.7095 + 44.0994i 0.0800853 + 0.127455i
\(347\) 392.579i 1.13135i 0.824628 + 0.565676i \(0.191385\pi\)
−0.824628 + 0.565676i \(0.808615\pi\)
\(348\) −84.1566 71.6204i −0.241829 0.205806i
\(349\) −487.106 −1.39572 −0.697860 0.716234i \(-0.745864\pi\)
−0.697860 + 0.716234i \(0.745864\pi\)
\(350\) −4.80368 + 3.01836i −0.0137248 + 0.00862387i
\(351\) 151.850 + 53.1346i 0.432621 + 0.151381i
\(352\) 155.620 323.148i 0.442103 0.918035i
\(353\) 98.6003 + 22.5049i 0.279321 + 0.0637532i 0.359886 0.932996i \(-0.382815\pi\)
−0.0805655 + 0.996749i \(0.525673\pi\)
\(354\) 146.257 33.3821i 0.413154 0.0942998i
\(355\) 179.650 86.5149i 0.506056 0.243704i
\(356\) 16.2825 + 144.511i 0.0457374 + 0.405931i
\(357\) −3.75688 2.99601i −0.0105235 0.00839219i
\(358\) 104.931 36.7170i 0.293104 0.102562i
\(359\) 3.96158 35.1600i 0.0110350 0.0979386i −0.986987 0.160798i \(-0.948593\pi\)
0.998022 + 0.0628592i \(0.0200219\pi\)
\(360\) −80.3590 + 80.3590i −0.223219 + 0.223219i
\(361\) −374.039 + 298.286i −1.03612 + 0.826277i
\(362\) −102.264 + 162.753i −0.282498 + 0.449593i
\(363\) −174.166 109.436i −0.479796 0.301476i
\(364\) 1.63113 + 2.04537i 0.00448111 + 0.00561914i
\(365\) −121.102 121.102i −0.331787 0.331787i
\(366\) −383.840 43.2484i −1.04874 0.118165i
\(367\) −76.1146 217.523i −0.207397 0.592706i 0.792455 0.609930i \(-0.208803\pi\)
−0.999852 + 0.0172247i \(0.994517\pi\)
\(368\) 110.568 138.648i 0.300457 0.376761i
\(369\) 245.453 27.6559i 0.665184 0.0749482i
\(370\) −62.3199 129.409i −0.168432 0.349753i
\(371\) 0.372074 + 1.63016i 0.00100289 + 0.00439397i
\(372\) 12.9698 56.8245i 0.0348651 0.152754i
\(373\) 402.935 + 194.043i 1.08026 + 0.520224i 0.887398 0.461003i \(-0.152510\pi\)
0.192857 + 0.981227i \(0.438225\pi\)
\(374\) −54.4170 + 155.515i −0.145500 + 0.415815i
\(375\) −159.345 253.595i −0.424919 0.676254i
\(376\) 150.431i 0.400082i
\(377\) −109.375 116.585i −0.290119 0.309244i
\(378\) −12.6377 −0.0334332
\(379\) −215.124 + 135.171i −0.567609 + 0.356653i −0.785061 0.619419i \(-0.787368\pi\)
0.217452 + 0.976071i \(0.430226\pi\)
\(380\) −157.737 55.1946i −0.415098 0.145249i
\(381\) −95.1185 + 197.516i −0.249655 + 0.518414i
\(382\) 226.888 + 51.7858i 0.593949 + 0.135565i
\(383\) −215.485 + 49.1830i −0.562624 + 0.128415i −0.494368 0.869253i \(-0.664601\pi\)
−0.0682557 + 0.997668i \(0.521743\pi\)
\(384\) −3.08351 + 1.48494i −0.00802998 + 0.00386703i
\(385\) 1.59322 + 14.1402i 0.00413824 + 0.0367279i
\(386\) −240.974 192.171i −0.624286 0.497851i
\(387\) −242.834 + 84.9712i −0.627477 + 0.219564i
\(388\) −10.8372 + 96.1830i −0.0279310 + 0.247894i
\(389\) 408.712 408.712i 1.05067 1.05067i 0.0520279 0.998646i \(-0.483432\pi\)
0.998646 0.0520279i \(-0.0165685\pi\)
\(390\) 51.6876 41.2195i 0.132532 0.105691i
\(391\) 107.592 171.232i 0.275172 0.437933i
\(392\) 358.466 + 225.239i 0.914455 + 0.574590i
\(393\) −144.956 181.769i −0.368846 0.462518i
\(394\) 369.953 + 369.953i 0.938968 + 0.938968i
\(395\) 334.309 + 37.6676i 0.846352 + 0.0953610i
\(396\) −30.5599 87.3351i −0.0771714 0.220543i
