Properties

Label 29.3.f.a.10.1
Level 29
Weight 3
Character 29.10
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 10.1
Character \(\chi\) = 29.10
Dual form 29.3.f.a.3.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-3.24379 + 2.03821i) q^{2}\) \(+(-2.23035 - 0.780434i) q^{3}\) \(+(4.63233 - 9.61914i) q^{4}\) \(+(-5.12808 - 1.17045i) q^{5}\) \(+(8.82547 - 2.01436i) q^{6}\) \(+(-6.56728 + 3.16264i) q^{7}\) \(+(2.86375 + 25.4165i) q^{8}\) \(+(-2.67109 - 2.13013i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-3.24379 + 2.03821i) q^{2}\) \(+(-2.23035 - 0.780434i) q^{3}\) \(+(4.63233 - 9.61914i) q^{4}\) \(+(-5.12808 - 1.17045i) q^{5}\) \(+(8.82547 - 2.01436i) q^{6}\) \(+(-6.56728 + 3.16264i) q^{7}\) \(+(2.86375 + 25.4165i) q^{8}\) \(+(-2.67109 - 2.13013i) q^{9}\) \(+(19.0200 - 6.65539i) q^{10}\) \(+(-0.480789 + 4.26712i) q^{11}\) \(+(-17.8388 + 17.8388i) q^{12}\) \(+(2.73044 - 2.17745i) q^{13}\) \(+(14.8568 - 23.6444i) q^{14}\) \(+(10.5240 + 6.61264i) q^{15}\) \(+(-34.4669 - 43.2201i) q^{16}\) \(+(-6.15599 - 6.15599i) q^{17}\) \(+(13.0061 + 1.46544i) q^{18}\) \(+(5.18330 + 14.8130i) q^{19}\) \(+(-35.0137 + 43.9058i) q^{20}\) \(+(17.1156 - 1.92846i) q^{21}\) \(+(-7.13770 - 14.8216i) q^{22}\) \(+(-3.58915 - 15.7251i) q^{23}\) \(+(13.4487 - 58.9227i) q^{24}\) \(+(2.40304 + 1.15724i) q^{25}\) \(+(-4.41886 + 12.6284i) q^{26}\) \(+(15.6096 + 24.8425i) q^{27}\) \(+77.8220i q^{28}\) \(+(-0.661611 - 28.9925i) q^{29}\) \(-47.6154 q^{30}\) \(+(-34.6988 + 21.8027i) q^{31}\) \(+(103.327 + 36.1556i) q^{32}\) \(+(4.40253 - 9.14195i) q^{33}\) \(+(32.5159 + 7.42154i) q^{34}\) \(+(37.3793 - 8.53157i) q^{35}\) \(+(-32.8634 + 15.8262i) q^{36}\) \(+(-5.62751 - 49.9455i) q^{37}\) \(+(-47.0056 - 37.4857i) q^{38}\) \(+(-7.78919 + 2.72556i) q^{39}\) \(+(15.0632 - 133.690i) q^{40}\) \(+(-0.940907 + 0.940907i) q^{41}\) \(+(-51.5887 + 41.1406i) q^{42}\) \(+(-10.2578 + 16.3252i) q^{43}\) \(+(38.8189 + 24.3915i) q^{44}\) \(+(11.2044 + 14.0498i) q^{45}\) \(+(43.6934 + 43.6934i) q^{46}\) \(+(-59.1758 - 6.66751i) q^{47}\) \(+(43.1429 + 123.295i) q^{48}\) \(+(2.57590 - 3.23008i) q^{49}\) \(+(-10.1536 + 1.14404i) q^{50}\) \(+(8.92568 + 18.5344i) q^{51}\) \(+(-8.29691 - 36.3511i) q^{52}\) \(+(-8.89009 + 38.9500i) q^{53}\) \(+(-101.268 - 48.7682i) q^{54}\) \(+(7.45998 - 21.3194i) q^{55}\) \(+(-99.1903 - 157.860i) q^{56}\) \(-37.0835i q^{57}\) \(+(61.2387 + 92.6968i) q^{58}\) \(+6.74786 q^{59}\) \(+(112.358 - 70.5995i) q^{60}\) \(+(74.0694 + 25.9180i) q^{61}\) \(+(68.1170 - 141.446i) q^{62}\) \(+(24.2786 + 5.54144i) q^{63}\) \(+(-193.284 + 44.1159i) q^{64}\) \(+(-16.5505 + 7.97030i) q^{65}\) \(+(4.35231 + 38.6278i) q^{66}\) \(+(29.6632 + 23.6556i) q^{67}\) \(+(-87.7319 + 30.6987i) q^{68}\) \(+(-4.26733 + 37.8736i) q^{69}\) \(+(-103.861 + 103.861i) q^{70}\) \(+(65.3239 - 52.0941i) q^{71}\) \(+(46.4910 - 73.9901i) q^{72}\) \(+(-38.0089 - 23.8825i) q^{73}\) \(+(120.054 + 150.543i) q^{74}\) \(+(-4.45647 - 4.45647i) q^{75}\) \(+(166.499 + 18.7600i) q^{76}\) \(+(-10.3379 - 29.5439i) q^{77}\) \(+(19.7112 - 24.7171i) q^{78}\) \(+(-120.957 + 13.6286i) q^{79}\) \(+(126.162 + 261.978i) q^{80}\) \(+(-8.58479 - 37.6124i) q^{81}\) \(+(1.13434 - 4.96987i) q^{82}\) \(+(7.07418 + 3.40675i) q^{83}\) \(+(60.7349 - 173.570i) q^{84}\) \(+(24.3631 + 38.7737i) q^{85}\) \(-73.8632i q^{86}\) \(+(-21.1511 + 65.1797i) q^{87}\) \(-109.832 q^{88}\) \(+(-94.3960 + 59.3130i) q^{89}\) \(+(-64.9811 - 22.7379i) q^{90}\) \(+(-11.0451 + 22.9353i) q^{91}\) \(+(-167.888 - 38.3193i) q^{92}\) \(+(94.4060 - 21.5475i) q^{93}\) \(+(205.543 - 98.9845i) q^{94}\) \(+(-9.24248 - 82.0292i) q^{95}\) \(+(-202.238 - 161.279i) q^{96}\) \(+(-13.0335 + 4.56061i) q^{97}\) \(+(-1.77211 + 15.7279i) q^{98}\) \(+(10.3737 - 10.3737i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{23}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.24379 + 2.03821i −1.62189 + 1.01910i −0.657926 + 0.753082i \(0.728566\pi\)
−0.963967 + 0.266021i \(0.914291\pi\)
\(3\) −2.23035 0.780434i −0.743450 0.260145i −0.0681376 0.997676i \(-0.521706\pi\)
−0.675313 + 0.737531i \(0.735991\pi\)
\(4\) 4.63233 9.61914i 1.15808 2.40479i
\(5\) −5.12808 1.17045i −1.02562 0.234090i −0.323557 0.946209i \(-0.604879\pi\)
−0.702059 + 0.712119i \(0.747736\pi\)
\(6\) 8.82547 2.01436i 1.47091 0.335726i
\(7\) −6.56728 + 3.16264i −0.938183 + 0.451805i −0.839528 0.543317i \(-0.817168\pi\)
−0.0986550 + 0.995122i \(0.531454\pi\)
\(8\) 2.86375 + 25.4165i 0.357969 + 3.17707i
\(9\) −2.67109 2.13013i −0.296788 0.236681i
\(10\) 19.0200 6.65539i 1.90200 0.665539i
\(11\) −0.480789 + 4.26712i −0.0437081 + 0.387920i 0.952745 + 0.303771i \(0.0982458\pi\)
−0.996453 + 0.0841491i \(0.973183\pi\)
\(12\) −17.8388 + 17.8388i −1.48657 + 1.48657i
\(13\) 2.73044 2.17745i 0.210034 0.167496i −0.512823 0.858494i \(-0.671400\pi\)
0.722856 + 0.690998i \(0.242829\pi\)
\(14\) 14.8568 23.6444i 1.06120 1.68888i
\(15\) 10.5240 + 6.61264i 0.701597 + 0.440843i
\(16\) −34.4669 43.2201i −2.15418 2.70126i
\(17\) −6.15599 6.15599i −0.362117 0.362117i 0.502475 0.864592i \(-0.332423\pi\)
−0.864592 + 0.502475i \(0.832423\pi\)
\(18\) 13.0061 + 1.46544i 0.722561 + 0.0814131i
\(19\) 5.18330 + 14.8130i 0.272806 + 0.779633i 0.996030 + 0.0890201i \(0.0283736\pi\)
−0.723224 + 0.690613i \(0.757341\pi\)
\(20\) −35.0137 + 43.9058i −1.75069 + 2.19529i
\(21\) 17.1156 1.92846i 0.815027 0.0918315i
\(22\) −7.13770 14.8216i −0.324441 0.673708i
\(23\) −3.58915 15.7251i −0.156050 0.683699i −0.991055 0.133457i \(-0.957392\pi\)
0.835005 0.550243i \(-0.185465\pi\)
\(24\) 13.4487 58.9227i 0.560364 2.45511i
\(25\) 2.40304 + 1.15724i 0.0961215 + 0.0462897i
\(26\) −4.41886 + 12.6284i −0.169956 + 0.485707i
\(27\) 15.6096 + 24.8425i 0.578132 + 0.920091i
\(28\) 77.8220i 2.77936i
\(29\) −0.661611 28.9925i −0.0228142 0.999740i
\(30\) −47.6154 −1.58718
\(31\) −34.6988 + 21.8027i −1.11931 + 0.703312i −0.958902 0.283738i \(-0.908425\pi\)
−0.160413 + 0.987050i \(0.551283\pi\)
\(32\) 103.327 + 36.1556i 3.22896 + 1.12986i
\(33\) 4.40253 9.14195i 0.133410 0.277029i
\(34\) 32.5159 + 7.42154i 0.956350 + 0.218281i
\(35\) 37.3793 8.53157i 1.06798 0.243759i
\(36\) −32.8634 + 15.8262i −0.912872 + 0.439616i
\(37\) −5.62751 49.9455i −0.152095 1.34988i −0.805376 0.592764i \(-0.798037\pi\)
0.653281 0.757115i \(-0.273392\pi\)
\(38\) −47.0056 37.4857i −1.23699 0.986465i
\(39\) −7.78919 + 2.72556i −0.199723 + 0.0698860i
\(40\) 15.0632 133.690i 0.376581 3.34225i
\(41\) −0.940907 + 0.940907i −0.0229490 + 0.0229490i −0.718488 0.695539i \(-0.755166\pi\)
0.695539 + 0.718488i \(0.255166\pi\)
\(42\) −51.5887 + 41.1406i −1.22830 + 0.979538i
\(43\) −10.2578 + 16.3252i −0.238554 + 0.379657i −0.944448 0.328661i \(-0.893403\pi\)
0.705894 + 0.708318i \(0.250546\pi\)
\(44\) 38.8189 + 24.3915i 0.882247 + 0.554352i
\(45\) 11.2044 + 14.0498i 0.248986 + 0.312219i
\(46\) 43.6934 + 43.6934i 0.949857 + 0.949857i
\(47\) −59.1758 6.66751i −1.25906 0.141862i −0.542899 0.839798i \(-0.682673\pi\)
−0.716160 + 0.697936i \(0.754102\pi\)
\(48\) 43.1429 + 123.295i 0.898810 + 2.56865i
\(49\) 2.57590 3.23008i 0.0525694 0.0659199i
\(50\) −10.1536 + 1.14404i −0.203073 + 0.0228808i
\(51\) 8.92568 + 18.5344i 0.175013 + 0.363419i
\(52\) −8.29691 36.3511i −0.159556 0.699060i
\(53\) −8.89009 + 38.9500i −0.167738 + 0.734906i 0.819161 + 0.573564i \(0.194439\pi\)
−0.986898 + 0.161342i \(0.948418\pi\)
\(54\) −101.268 48.7682i −1.87534 0.903114i
\(55\) 7.45998 21.3194i 0.135636 0.387625i
\(56\) −99.1903 157.860i −1.77125 2.81894i
\(57\) 37.0835i 0.650588i
\(58\) 61.2387 + 92.6968i 1.05584 + 1.59822i
\(59\) 6.74786 0.114371 0.0571853 0.998364i \(-0.481787\pi\)
0.0571853 + 0.998364i \(0.481787\pi\)
\(60\) 112.358 70.5995i 1.87264 1.17666i
\(61\) 74.0694 + 25.9180i 1.21425 + 0.424885i 0.860014 0.510270i \(-0.170454\pi\)
0.354238 + 0.935155i \(0.384740\pi\)
\(62\) 68.1170 141.446i 1.09866 2.28139i
\(63\) 24.2786 + 5.54144i 0.385375 + 0.0879593i
\(64\) −193.284 + 44.1159i −3.02007 + 0.689311i
\(65\) −16.5505 + 7.97030i −0.254623 + 0.122620i
\(66\) 4.35231 + 38.6278i 0.0659441 + 0.585270i
\(67\) 29.6632 + 23.6556i 0.442735 + 0.353069i 0.819343 0.573303i \(-0.194338\pi\)
−0.376609 + 0.926373i \(0.622910\pi\)
\(68\) −87.7319 + 30.6987i −1.29018 + 0.451452i
\(69\) −4.26733 + 37.8736i −0.0618453 + 0.548892i
\(70\) −103.861 + 103.861i −1.48373 + 1.48373i
\(71\) 65.3239 52.0941i 0.920055 0.733719i −0.0441092 0.999027i \(-0.514045\pi\)
0.964164 + 0.265308i \(0.0854735\pi\)
\(72\) 46.4910 73.9901i 0.645709 1.02764i
\(73\) −38.0089 23.8825i −0.520669 0.327158i 0.245926 0.969289i \(-0.420908\pi\)
−0.766595 + 0.642130i \(0.778051\pi\)
\(74\) 120.054 + 150.543i 1.62235 + 2.03436i
\(75\) −4.45647 4.45647i −0.0594196 0.0594196i
\(76\) 166.499 + 18.7600i 2.19078 + 0.246842i
\(77\) −10.3379 29.5439i −0.134258 0.383687i
\(78\) 19.7112 24.7171i 0.252708 0.316886i
\(79\) −120.957 + 13.6286i −1.53111 + 0.172514i −0.836938 0.547298i \(-0.815656\pi\)
−0.694169 + 0.719813i \(0.744228\pi\)
\(80\) 126.162 + 261.978i 1.57703 + 3.27473i
\(81\) −8.58479 37.6124i −0.105985 0.464351i