\(397\) −173.996 + 218.184i −0.438277 + 0.549582i −0.951088 0.308919i \(-0.900033\pi\)
0.512811 + 0.858501i \(0.328604\pi\)
\(398\) −449.651 + 50.6635i −1.12978 + 0.127295i
\(399\) −8.13036 16.8829i −0.0203768 0.0423129i
\(400\) −18.9939 83.2179i −0.0474849 0.208045i
\(401\) −71.9206 + 315.105i −0.179353 + 0.785797i 0.802576 + 0.596549i \(0.203462\pi\)
−0.981929 + 0.189248i \(0.939395\pi\)
\(402\) 270.163 + 130.103i 0.672046 + 0.323640i
\(403\) 27.8478 79.5846i 0.0691014 0.197480i
\(404\) −72.2040 114.912i −0.178723 0.284435i
\(405\) 111.225i 0.274629i
\(406\) 11.1346 + 5.80665i 0.0274251 + 0.0143021i
\(407\) 396.683 0.974650
\(408\) 124.063 77.9542i 0.304077 0.191064i
\(409\) 138.542 + 48.4780i 0.338734 + 0.118528i 0.494285 0.869300i \(-0.335430\pi\)
−0.155552 + 0.987828i \(0.549715\pi\)
\(410\) 148.158 307.653i 0.361361 0.750374i
\(411\) −97.6885 22.2968i −0.237685 0.0542500i
\(412\) −307.492 + 70.1830i −0.746340 + 0.170347i
\(413\) 11.0333 5.31334i 0.0267149 0.0128652i
\(414\) −17.7015 157.105i −0.0427573 0.379481i
\(415\) −2.86394 2.28392i −0.00690107 0.00550342i
\(416\) −128.392 + 44.9264i −0.308635 + 0.107996i
\(417\) −15.4792 + 137.382i −0.0371204 + 0.329453i
\(418\) −454.318 + 454.318i −1.08689 + 1.08689i
\(419\) 554.089 441.871i 1.32241 1.05459i 0.328485 0.944509i \(-0.393462\pi\)
0.993923 0.110076i \(-0.0351093\pi\)
\(420\) 1.98479 3.15877i 0.00472568 0.00752088i
\(421\) −408.042 256.390i −0.969220 0.609001i −0.0483331 0.998831i \(-0.515391\pi\)
−0.920887 + 0.389830i \(0.872534\pi\)
\(422\) 197.024 + 247.060i 0.466880 + 0.585449i
\(423\) −46.7923 46.7923i −0.110620 0.110620i
\(424\) −50.6648 5.70855i −0.119492 0.0134636i
\(425\) −32.1490 91.8764i −0.0756446 0.216180i
\(426\) −125.310 + 157.134i −0.294155 + 0.368859i
\(427\) −31.3329 + 3.53037i −0.0733792 + 0.00826786i
\(428\) 20.0837 + 41.7043i 0.0469246 + 0.0974400i
\(429\) 40.6287 + 178.006i 0.0947057 + 0.414933i
\(430\) −79.1418 + 346.743i −0.184051 + 0.806379i
\(431\) 158.220 + 76.1946i 0.367099 + 0.176786i 0.608334 0.793681i \(-0.291838\pi\)
−0.241235 + 0.970467i \(0.577552\pi\)
\(432\) 62.8004 179.473i 0.145371 0.415447i
\(433\) 2.79964 + 4.45560i 0.00646568 + 0.0102901i 0.849941 0.526877i \(-0.176637\pi\)
−0.843476 + 0.537167i \(0.819494\pi\)
\(434\) 6.62344i 0.0152614i
\(435\) −105.407 + 202.125i −0.242316 + 0.464654i
\(436\) 156.402 0.358721
\(437\) 667.739 419.568i 1.52801 0.960110i
\(438\) 162.939 + 57.0148i 0.372006 + 0.130171i
\(439\) −232.675 + 483.154i −0.530010 + 1.10058i 0.448386 + 0.893840i \(0.351999\pi\)
−0.978396 + 0.206738i \(0.933715\pi\)
\(440\) −423.015 96.5504i −0.961398 0.219433i
\(441\) 181.565 41.4410i 0.411712 0.0939705i
\(442\) 56.2977 27.1116i 0.127370 0.0613384i
\(443\) 49.1601 + 436.308i 0.110971 + 0.984894i 0.918596 + 0.395198i \(0.129324\pi\)
−0.807625 + 0.589696i \(0.799247\pi\)
\(444\) −81.3086 64.8415i −0.183128 0.146039i
\(445\) 283.156 99.0805i 0.636305 0.222653i
\(446\) 4.92679 43.7265i 0.0110466 0.0980414i
\(447\) −158.245 + 158.245i −0.354015 + 0.354015i
\(448\) 14.1370 11.2739i 0.0315558 0.0251649i
\(449\) 27.2504 43.3687i 0.0606912 0.0965896i −0.815000 0.579461i \(-0.803263\pi\)
0.875691 + 0.482871i \(0.160406\pi\)
\(450\) −64.4340 40.4866i −0.143187 0.0899701i
\(451\) 587.991 + 737.318i 1.30375 + 1.63485i
\(452\) 176.848 + 176.848i 0.391256 + 0.391256i
\(453\) 5.30833 + 0.598106i 0.0117182 + 0.00132032i
\(454\) −79.1076 226.077i −0.174246 0.497966i
\(455\) 3.36475 4.21927i 0.00739506 0.00927311i
\(456\) 567.786 63.9741i 1.24514 0.140294i
\(457\) 141.198 + 293.202i 0.308968 + 0.641579i 0.996410 0.0846606i \(-0.0269806\pi\)
−0.687442 + 0.726240i \(0.741266\pi\)
\(458\) −107.467 470.843i −0.234644 1.02804i
\(459\) 48.2496 211.395i 0.105119 0.460556i
\(460\) 141.454 + 68.1205i 0.307508 + 0.148088i
\(461\) −3.04533 + 8.70305i −0.00660592 + 0.0188786i −0.947139 0.320823i \(-0.896040\pi\)
0.940533 + 0.339702i \(0.110326\pi\)
\(462\) −7.63086 12.1444i −0.0165170 0.0262867i
\(463\) 107.108i 0.231334i 0.993288 + 0.115667i \(0.0369005\pi\)
−0.993288 + 0.115667i \(0.963099\pi\)
\(464\) −137.793 + 129.271i −0.296968 + 0.278602i
\(465\) −120.234 −0.258569
\(466\) −544.026 + 341.834i −1.16744 + 0.733550i
\(467\) −666.211 233.117i −1.42658 0.499180i −0.496980 0.867762i \(-0.665558\pi\)
−0.929595 + 0.368582i \(0.879843\pi\)
\(468\) −15.2255 + 31.6161i −0.0325331 + 0.0675558i
\(469\) 23.8638 + 5.44675i 0.0508822 + 0.0116135i
\(470\) −89.1880 + 20.3566i −0.189762 + 0.0433119i
\(471\) 160.841 77.4572i 0.341489 0.164453i
\(472\) 41.8082 + 371.058i 0.0885768 + 0.786140i
\(473\) −767.959 612.427i −1.62359 1.29477i
\(474\) −320.070 + 111.997i −0.675254 + 0.236282i
\(475\) 42.4999 377.197i 0.0894735 0.794099i
\(476\) 2.49327 2.49327i 0.00523796 0.00523796i
\(477\) −17.5353 + 13.9839i −0.0367615 + 0.0293163i
\(478\) 168.797 268.639i 0.353132 0.562007i
\(479\) −268.422 168.661i −0.560380 0.352110i 0.221868 0.975077i \(-0.428784\pi\)
−0.782249 + 0.622966i \(0.785927\pi\)
\(480\) 120.939 + 151.653i 0.251957 + 0.315944i
\(481\) −106.379 106.379i −0.221162 0.221162i
\(482\) −20.9598 2.36160i −0.0434851 0.00489959i
\(483\) 5.81442 + 16.6166i 0.0120381 + 0.0344030i
\(484\) 94.1067 118.006i 0.194435 0.243814i
\(485\) 198.410 22.3555i 0.409093 0.0460937i
\(486\) −125.237 260.057i −0.257689 0.535097i
\(487\) −60.5532 265.301i −0.124339 0.544765i −0.998274 0.0587228i \(-0.981297\pi\)
0.873935 0.486042i \(-0.161560\pi\)
\(488\) 213.943 937.347i 0.438409 1.92079i
\(489\) −121.932 58.7193i −0.249349 0.120080i
\(490\) 85.0325 243.009i 0.173536 0.495936i
\(491\) −21.2173 33.7671i −0.0432123 0.0687720i 0.824420 0.565979i \(-0.191502\pi\)
−0.867632 + 0.497207i \(0.834359\pi\)
\(492\) 247.242i 0.502524i
\(493\) −139.640 + 164.082i −0.283246 + 0.332824i
\(494\) 243.671 0.493260
\(495\) −161.614 + 101.549i −0.326492 + 0.205149i
\(496\) −94.0619 32.9137i −0.189641 0.0663582i
\(497\) −7.11838 + 14.7815i −0.0143227 + 0.0297414i
\(498\) 3.59968 + 0.821603i 0.00722827 + 0.00164981i