\(82\) 1.13434 4.96987i 0.0138334 0.0606081i
\(83\) 7.07418 + 3.40675i 0.0852311 + 0.0410451i 0.476014 0.879438i \(-0.342081\pi\)
−0.390783 + 0.920483i \(0.627796\pi\)
\(84\) 60.7349 173.570i 0.723034 2.06631i
\(85\) 24.3631 + 38.7737i 0.286625 + 0.456161i
\(86\) 73.8632i 0.858875i
\(87\) −21.1511 + 65.1797i −0.243116 + 0.749192i
\(88\) −109.832 −1.24809
\(89\) −94.3960 + 59.3130i −1.06063 + 0.666438i −0.945072 0.326863i \(-0.894008\pi\)
−0.115558 + 0.993301i \(0.536866\pi\)
\(90\) −64.9811 22.7379i −0.722012 0.252643i
\(91\) −11.0451 + 22.9353i −0.121374 + 0.252036i
\(92\) −167.888 38.3193i −1.82487 0.416515i
\(93\) 94.4060 21.5475i 1.01512 0.231694i
\(94\) 205.543 98.9845i 2.18663 1.05303i
\(95\) −9.24248 82.0292i −0.0972892 0.863466i
\(96\) −202.238 161.279i −2.10665 1.67999i
\(97\) −13.0335 + 4.56061i −0.134366 + 0.0470166i −0.396624 0.917981i \(-0.629818\pi\)
0.262259 + 0.964998i \(0.415533\pi\)
\(98\) −1.77211 + 15.7279i −0.0180827 + 0.160489i
\(99\) 10.3737 10.3737i 0.104785 0.104785i
\(100\) 22.2633 17.7544i 0.222633 0.177544i
\(101\) −63.8690 + 101.647i −0.632366 + 1.00640i 0.364794 + 0.931088i \(0.381140\pi\)
−0.997160 + 0.0753164i \(0.976003\pi\)
\(102\) −66.7299 41.9291i −0.654214 0.411070i
\(103\) −26.7668 33.5645i −0.259872 0.325869i 0.634729 0.772734i \(-0.281112\pi\)
−0.894601 + 0.446866i \(0.852540\pi\)
\(104\) 63.1625 + 63.1625i 0.607332 + 0.607332i
\(105\) −90.0272 10.1436i −0.857402 0.0966060i
\(106\) −50.5506 144.465i −0.476893 1.36288i
\(107\) 3.07678 3.85816i 0.0287549 0.0360575i −0.767246 0.641353i \(-0.778374\pi\)
0.796001 + 0.605295i \(0.206945\pi\)
\(108\) 311.272 35.0719i 2.88215 0.324740i
\(109\) −91.6589 190.332i −0.840907 1.74616i −0.642883 0.765964i \(-0.722262\pi\)
−0.198024 0.980197i \(-0.563452\pi\)
\(110\) 19.2548 + 84.3606i 0.175043 + 0.766914i
\(111\) −26.4279 + 115.788i −0.238089 + 1.04314i
\(112\) 363.043 + 174.833i 3.24146 + 1.56100i
\(113\) 32.9621 94.2003i 0.291700 0.833631i −0.701015 0.713146i \(-0.747270\pi\)
0.992715 0.120484i \(-0.0384448\pi\)
\(114\) 75.5838 + 120.291i 0.663016 + 1.05518i
\(115\) 84.8404i 0.737743i
\(116\) −281.947 127.939i −2.43058 1.10292i
\(117\) −11.9315 −0.101979
\(118\) −21.8886 + 13.7535i −0.185497 + 0.116555i
\(119\) 59.8973 + 20.9590i 0.503338 + 0.176126i
\(120\) −137.932 + 286.419i −1.14944 + 2.38683i
\(121\) 99.9891 + 22.8219i 0.826356 + 0.188610i
\(122\) −293.092 + 66.8963i −2.40239 + 0.548330i
\(123\) 2.83287 1.36424i 0.0230315 0.0110914i
\(124\) 48.9868 + 434.770i 0.395055 + 3.50621i
\(125\) 91.8416 + 73.2412i 0.734733 + 0.585930i
\(126\) −90.0493 + 31.5096i −0.714677 + 0.250076i
\(127\) 12.5115 111.043i 0.0985161 0.874355i −0.843121 0.537724i \(-0.819284\pi\)
0.941637 0.336630i \(-0.109287\pi\)
\(128\) 227.428 227.428i 1.77678 1.77678i
\(129\) 35.6193 28.4055i 0.276119 0.220198i
\(130\) 37.4412 59.5873i 0.288009 0.458364i
\(131\) 162.714 + 102.240i 1.24209 + 0.780456i 0.982680 0.185311i \(-0.0593293\pi\)
0.259409 + 0.965768i \(0.416472\pi\)
\(132\) −67.5437 84.6972i −0.511695 0.641645i
\(133\) −80.8884 80.8884i −0.608184 0.608184i
\(134\) −144.436 16.2741i −1.07788 0.121448i
\(135\) −50.9702 145.664i −0.377557 1.07900i
\(136\) 138.835 174.093i 1.02084 1.28010i
\(137\) 211.263 23.8036i 1.54206 0.173749i 0.700400 0.713750i \(-0.253005\pi\)
0.841664 + 0.540002i \(0.181576\pi\)
\(138\) −63.3518 131.551i −0.459071 0.953272i
\(139\) −44.5635 195.245i −0.320601 1.40464i −0.836487 0.547986i \(-0.815395\pi\)
0.515887 0.856657i \(-0.327463\pi\)
\(140\) 91.0868 399.077i 0.650620 2.85055i
\(141\) 126.779 + 61.0537i 0.899144 + 0.433005i
\(142\) −105.718 + 302.126i −0.744495 + 2.12764i
\(143\) 7.97868 + 12.6980i 0.0557950 + 0.0887972i
\(144\) 188.864i 1.31156i
\(145\) −30.5414 + 149.450i −0.210631 + 1.03069i
\(146\) 171.970 1.17788
\(147\) −8.26602 + 5.19389i −0.0562315 + 0.0353326i
\(148\) −506.502 177.233i −3.42231 1.19752i
\(149\) −113.849 + 236.410i −0.764087 + 1.58664i 0.0450238 + 0.998986i \(0.485664\pi\)
−0.809110 + 0.587657i \(0.800051\pi\)
\(150\) 23.5390 + 5.37263i 0.156927 + 0.0358175i
\(151\) 126.068 28.7742i 0.834887 0.190558i 0.216353 0.976315i \(-0.430584\pi\)
0.618534 + 0.785758i \(0.287727\pi\)
\(152\) −361.652 + 174.162i −2.37929 + 1.14581i
\(153\) 3.33019 + 29.5563i 0.0217659 + 0.193178i
\(154\) 93.7505 + 74.7635i 0.608769 + 0.485477i
\(155\) 203.457 71.1927i 1.31263 0.459308i
\(156\) −9.86463 + 87.5510i −0.0632348 + 0.561224i
\(157\) −68.2720 + 68.2720i −0.434854 + 0.434854i −0.890276 0.455422i \(-0.849488\pi\)