\(499\) −733.757 + 167.475i −1.47046 + 0.335622i −0.881362 0.472442i \(-0.843372\pi\)
−0.589094 + 0.808064i \(0.700515\pi\)
\(500\) 198.006 95.3549i 0.396013 0.190710i
\(501\) 20.7398 + 184.071i 0.0413969 + 0.367407i
\(502\) 75.2381 + 60.0004i 0.149877 + 0.119523i
\(503\) −475.580 + 166.413i −0.945487 + 0.330840i −0.758611 0.651544i \(-0.774122\pi\)
−0.186875 + 0.982384i \(0.559836\pi\)
\(504\) 1.04694 9.29182i 0.00207725 0.0184361i
\(505\) −197.958 + 197.958i −0.391997 + 0.391997i
\(506\) 471.929 376.351i 0.932667 0.743777i
\(507\) −168.056 + 267.460i −0.331472 + 0.527534i
\(508\) −136.208 85.5854i −0.268127 0.168475i
\(509\) −156.669 196.457i −0.307798 0.385967i 0.603741 0.797181i \(-0.293676\pi\)
−0.911539 + 0.411214i \(0.865105\pi\)
\(510\) −63.0063 63.0063i −0.123542 0.123542i
\(511\) 14.0029 + 1.57775i 0.0274029 + 0.00308757i
\(512\) 127.588 + 364.624i 0.249195 + 0.712157i
\(513\) 527.199 661.086i 1.02768 1.28867i
\(514\) 652.085 73.4723i 1.26865 0.142942i
\(515\) 282.293 + 586.188i 0.548142 + 1.13823i
\(516\) 57.3028 + 251.060i 0.111052 + 0.486550i
\(517\) 56.2205 246.318i 0.108744 0.476437i
\(518\) 10.6477 + 5.12764i 0.0205553 + 0.00989892i
\(519\) 25.6926 73.4252i 0.0495040 0.141474i
\(520\) 87.5486 + 139.333i 0.168363 + 0.267948i
\(521\) 240.735i 0.462063i 0.972946 + 0.231031i \(0.0742100\pi\)
−0.972946 + 0.231031i \(0.925790\pi\)
\(522\) −5.37205 + 168.357i −0.0102913 + 0.322522i
\(523\) −250.645 −0.479245 −0.239623 0.970866i \(-0.577024\pi\)
−0.239623 + 0.970866i \(0.577024\pi\)
\(524\) 144.451 90.7644i 0.275669 0.173215i
\(525\) 7.99809 + 2.79865i 0.0152345 + 0.00533077i
\(526\) −8.39402 + 17.4304i −0.0159582 + 0.0331376i
\(527\) −110.792 25.2876i −0.210232 0.0479841i
\(528\) 210.387 48.0195i 0.398461 0.0909461i
\(529\) −190.906 + 91.9355i −0.360881 + 0.173791i
\(530\) 3.47155 + 30.8109i 0.00655009 + 0.0581337i
\(531\) 128.424 + 102.415i 0.241854 + 0.192872i
\(532\) 12.9785 4.54138i 0.0243957 0.00853642i
\(533\) 40.0451 355.410i 0.0751315 0.666811i
\(534\) −213.812 + 213.812i −0.400397 + 0.400397i
\(535\) 74.6535 59.5342i 0.139539 0.111279i
\(536\) −397.092 + 631.969i −0.740844 + 1.17905i
\(537\) −140.593 88.3405i −0.261812 0.164508i
\(538\) 238.639 + 299.244i 0.443568 + 0.556216i
\(539\) 502.780 + 502.780i 0.932802 + 0.932802i
\(540\) 167.281 + 18.8480i 0.309779 + 0.0349037i
\(541\) 288.943 + 825.753i 0.534091 + 1.52635i 0.822458 + 0.568826i \(0.192602\pi\)
−0.288367 + 0.957520i \(0.593112\pi\)
\(542\) −216.345 + 271.287i −0.399160 + 0.500530i
\(543\) 285.287 32.1441i 0.525391 0.0591973i
\(544\) 79.5463 + 165.180i 0.146225 + 0.303639i
\(545\) −71.7927 314.544i −0.131730 0.577145i
\(546\) −1.21041 + 5.30317i −0.00221688 + 0.00971277i
\(547\) 885.756 + 426.558i 1.61930 + 0.779813i 0.999986 0.00533110i \(-0.00169695\pi\)
0.619313 + 0.785144i \(0.287411\pi\)
\(548\) 24.2841 69.3999i 0.0443140 0.126642i
\(549\) −225.019 358.115i −0.409870 0.652305i
\(550\) 290.541i 0.528256i
\(551\) −768.241 + 340.224i −1.39427 + 0.617466i
\(552\) −536.800 −0.972464
\(553\) −23.4380 + 14.7271i −0.0423833 + 0.0266312i
\(554\) 615.513 + 215.377i 1.11103 + 0.388768i
\(555\) −93.0813 + 193.285i −0.167714 + 0.348262i
\(556\) −98.9034 22.5741i −0.177884 0.0406008i
\(557\) −697.102 + 159.109i −1.25153 + 0.285653i −0.796399 0.604771i \(-0.793264\pi\)
−0.455130 + 0.890425i \(0.650407\pi\)
\(558\) −80.0450 + 38.5476i −0.143450 + 0.0690818i
\(559\) 41.7093 + 370.180i 0.0746141 + 0.662219i
\(560\) −4.98680 3.97684i −0.00890499 0.00710150i
\(561\) 232.277 81.2774i 0.414042 0.144880i
\(562\) 71.2048 631.960i 0.126699 1.12448i
\(563\) 509.988 509.988i 0.905840 0.905840i −0.0900931 0.995933i \(-0.528716\pi\)
0.995933 + 0.0900931i \(0.0287165\pi\)
\(564\) −51.7865 + 41.2984i −0.0918201 + 0.0732241i
\(565\) 274.485 436.840i 0.485814 0.773168i
\(566\) 602.771 + 378.746i 1.06497 + 0.669163i
\(567\) 5.70587 + 7.15494i 0.0100633 + 0.0126189i
\(568\) −353.737 353.737i −0.622776 0.622776i
\(569\) 19.5814 + 2.20630i 0.0344137 + 0.00387750i 0.129155 0.991624i \(-0.458774\pi\)
−0.0947408 + 0.995502i \(0.530202\pi\)
\(570\) −114.763 327.974i −0.201339 0.575393i
\(571\) 153.514 192.500i 0.268851 0.337128i −0.629019 0.777390i \(-0.716543\pi\)
0.897869 + 0.440262i \(0.145115\pi\)
\(572\) −133.135 + 15.0007i −0.232754 + 0.0262251i
\(573\) −150.816 313.174i −0.263205 0.546551i
\(574\) 6.25192 + 27.3914i 0.0108918 + 0.0477203i
\(575\) −79.3537 + 347.671i −0.138007 + 0.604646i
\(576\) 218.521 + 105.234i 0.379377 + 0.182699i
\(577\) 305.351 872.644i 0.529205 1.51238i −0.300279 0.953852i \(-0.597080\pi\)
0.829484 0.558530i \(-0.188635\pi\)
\(578\) 189.784 + 302.039i 0.328346 + 0.522559i
\(579\) 460.355i 0.795087i
\(580\) −138.724 93.4664i −0.239179 0.161149i
\(581\) 0.301399 0.000518759
\(582\) −170.406 + 107.073i −0.292794 + 0.183975i
\(583\) −80.8260 28.2822i −0.138638 0.0485116i
\(584\) −186.431 + 387.128i −0.319231 + 0.662890i
\(585\) 70.5727 + 16.1078i 0.120637 + 0.0275346i
\(586\) −449.871 + 102.680i −0.767697 + 0.175222i
\(587\) −507.435 + 244.368i −0.864456 + 0.416300i −0.812923 0.582371i \(-0.802125\pi\)
−0.0515328 + 0.998671i \(0.516411\pi\)
\(588\) −20.8715 185.240i −0.0354958 0.315034i
\(589\) −346.475 276.305i −0.588243 0.469108i
\(590\) 214.337 74.9998i 0.363283 0.127118i
\(591\) 87.4939 776.530i 0.148044 1.31393i
\(592\) −125.731 + 125.731i −0.212383 + 0.212383i
\(593\) 40.7023 32.4590i 0.0686380 0.0547370i −0.588570 0.808446i \(-0.700309\pi\)
0.657208 + 0.753709i \(0.271737\pi\)
\(594\) 344.336 548.007i 0.579690 0.922571i
\(595\) −6.15874 3.86979i −0.0103508 0.00650386i
\(596\) −102.387 128.389i −0.171790 0.215418i
\(597\) 477.899 + 477.899i 0.800500 + 0.800500i
\(598\) −227.485 25.6314i −0.380409 0.0428618i
\(599\) −211.707 605.024i −0.353434 1.01006i −0.974127 0.226002i \(-0.927434\pi\)
0.620693 0.784054i \(-0.286851\pi\)
\(600\) −161.096 + 202.008i −0.268493 + 0.336680i
\(601\) 333.408 37.5661i 0.554756 0.0625060i 0.169864 0.985468i \(-0.445667\pi\)
0.384892 + 0.922962i \(0.374239\pi\)
\(602\) −12.6969 26.3655i −0.0210913 0.0437964i