0.455422 + 0.890276i \(0.349488\pi\)
\(158\) 364.582 290.744i 2.30748 1.84016i
\(159\) 50.2259 79.9341i 0.315886 0.502730i
\(160\) −487.550 306.348i −3.04719 1.91467i
\(161\) 73.3037 + 91.9199i 0.455302 + 0.570931i
\(162\) 104.509 + 104.509i 0.645118 + 0.645118i
\(163\) −91.2607 10.2826i −0.559882 0.0630835i −0.172511 0.985008i \(-0.555188\pi\)
−0.387371 + 0.921924i \(0.626617\pi\)
\(164\) 4.69212 + 13.4093i 0.0286105 + 0.0817641i
\(165\) −33.2768 + 41.7277i −0.201677 + 0.252895i
\(166\) −29.8908 + 3.36788i −0.180065 + 0.0202885i
\(167\) −49.7396 103.285i −0.297842 0.618475i 0.697316 0.716764i \(-0.254377\pi\)
−0.995158 + 0.0982887i \(0.968663\pi\)
\(168\) 98.0296 + 429.496i 0.583509 + 2.55652i
\(169\) −34.8920 + 152.872i −0.206462 + 0.904568i
\(170\) −158.058 76.1165i −0.929751 0.447744i
\(171\) 17.7085 50.6081i 0.103559 0.295954i
\(172\) 109.517 + 174.296i 0.636728 + 1.01335i
\(173\) 85.8359i 0.496161i −0.968739 0.248081i \(-0.920200\pi\)
0.968739 0.248081i \(-0.0797998\pi\)
\(174\) −64.2401 254.539i −0.369196 1.46287i
\(175\) −19.4414 −0.111093
\(176\) 200.997 126.295i 1.14203 0.717584i
\(177\) −15.0501 5.26626i −0.0850288 0.0297529i
\(178\) 185.309 384.797i 1.04106 2.16178i
\(179\) −82.0781 18.7338i −0.458537 0.104658i −0.0129880 0.999916i \(-0.504134\pi\)
−0.445549 + 0.895258i \(0.646991\pi\)
\(180\) 187.050 42.6929i 1.03917 0.237183i
\(181\) −34.3159 + 16.5257i −0.189591 + 0.0913021i −0.526271 0.850317i \(-0.676410\pi\)
0.336680 + 0.941619i \(0.390696\pi\)
\(182\) −10.9191 96.9094i −0.0599949 0.532469i
\(183\) −144.974 115.613i −0.792205 0.631762i
\(184\) 389.399 136.256i 2.11630 0.740524i
\(185\) −29.6005 + 262.712i −0.160003 + 1.42006i
\(186\) −262.315 + 262.315i −1.41029 + 1.41029i
\(187\) 29.2281 23.3086i 0.156300 0.124645i
\(188\) −338.258 + 538.334i −1.79924 + 2.86348i
\(189\) −181.080 113.780i −0.958095 0.602011i
\(190\) 197.173 + 247.247i 1.03775 + 1.30130i
\(191\) −189.648 189.648i −0.992922 0.992922i 0.00705344 0.999975i \(-0.497755\pi\)
−0.999975 + 0.00705344i \(0.997755\pi\)
\(192\) 465.521 + 52.4517i 2.42459 + 0.273186i
\(193\) 58.8988 + 168.323i 0.305175 + 0.872141i 0.989701 + 0.143152i \(0.0457237\pi\)
−0.684525 + 0.728989i \(0.739991\pi\)
\(194\) 32.9823 41.3585i 0.170012 0.213188i
\(195\) 43.1337 4.86000i 0.221199 0.0249231i
\(196\) −19.1381 39.7408i −0.0976436 0.202759i
\(197\) −32.7329 143.412i −0.166157 0.727980i −0.987509 0.157560i \(-0.949637\pi\)
0.821353 0.570421i \(-0.193220\pi\)
\(198\) −12.5064 + 54.7940i −0.0631635 + 0.276737i
\(199\) −192.699 92.7988i −0.968335 0.466326i −0.118257 0.992983i \(-0.537731\pi\)
−0.850078 + 0.526657i \(0.823445\pi\)
\(200\) −22.5314 + 64.3909i −0.112657 + 0.321955i
\(201\) −47.6978 75.9105i −0.237302 0.377664i
\(202\) 459.899i 2.27673i
\(203\) 96.0375 + 188.309i 0.473091 + 0.927631i
\(204\) 219.631 1.07662
\(205\) 5.92633 3.72376i 0.0289089 0.0181647i
\(206\) 155.237 + 54.3198i 0.753578 + 0.263688i
\(207\) −23.9095 + 49.6485i −0.115505 + 0.239848i
\(208\) −188.220 42.9599i −0.904901 0.206538i
\(209\) −65.7011 + 14.9958i −0.314359 + 0.0717504i
\(210\) 312.704 150.590i 1.48907 0.717096i
\(211\) −1.09661 9.73273i −0.00519723 0.0461267i 0.990846 0.134998i \(-0.0431027\pi\)
−0.996043 + 0.0888710i \(0.971674\pi\)
\(212\) 333.484 + 265.945i 1.57304 + 1.25446i
\(213\) −186.351 + 65.2071i −0.874888 + 0.306137i
\(214\) −2.11669 + 18.7861i −0.00989107 + 0.0877857i
\(215\) 71.7109 71.7109i 0.333539 0.333539i
\(216\) −586.707 + 467.883i −2.71624 + 2.16613i
\(217\) 158.923 252.924i 0.732362 1.16555i
\(218\) 685.257 + 430.576i 3.14338 + 1.97512i
\(219\) 66.1344 + 82.9299i 0.301983 + 0.378675i
\(220\) −170.517 170.517i −0.775078 0.775078i
\(221\) −30.2129 3.40418i −0.136710 0.0154035i
\(222\) −150.274 429.457i −0.676908 1.93449i
\(223\) −200.825 + 251.827i −0.900562 + 1.12927i 0.0905034 + 0.995896i \(0.471152\pi\)
−0.991066 + 0.133373i \(0.957419\pi\)
\(224\) −792.923 + 89.3410i −3.53984 + 0.398844i
\(225\) −3.95367 8.20987i −0.0175719 0.0364883i
\(226\) 85.0776 + 372.749i 0.376449 + 1.64933i
\(227\) −57.8450 + 253.436i −0.254824 + 1.11646i 0.671879 + 0.740661i \(0.265488\pi\)
−0.926703 + 0.375796i \(0.877370\pi\)
\(228\) −356.711 171.783i −1.56452 0.753435i
\(229\) 96.5555 275.940i 0.421640 1.20498i −0.515764 0.856731i \(-0.672492\pi\)
0.937403 0.348246i \(-0.113223\pi\)
\(230\) −172.922 275.204i −0.751836 1.19654i
\(231\) 73.9614i 0.320179i
\(232\) 734.993 99.8431i 3.16807 0.430358i
\(233\) −8.24553 −0.0353885 −0.0176943 0.999843i \(-0.505633\pi\)