\(603\) 73.0597 + 320.095i 0.121160 + 0.530838i
\(604\) −0.872245 + 3.82156i −0.00144411 + 0.00632708i
\(605\) −280.522 135.092i −0.463672 0.223293i
\(606\) 93.1986 266.346i 0.153793 0.439515i
\(607\) −54.8088 87.2277i −0.0902945 0.143703i 0.798523 0.601965i \(-0.205615\pi\)
−0.888817 + 0.458262i \(0.848472\pi\)
\(608\) 714.938i 1.17589i
\(609\) −3.58835 18.4098i −0.00589220 0.0302296i
\(610\) −584.690 −0.958508
\(611\) −81.1322 + 50.9787i −0.132786 + 0.0834349i
\(612\) 44.6420 + 15.6209i 0.0729444 + 0.0255243i
\(613\) 356.350 739.969i 0.581322 1.20713i −0.378261 0.925699i \(-0.623478\pi\)
0.959582 0.281428i \(-0.0908080\pi\)
\(614\) 571.898 + 130.532i 0.931430 + 0.212593i
\(615\) −497.233 + 113.490i −0.808509 + 0.184537i
\(616\) 32.1650 15.4899i 0.0522159 0.0251459i
\(617\) 12.5149 + 111.073i 0.0202835 + 0.180021i 0.999769 0.0214938i \(-0.00684223\pi\)
−0.979486 + 0.201515i \(0.935414\pi\)
\(618\) −512.719 408.880i −0.829643 0.661618i
\(619\) −86.4870 + 30.2631i −0.139721 + 0.0488903i −0.399233 0.916849i \(-0.630724\pi\)
0.259513 + 0.965740i \(0.416438\pi\)
\(620\) 9.87823 87.6717i 0.0159326 0.141406i
\(621\) −561.718 + 561.718i −0.904539 + 0.904539i
\(622\) 149.791 119.454i 0.240821 0.192049i
\(623\) −13.1321 + 20.8997i −0.0210789 + 0.0335468i
\(624\) −69.2974 43.5425i −0.111054 0.0697796i
\(625\) −78.4444 98.3662i −0.125511 0.157386i
\(626\) −65.8253 65.8253i −0.105152 0.105152i
\(627\) 953.611 + 107.446i 1.52091 + 0.171366i
\(628\) 43.2653 + 123.645i 0.0688937 + 0.196887i
\(629\) −126.423 + 158.530i −0.200991 + 0.252035i
\(630\) −5.65064 + 0.636675i −0.00896928 + 0.00101059i
\(631\) 106.650 + 221.460i 0.169017 + 0.350967i 0.968222 0.250091i \(-0.0804605\pi\)
−0.799206 + 0.601058i \(0.794746\pi\)
\(632\) −187.818 822.883i −0.297180 1.30203i
\(633\) 105.026 460.147i 0.165917 0.726931i
\(634\) −619.641 298.404i −0.977352 0.470668i
\(635\) −109.600 + 313.217i −0.172598 + 0.493256i
\(636\) 11.9440 + 19.0088i 0.0187799 + 0.0298881i
\(637\) 269.663i 0.423333i
\(638\) −555.172 + 324.614i −0.870175 + 0.508800i
\(639\) −220.064 −0.344388
\(640\) −4.38645 + 2.75619i −0.00685383 + 0.00430655i
\(641\) 916.494 + 320.695i 1.42979 + 0.500305i 0.930551 0.366161i \(-0.119328\pi\)
0.499237 + 0.866466i \(0.333614\pi\)
\(642\) −41.7590 + 86.7134i −0.0650451 + 0.135068i
\(643\) 48.0847 + 10.9750i 0.0747817 + 0.0170684i 0.259748 0.965676i \(-0.416360\pi\)
−0.184966 + 0.982745i \(0.559218\pi\)
\(644\) −12.5941 + 2.87452i −0.0195561 + 0.00446355i
\(645\) 478.609 230.486i 0.742029 0.357342i
\(646\) −36.7714 326.355i −0.0569216 0.505193i
\(647\) −71.4194 56.9551i −0.110386 0.0880295i 0.566742 0.823896i \(-0.308204\pi\)
−0.677127 + 0.735866i \(0.736775\pi\)
\(648\) −263.390 + 92.1640i −0.406465 + 0.142228i
\(649\) −70.2180 + 623.202i −0.108194 + 0.960250i
\(650\) −77.9148 + 77.9148i −0.119869 + 0.119869i
\(651\) 7.73450 6.16806i 0.0118810 0.00947475i
\(652\) 52.8342 84.0852i 0.0810341 0.128965i
\(653\) 207.926 + 130.649i 0.318416 + 0.200074i 0.681751 0.731585i \(-0.261219\pi\)
−0.363334 + 0.931659i \(0.618362\pi\)
\(654\) 202.758 + 254.251i 0.310028 + 0.388762i
\(655\) −248.845 248.845i −0.379916 0.379916i
\(656\) −420.063 47.3298i −0.640340 0.0721490i
\(657\) 62.4279 + 178.409i 0.0950196 + 0.271551i
\(658\) 4.69303 5.88488i 0.00713227 0.00894359i
\(659\) −259.653 + 29.2559i −0.394011 + 0.0443943i −0.306747 0.951791i \(-0.599241\pi\)
−0.0872632 + 0.996185i \(0.527812\pi\)
\(660\) 82.8942 + 172.132i 0.125597 + 0.260805i
\(661\) 217.845 + 954.443i 0.329569 + 1.44394i 0.819953 + 0.572431i \(0.194000\pi\)
−0.490383 + 0.871507i \(0.663143\pi\)
\(662\) −142.010 + 622.188i −0.214517 + 0.939862i
\(663\) −84.0865 40.4939i −0.126827 0.0610768i
\(664\) −3.03536 + 8.67457i −0.00457133 + 0.0130641i
\(665\) −15.0907 24.0167i −0.0226928 0.0361154i
\(666\) 158.520i 0.238018i
\(667\) 752.999 236.814i 1.12893 0.355044i
\(668\) −135.924 −0.203478
\(669\) −55.6495 + 34.9669i −0.0831831 + 0.0522674i
\(670\) 428.420 + 149.911i 0.639432 + 0.223747i
\(671\) 700.629 1454.87i 1.04416 2.16821i
\(672\) −15.5597 3.55140i −0.0231543 0.00528482i
\(673\) 593.737 135.517i 0.882225 0.201362i 0.242671 0.970109i \(-0.421976\pi\)
0.639554 + 0.768747i \(0.279119\pi\)
\(674\) 124.899 60.1483i 0.185310 0.0892408i
\(675\) 42.8112 + 379.960i 0.0634239 + 0.562903i
\(676\) −181.217 144.516i −0.268073 0.213781i
\(677\) 559.076 195.629i 0.825814 0.288965i 0.115907 0.993260i \(-0.463023\pi\)
0.709907 + 0.704295i \(0.248737\pi\)
\(678\) −58.2238 + 516.750i −0.0858758 + 0.762168i
\(679\) −11.6166 + 11.6166i −0.0171084 + 0.0171084i
\(680\) 173.401 138.282i 0.255001 0.203357i
\(681\) −190.332 + 302.911i −0.279488 + 0.444803i
\(682\) −287.210 180.466i −0.421130 0.264613i
\(683\) 217.747 + 273.046i 0.318809 + 0.399774i 0.915252 0.402881i \(-0.131991\pi\)
−0.596443 + 0.802656i \(0.703420\pi\)
\(684\) 130.416 + 130.416i 0.190667 + 0.190667i
\(685\) −150.719 16.9819i −0.220027 0.0247911i
\(686\) 14.0043 + 40.0221i 0.0204145 + 0.0583413i
\(687\) −449.747 + 563.965i −0.654653 + 0.820909i
\(688\) 437.520 49.2967i 0.635930 0.0716521i
\(689\) 14.0907 + 29.2597i 0.0204510 + 0.0424670i
\(690\) 72.6408 + 318.260i 0.105277 + 0.461247i
\(691\) 181.564 795.482i 0.262755 1.15120i −0.655494 0.755200i \(-0.727540\pi\)
0.918249 0.396004i \(-0.129603\pi\)
\(692\) 51.4288 + 24.7668i 0.0743191 + 0.0357902i
\(693\) 5.18690 14.8233i 0.00748471 0.0213901i
\(694\) −318.669 507.159i −0.459178 0.730777i
\(695\) 209.269i 0.301106i
\(696\) 565.991 + 82.1272i 0.813205 + 0.117999i
\(697\) −482.054 −0.691613
\(698\) 629.276 395.400i 0.901541 0.566476i
\(699\) 905.799 + 316.953i 1.29585 + 0.453437i
\(700\) −2.69781 + 5.60206i −0.00385402 + 0.00800295i
\(701\) −924.382 210.984i −1.31866 0.300976i −0.495414 0.868657i \(-0.664984\pi\)
−0.823249 + 0.567681i \(0.807841\pi\)
\(702\) −239.301 + 54.6189i −0.340885 + 0.0778047i
\(703\) −712.409 + 343.078i −1.01338 + 0.488020i
\(704\) 103.681 + 920.193i 0.147274 + 1.30709i
\(705\) 106.827 + 85.1920i 0.151528 + 0.120840i