−0.0176943 + 0.999843i \(0.505633\pi\)
\(234\) 38.7032 24.3189i 0.165398 0.103927i
\(235\) 295.654 + 103.454i 1.25810 + 0.440229i
\(236\) 31.2584 64.9086i 0.132451 0.275037i
\(237\) 280.414 + 64.0026i 1.18318 + 0.270053i
\(238\) −237.013 + 54.0966i −0.995851 + 0.227297i
\(239\) −144.107 + 69.3984i −0.602959 + 0.290370i −0.710352 0.703847i \(-0.751464\pi\)
0.107392 + 0.994217i \(0.465750\pi\)
\(240\) −76.9291 682.765i −0.320538 2.84485i
\(241\) −85.1309 67.8896i −0.353240 0.281700i 0.430752 0.902470i \(-0.358248\pi\)
−0.783992 + 0.620771i \(0.786820\pi\)
\(242\) −370.859 + 129.769i −1.53248 + 0.536236i
\(243\) 19.3579 171.806i 0.0796622 0.707022i
\(244\) 592.423 592.423i 2.42796 2.42796i
\(245\) −16.9901 + 13.5491i −0.0693472 + 0.0553026i
\(246\) −6.40863 + 10.1993i −0.0260513 + 0.0414605i
\(247\) 46.4073 + 29.1597i 0.187884 + 0.118055i
\(248\) −653.517 819.484i −2.63515 3.30437i
\(249\) −13.1192 13.1192i −0.0526874 0.0526874i
\(250\) −447.195 50.3868i −1.78878 0.201547i
\(251\) 3.89158 + 11.1215i 0.0155043 + 0.0443088i 0.951375 0.308034i \(-0.0996709\pi\)
−0.935871 + 0.352342i \(0.885385\pi\)
\(252\) 165.771 207.870i 0.657820 0.824880i
\(253\) 68.8265 7.75488i 0.272041 0.0306517i
\(254\) 185.744 + 385.701i 0.731275 + 1.51851i
\(255\) −24.0780 105.493i −0.0944237 0.413697i
\(256\) −97.7195 + 428.137i −0.381717 + 1.67241i
\(257\) 63.5682 + 30.6128i 0.247347 + 0.119116i 0.553450 0.832882i \(-0.313311\pi\)
−0.306103 + 0.951998i \(0.599025\pi\)
\(258\) −57.6453 + 164.741i −0.223432 + 0.638531i
\(259\) 194.917 + 310.209i 0.752575 + 1.19772i
\(260\) 196.123i 0.754318i
\(261\) −59.9903 + 78.8509i −0.229848 + 0.302111i
\(262\) −736.194 −2.80990
\(263\) −50.8493 + 31.9507i −0.193343 + 0.121486i −0.625225 0.780445i \(-0.714993\pi\)
0.431881 + 0.901930i \(0.357850\pi\)
\(264\) 244.964 + 85.7168i 0.927895 + 0.324685i
\(265\) 91.1782 189.333i 0.344069 0.714466i
\(266\) 427.252 + 97.5175i 1.60621 + 0.366607i
\(267\) 256.826 58.6189i 0.961896 0.219546i
\(268\) 364.957 175.754i 1.36178 0.655798i
\(269\) −18.2957 162.379i −0.0680138 0.603640i −0.980774 0.195145i \(-0.937482\pi\)
0.912761 0.408495i \(-0.133946\pi\)
\(270\) 462.230 + 368.616i 1.71196 + 1.36525i
\(271\) −198.079 + 69.3110i −0.730920 + 0.255760i −0.669978 0.742381i \(-0.733696\pi\)
−0.0609426 + 0.998141i \(0.519411\pi\)
\(272\) −53.8848 + 478.241i −0.198106 + 1.75824i
\(273\) 42.5338 42.5338i 0.155802 0.155802i
\(274\) −636.775 + 507.811i −2.32400 + 1.85332i
\(275\) −6.09344 + 9.69766i −0.0221580 + 0.0352642i
\(276\) 344.543 + 216.491i 1.24835 + 0.784388i
\(277\) 35.9969 + 45.1387i 0.129953 + 0.162956i 0.842551 0.538617i \(-0.181053\pi\)
−0.712598 + 0.701573i \(0.752482\pi\)
\(278\) 542.505 + 542.505i 1.95146 + 1.95146i
\(279\) 139.126 + 15.6757i 0.498660 + 0.0561855i
\(280\) 323.888 + 925.618i 1.15674 + 3.30578i
\(281\) 176.539 221.372i 0.628251 0.787802i −0.361228 0.932478i \(-0.617642\pi\)
0.989479 + 0.144675i \(0.0462138\pi\)
\(282\) −535.685 + 60.3572i −1.89959 + 0.214033i
\(283\) 96.2836 + 199.935i 0.340225 + 0.706484i 0.998946 0.0459032i \(-0.0146166\pi\)
−0.658721 + 0.752387i \(0.728902\pi\)
\(284\) −198.498 869.677i −0.698937 3.06224i
\(285\) −43.4044 + 190.167i −0.152296 + 0.667253i
\(286\) −51.7623 24.9274i −0.180987 0.0871588i
\(287\) 3.20345 9.15495i 0.0111619 0.0318988i
\(288\) −198.980 316.674i −0.690901 1.09956i
\(289\) 213.208i 0.737742i
\(290\) −205.540 547.034i −0.708759 1.88632i
\(291\) 32.6284 0.112125
\(292\) −405.799 + 254.981i −1.38972 + 0.873221i
\(293\) 23.2034 + 8.11923i 0.0791926 + 0.0277107i 0.369585 0.929197i \(-0.379500\pi\)
−0.290392 + 0.956908i \(0.593786\pi\)
\(294\) 16.2270 33.6957i 0.0551939 0.114611i
\(295\) −34.6036 7.89804i −0.117300 0.0267730i
\(296\) 1253.33 286.064i 4.23421 0.966431i
\(297\) −113.511 + 54.6639i −0.382191 + 0.184053i
\(298\) −112.550 998.910i −0.377685 3.35205i
\(299\) −44.0406 35.1212i −0.147293 0.117462i
\(300\) −63.5112 + 22.2235i −0.211704 + 0.0740785i
\(301\) 15.7353 139.654i 0.0522766 0.463968i
\(302\) −350.290 + 350.290i −1.15990 + 1.15990i
\(303\) 221.779 176.863i 0.731943 0.583705i
\(304\) 461.569 734.583i 1.51832 2.41639i
\(305\) −349.498 219.604i −1.14590 0.720014i
\(306\) −71.0442 89.0866i −0.232171 0.291133i
\(307\) −96.2745 96.2745i −0.313598 0.313598i 0.532704 0.846302i \(-0.321176\pi\)
−0.846302 + 0.532704i \(0.821176\pi\)
\(308\) −332.076 37.4160i −1.07817 0.121480i
\(309\) 33.5045 + 95.7503i 0.108429 + 0.309871i
\(310\) −514.866 + 645.621i −1.66086 + 2.08265i
\(311\) −305.576 + 34.4302i −0.982561 + 0.110708i −0.588604 0.808421i \(-0.700322\pi\)
−0.393956 + 0.919129i \(0.628894\pi\)
\(312\) −91.5805 190.169i −0.293527 0.609515i
\(313\) 77.7372 + 340.589i 0.248362 + 1.08814i 0.933174 + 0.359424i \(0.117027\pi\)
−0.684813 + 0.728719i \(0.740116\pi\)
\(314\) 82.3074 360.612i 0.262126 1.14845i
\(315\) −118.017 56.8339i −0.374656 0.180425i
\(316\) −429.219 + 1226.64i −1.35829 + 3.88177i
\(317\) −158.784 252.704i −0.500896 0.797172i 0.496593 0.867983i \(-0.334584\pi\)
−0.997490 + 0.0708112i \(0.977441\pi\)
\(318\) 361.660i 1.13730i
\(319\) 124.032 + 11.1161i 0.388816 + 0.0348466i
\(320\) 1042.81 3.25879
\(321\) −9.87333 + 6.20382i −0.0307580 + 0.0193266i
\(322\) −425.133 148.761i −1.32029 0.461989i
\(323\) 59.2805 123.097i 0.183531 0.381106i
\(324\) −401.567 91.6551i −1.23940 0.282886i
\(325\) 9.08118 2.07272i 0.0279421 0.00637760i
\(326\) 316.988 152.654i 0.972357 0.468262i
\(327\) 55.8903 + 496.040i 0.170918 + 1.51694i
\(328\) −26.6091 21.2201i −0.0811254 0.0646953i
\(329\) 409.711 143.364i 1.24532 0.435757i
\(330\) 22.8930 203.181i 0.0693727 0.615699i
\(331\) −26.9231 + 26.9231i −0.0813386 + 0.0813386i −0.746606 0.665267i \(-0.768318\pi\)
0.665267 + 0.746606i \(0.268318\pi\)
\(332\) 65.5400 52.2664i 0.197410 0.157429i
\(333\) −91.3587 + 145.397i −0.274350 + 0.436626i
\(334\) 371.862 + 233.656i 1.11336 + 0.699569i
\(335\) −124.428 156.027i −0.371426 0.465753i
\(336\) −673.269 673.269i −2.00378 2.00378i
\(337\) 68.6759 + 7.73791i 0.203786 + 0.0229612i 0.213267 0.976994i \(-0.431589\pi\)
−0.00948132 + 0.999955i \(0.503018\pi\)
\(338\) −198.402 567.002i −0.586989 1.67752i
\(339\) −147.034 + 184.375i −0.433729 + 0.543879i
\(340\) 485.828 54.7397i 1.42891 0.160999i
\(341\) −76.3519 158.546i −0.223906 0.464945i
\(342\) 45.7070 + 200.256i 0.133646 + 0.585542i
\(343\) 72.7761 318.853i 0.212175 0.929601i
\(344\) −444.307 213.967i −1.29159 0.621997i
\(345\) 66.2123 189.224i 0.191920 0.548475i
\(346\) 174.951 + 278.433i 0.505639 + 0.804720i
\(347\) 255.048i 0.735009i 0.930022 + 0.367505i \(0.119788\pi\)
−0.930022 + 0.367505i \(0.880212\pi\)
\(348\) 528.994 + 505.389i 1.52010 + 1.45227i
\(349\) 402.926 1.15451 0.577257 0.816562i \(-0.304123\pi\)
0.577257 + 0.816562i \(0.304123\pi\)
\(350\) 63.0636 39.6255i 0.180182 0.113216i
\(351\) 96.7141 + 33.8417i 0.275539 + 0.0964152i
\(352\) −203.959 + 423.525i −0.579428 + 1.20320i
\(353\) −630.205 143.840i −1.78528 0.407479i −0.803167 0.595754i \(-0.796853\pi\)
−0.982116 + 0.188274i \(0.939711\pi\)
\(354\) 59.5531 13.5926i 0.168229 0.0383972i
\(355\) −395.960 + 190.684i −1.11538 + 0.537138i
\(356\) 133.266 + 1182.77i 0.374342 + 3.32238i
\(357\) −117.235 93.4917i −0.328389 0.261881i
\(358\) 304.427 106.524i 0.850356 0.297552i
\(359\) −1.72924 + 15.3474i −0.00481682 + 0.0427505i −0.995891 0.0905633i \(-0.971133\pi\)
0.991074 + 0.133314i \(0.0425618\pi\)
\(360\) −325.012 + 325.012i −0.902810 + 0.902810i
\(361\) 89.6819 71.5189i 0.248426 0.198113i
\(362\) 77.6308 123.549i 0.214450 0.341295i
\(363\) −205.200 128.936i −0.565289 0.355195i
\(364\) 169.454 + 212.488i 0.465532 + 0.583758i
\(365\) 166.959 + 166.959i 0.457422 + 0.457422i
\(366\) 705.906 + 79.5365i 1.92870 + 0.217313i
\(367\) 218.637 + 624.829i 0.595741 + 1.70253i 0.705624 + 0.708586i \(0.250667\pi\)
−0.109883 + 0.993945i \(0.535048\pi\)
\(368\) −555.934 + 697.119i −1.51069 + 1.89434i
\(369\) 4.51750 0.509000i 0.0122426 0.00137940i
\(370\) −439.443 912.512i −1.18768 2.46625i
\(371\) −64.8010 283.912i −0.174666 0.765261i
\(372\) 230.051 1007.92i 0.618417 2.70946i
\(373\) 398.567 + 191.940i 1.06854 + 0.514584i 0.883637 0.468173i \(-0.155087\pi\)
0.184907 + 0.982756i \(0.440802\pi\)
\(374\) −47.3019 + 135.181i −0.126476 + 0.361447i
\(375\) −147.679 235.030i −0.393811 0.626746i
\(376\) 1523.14i 4.05090i
\(377\) −64.9361 77.7214i −0.172244 0.206158i
\(378\) 819.292 2.16744
\(379\) −78.5862 + 49.3790i −0.207352 + 0.130288i −0.631705 0.775209i \(-0.717644\pi\)
0.424353 + 0.905497i \(0.360502\pi\)
\(380\) −831.865 291.082i −2.18912 0.766006i
\(381\) −114.567 + 237.901i −0.300700 + 0.624411i
\(382\) 1001.72 + 228.636i 2.62230 + 0.598524i
\(383\) 52.6752 12.0228i 0.137533 0.0313911i −0.153200 0.988195i \(-0.548958\pi\)
0.290733 + 0.956804i \(0.406101\pi\)
\(384\) −684.737 + 329.752i −1.78317 + 0.858729i
\(385\) 18.4337 + 163.604i 0.0478798 + 0.424945i
\(386\) −534.133 425.957i −1.38376 1.10351i
\(387\) 62.1745 21.7558i 0.160658 0.0562165i