\(706\) −145.646 + 50.9638i −0.206298 + 0.0721867i
\(707\) 2.57905 22.8897i 0.00364788 0.0323758i
\(708\) 116.261 116.261i 0.164210 0.164210i
\(709\) −268.833 + 214.387i −0.379172 + 0.302380i −0.794467 0.607307i \(-0.792250\pi\)
0.415295 + 0.909687i \(0.363678\pi\)
\(710\) −161.857 + 257.593i −0.227967 + 0.362808i
\(711\) −314.384 197.541i −0.442172 0.277835i
\(712\) −469.261 588.435i −0.659075 0.826454i
\(713\) 294.397 + 294.397i 0.412898 + 0.412898i
\(714\) 7.28535 + 0.820862i 0.0102036 + 0.00114967i
\(715\) 91.2808 + 260.865i 0.127665 + 0.364847i
\(716\) 75.9664 95.2589i 0.106098 0.133043i
\(717\) −470.895 + 53.0571i −0.656757 + 0.0739987i
\(718\) 23.4227 + 48.6377i 0.0326221 + 0.0677405i
\(719\) −258.798 1133.87i −0.359942 1.57701i −0.753334 0.657639i \(-0.771555\pi\)
0.393391 0.919371i \(-0.371302\pi\)
\(720\) 19.0379 83.4107i 0.0264416 0.115848i
\(721\) −48.2311 23.2269i −0.0668947 0.0322148i
\(722\) 241.079 688.965i 0.333905 0.954246i
\(723\) 16.7610 + 26.6750i 0.0231826 + 0.0368949i
\(724\) 210.665i 0.290973i
\(725\) 136.861 354.437i 0.188773 0.488878i
\(726\) 313.831 0.432275
\(727\) 606.627 381.169i 0.834425 0.524304i −0.0457500 0.998953i \(-0.514568\pi\)
0.880175 + 0.474649i \(0.157425\pi\)
\(728\) −12.7797 4.47180i −0.0175545 0.00614259i
\(729\) −312.968 + 649.884i −0.429311 + 0.891474i
\(730\) 254.750 + 58.1451i 0.348973 + 0.0796508i
\(731\) 489.499 111.725i 0.669629 0.152838i
\(732\) −381.421 + 183.683i −0.521067 + 0.250933i
\(733\) −5.44223 48.3011i −0.00742460 0.0658951i 0.989454 0.144850i \(-0.0462701\pi\)
−0.996878 + 0.0789554i \(0.974842\pi\)
\(734\) 274.900 + 219.226i 0.374524 + 0.298673i
\(735\) −362.959 + 127.005i −0.493822 + 0.172796i
\(736\) 75.2034 667.449i 0.102179 0.906860i
\(737\) −886.392 + 886.392i −1.20270 + 1.20270i
\(738\) −294.643 + 234.970i −0.399245 + 0.318387i
\(739\) 266.443 424.041i 0.360545 0.573804i −0.616364 0.787462i \(-0.711395\pi\)
0.976909 + 0.213658i \(0.0685378\pi\)
\(740\) −133.291 83.7524i −0.180123 0.113179i
\(741\) −226.918 284.546i −0.306232 0.384002i
\(742\) −1.80393 1.80393i −0.00243117 0.00243117i
\(743\) −353.124 39.7875i −0.475267 0.0535498i −0.128918 0.991655i \(-0.541150\pi\)
−0.346350 + 0.938106i \(0.612579\pi\)
\(744\) 99.6295 + 284.725i 0.133911 + 0.382694i
\(745\) −211.208 + 264.846i −0.283500 + 0.355498i
\(746\) −678.050 + 76.3979i −0.908914 + 0.102410i
\(747\) 1.75411 + 3.64244i 0.00234820 + 0.00487609i
\(748\) 40.1818 + 176.048i 0.0537190 + 0.235358i
\(749\) −1.74823 + 7.65949i −0.00233408 + 0.0102263i
\(750\) 411.704 + 198.266i 0.548938 + 0.264355i
\(751\) −225.087 + 643.260i −0.299716 + 0.856539i 0.691273 + 0.722594i \(0.257050\pi\)
−0.990989 + 0.133945i \(0.957235\pi\)
\(752\) 60.2523 + 95.8910i 0.0801228 + 0.127515i
\(753\) 143.734i 0.190882i
\(754\) 235.934 + 61.8290i 0.312909 + 0.0820013i
\(755\) 8.08599 0.0107099
\(756\) −11.7278 + 7.36908i −0.0155130 + 0.00974746i
\(757\) −546.623 191.272i −0.722091 0.252671i −0.0558840 0.998437i \(-0.517798\pi\)
−0.666207 + 0.745767i \(0.732083\pi\)