\(388\) −16.5062 + 146.497i −0.0425419 + 0.377570i
\(389\) −220.798 + 220.798i −0.567605 + 0.567605i −0.931457 0.363852i \(-0.881461\pi\)
0.363852 + 0.931457i \(0.381461\pi\)
\(390\) −130.011 + 103.680i −0.333361 + 0.265847i
\(391\) −74.7087 + 118.898i −0.191071 + 0.304088i
\(392\) 89.4741 + 56.2203i 0.228250 + 0.143419i
\(393\) −283.117 355.018i −0.720400 0.903353i
\(394\) 398.482 + 398.482i 1.01138 + 1.01138i
\(395\) 636.231 + 71.6860i 1.61071 + 0.181484i
\(396\) −51.7318 147.841i −0.130636 0.373336i
\(397\) 487.205 610.936i 1.22722 1.53888i 0.474965 0.880005i \(-0.342461\pi\)
0.752251 0.658876i \(-0.228968\pi\)
\(398\) 814.217 91.7402i 2.04577 0.230503i
\(399\) 117.282 + 243.538i 0.293939 + 0.610370i
\(400\) −32.8091 143.746i −0.0820228 0.359366i
\(401\) −28.0626 + 122.950i −0.0699815 + 0.306609i −0.997790 0.0664482i \(-0.978833\pi\)
0.927808 + 0.373057i \(0.121690\pi\)
\(402\) 309.443 + 149.020i 0.769758 + 0.370696i
\(403\) −47.2685 + 135.086i −0.117292 + 0.335200i
\(404\) 681.893 + 1085.23i 1.68785 + 2.68621i
\(405\) 202.928i 0.501056i
\(406\) −695.338 415.090i −1.71266 1.02239i
\(407\) 215.829 0.530293
\(408\) −445.518 + 279.938i −1.09196 + 0.686121i
\(409\) −115.947 40.5715i −0.283488 0.0991968i 0.184790 0.982778i \(-0.440840\pi\)
−0.468278 + 0.883581i \(0.655125\pi\)
\(410\) −11.6340 + 24.1582i −0.0283755 + 0.0589224i
\(411\) −489.767 111.786i −1.19165 0.271986i
\(412\) −446.854 + 101.992i −1.08460 + 0.247552i
\(413\) −44.3151 + 21.3410i −0.107300 + 0.0516732i
\(414\) −23.6367 209.782i −0.0570935 0.506719i
\(415\) −32.2896 25.7501i −0.0778061 0.0620483i
\(416\) 360.854 126.268i 0.867439 0.303530i
\(417\) −52.9839 + 470.245i −0.127060 + 1.12769i
\(418\) 182.556 182.556i 0.436736 0.436736i
\(419\) −209.191 + 166.825i −0.499263 + 0.398149i −0.840486 0.541833i \(-0.817730\pi\)
0.341223 + 0.939983i \(0.389159\pi\)
\(420\) −514.609 + 818.996i −1.22526 + 1.94999i
\(421\) −301.780 189.621i −0.716818 0.450407i 0.123609 0.992331i \(-0.460553\pi\)
−0.840427 + 0.541924i \(0.817696\pi\)
\(422\) 23.3945 + 29.3358i 0.0554372 + 0.0695160i
\(423\) 143.861 + 143.861i 0.340098 + 0.340098i
\(424\) −1015.43 114.412i −2.39489 0.269839i
\(425\) −7.66911 21.9170i −0.0180450 0.0515695i
\(426\) 471.578 591.340i 1.10699 1.38812i
\(427\) −568.404 + 64.0437i −1.33116 + 0.149985i
\(428\) −22.8595 47.4682i −0.0534100 0.110907i
\(429\) −7.88532 34.5478i −0.0183807 0.0805311i
\(430\) −86.4533 + 378.777i −0.201054 + 0.880876i
\(431\) 124.980 + 60.1870i 0.289976 + 0.139645i 0.573217 0.819404i \(-0.305695\pi\)
−0.283241 + 0.959049i \(0.591410\pi\)
\(432\) 535.682 1530.89i 1.24000 3.54373i
\(433\) 107.372 + 170.882i 0.247973 + 0.394647i 0.947397 0.320060i \(-0.103703\pi\)
−0.699424 + 0.714707i \(0.746560\pi\)
\(434\) 1144.35i 2.63675i
\(435\) 184.754 309.490i 0.424722 0.711472i
\(436\) −2255.42 −5.17298
\(437\) 214.333 134.674i 0.490464 0.308179i
\(438\) −383.554 134.211i −0.875694 0.306419i
\(439\) 70.9416 147.312i 0.161598 0.335562i −0.804410 0.594075i \(-0.797518\pi\)
0.966008 + 0.258513i \(0.0832325\pi\)
\(440\) 563.228 + 128.553i 1.28006 + 0.292166i
\(441\) −13.7609 + 3.14085i −0.0312040 + 0.00712210i
\(442\) 104.943 50.5377i 0.237427 0.114339i
\(443\) −71.6573 635.976i −0.161755 1.43561i −0.768059 0.640379i \(-0.778777\pi\)
0.606304 0.795233i \(-0.292651\pi\)
\(444\) 991.359 + 790.582i 2.23279 + 1.78059i
\(445\) 553.493 193.676i 1.24381 0.435226i
\(446\) 138.159 1226.20i 0.309774 2.74932i
\(447\) 438.425 438.425i 0.980817 0.980817i
\(448\) 1129.83 901.009i 2.52194 2.01118i
\(449\) −149.510 + 237.943i −0.332984 + 0.529941i −0.970689 0.240340i \(-0.922741\pi\)
0.637705 + 0.770281i \(0.279884\pi\)
\(450\) 29.5583 + 18.5727i 0.0656851 + 0.0412727i
\(451\) −3.56259 4.46734i −0.00789931 0.00990542i
\(452\) −753.434 753.434i −1.66689 1.66689i
\(453\) −303.632 34.2111i −0.670270 0.0755212i
\(454\) −328.917 939.992i −0.724487 2.07047i
\(455\) 83.4846 104.686i 0.183483 0.230080i
\(456\) 942.533 106.198i 2.06696 0.232890i
\(457\) 209.594 + 435.225i 0.458629 + 0.952353i 0.994168 + 0.107843i \(0.0343943\pi\)
−0.535539 + 0.844511i \(0.679891\pi\)
\(458\) 249.217 + 1091.89i 0.544141 + 2.38404i
\(459\) 56.8377 249.022i 0.123829 0.542532i
\(460\) 816.092 + 393.009i 1.77411 + 0.854368i
\(461\) −107.774 + 308.000i −0.233783 + 0.668114i 0.765901 + 0.642959i \(0.222293\pi\)
−0.999684 + 0.0251545i \(0.991992\pi\)
\(462\) −150.749 239.915i −0.326296 0.519296i
\(463\) 332.607i 0.718374i 0.933266 + 0.359187i \(0.116946\pi\)
−0.933266 + 0.359187i \(0.883054\pi\)
\(464\) −1230.25 + 1027.88i −2.65141 + 2.21525i
\(465\) −509.342 −1.09536
\(466\) 26.7467 16.8061i 0.0573965 0.0360646i
\(467\) −182.053 63.7030i −0.389835 0.136409i 0.128243 0.991743i \(-0.459066\pi\)
−0.518077 + 0.855334i \(0.673352\pi\)
\(468\) −55.2707 + 114.771i −0.118100 + 0.245237i
\(469\) −269.621 61.5392i −0.574884 0.131214i
\(470\) −1169.90 + 267.022i −2.48915 + 0.568132i
\(471\) 205.552 98.9888i 0.436417 0.210167i
\(472\) 19.3242 + 171.507i 0.0409411 + 0.363363i
\(473\) −64.7299 51.6204i −0.136850 0.109134i
\(474\) −1040.05 + 363.930i −2.19420 + 0.767785i
\(475\) −4.68659 + 41.5946i −0.00986650 + 0.0875676i
\(476\) 479.071 479.071i 1.00645 1.00645i
\(477\) 106.715 85.1021i 0.223721 0.178411i
\(478\) 326.005 518.834i 0.682019 1.08543i
\(479\) 149.906 + 94.1921i 0.312956 + 0.196643i 0.679346 0.733818i \(-0.262264\pi\)
−0.366390 + 0.930461i \(0.619406\pi\)
\(480\) 848.323 + 1063.76i 1.76734 + 2.21617i
\(481\) −124.120 124.120i −0.258045 0.258045i
\(482\) 414.520 + 46.7052i 0.859999 + 0.0968987i
\(483\) −91.7555 262.222i −0.189970 0.542903i
\(484\) 682.710 856.091i 1.41056 1.76878i
\(485\) 72.1746 8.13213i 0.148814 0.0167673i
\(486\) 287.384 + 596.759i 0.591325 + 1.22790i
\(487\) 10.4608 + 45.8320i 0.0214802 + 0.0941108i 0.984532 0.175206i \(-0.0560592\pi\)
−0.963052 + 0.269317i \(0.913202\pi\)
\(488\) −446.629 + 1956.81i −0.915223 + 4.00986i
\(489\) 195.519 + 94.1567i 0.399833 + 0.192550i
\(490\) 27.4963 78.5798i 0.0561148 0.160367i
\(491\) −308.602 491.137i −0.628517 1.00028i −0.997488 0.0708376i \(-0.977433\pi\)
0.368971 0.929441i \(-0.379710\pi\)
\(492\) 33.5694i 0.0682304i
\(493\) −174.404 + 182.550i −0.353761 + 0.370284i
\(494\) −209.969 −0.425038
\(495\) −65.3393 + 41.0554i −0.131999 + 0.0829402i
\(496\) 2138.27 + 748.214i 4.31104 + 1.50850i
\(497\) −264.246 + 548.712i −0.531681 + 1.10405i
\(498\) 69.2954 + 15.8162i 0.139147 + 0.0317595i
\(499\) −927.838 + 211.773i −1.85939 + 0.424395i −0.996689 0.0813113i \(-0.974089\pi\)
−0.862706 + 0.505706i \(0.831232\pi\)
\(500\) 1129.96 544.159i 2.25992 1.08832i
\(501\) 30.3294 + 269.181i 0.0605378 + 0.537288i
\(502\) −35.2914 28.1439i −0.0703016 0.0560636i
\(503\) −199.435 + 69.7852i −0.396490 + 0.138738i −0.521157 0.853461i \(-0.674499\pi\)
0.124667 + 0.992199i \(0.460214\pi\)
\(504\) −71.3161 + 632.948i −0.141500 + 1.25585i
\(505\) 446.498 446.498i 0.884154 0.884154i
\(506\) −207.452 + 165.438i −0.409985 + 0.326952i
\(507\) 197.128 313.727i 0.388813 0.618792i
\(508\) −1010.18 634.739i −1.98855 1.24949i
\(509\) 41.2535 + 51.7302i 0.0810481 + 0.101631i 0.820702 0.571356i \(-0.193582\pi\)
−0.739654 + 0.672987i \(0.765011\pi\)
\(510\) 293.120 + 293.120i 0.574745 + 0.574745i
\(511\) 325.147 + 36.6352i 0.636295 + 0.0716932i
\(512\) −130.737 373.625i −0.255346 0.729737i
\(513\) −287.083 + 359.991i −0.559616 + 0.701737i
\(514\) −268.597 + 30.2636i −0.522562 + 0.0588786i
\(515\) 97.9766 + 203.451i 0.190246 + 0.395050i
\(516\) −108.236 474.211i −0.209759 0.919014i
\(517\) 56.9021 249.305i 0.110062 0.482214i
\(518\) −1264.54 608.970i −2.44119 1.17562i
\(519\) −66.9892 + 191.444i −0.129074 + 0.368871i
\(520\) −249.974 397.831i −0.480719 0.765060i
\(521\) 926.186i 1.77771i −0.458190 0.888854i \(-0.651502\pi\)
0.458190 0.888854i \(-0.348498\pi\)
\(522\) 33.8816 378.048i 0.0649072 0.724230i
\(523\) 711.936 1.36125 0.680627 0.732630i \(-0.261707\pi\)
0.680627 + 0.732630i \(0.261707\pi\)
\(524\) 1737.20 1091.56i 3.31527 2.08312i
\(525\) 43.3610 + 15.1727i 0.0825925 + 0.0289004i
\(526\) 99.8221 207.283i 0.189776 0.394074i
\(527\) 347.822 + 79.3882i 0.660004 + 0.150642i
\(528\) −546.858 + 124.817i −1.03572 + 0.236396i
\(529\) 242.216 116.645i 0.457875 0.220501i
\(530\) 90.1381 + 799.997i 0.170072 + 1.50943i
\(531\) −18.0242 14.3738i −0.0339438 0.0270693i
\(532\) −1152.78 + 403.375i −2.16688 + 0.758224i
\(533\) −0.520309 + 4.61787i −0.000976189 + 0.00866392i
\(534\) −713.612 + 713.612i −1.33635 + 1.33635i
\(535\) −20.2937 + 16.1837i −0.0379322 + 0.0302499i
\(536\) −516.296 + 821.680i −0.963238 + 1.53298i
\(537\) 168.443 + 105.839i 0.313673 + 0.197094i
\(538\) 390.309 + 489.433i 0.725482 + 0.909726i
\(539\) 12.5447 + 12.5447i 0.0232740 + 0.0232740i
\(540\) −1637.28 184.477i −3.03199 0.341624i
\(541\) 51.9016 + 148.326i 0.0959364 + 0.274170i 0.981844 0.189692i \(-0.0607489\pi\)
−0.885907 + 0.463862i \(0.846463\pi\)
\(542\) 501.257 628.557i 0.924829 1.15970i
\(543\) 89.4338 10.0768i 0.164703 0.0185576i
\(544\) −413.505 858.652i −0.760120 1.57841i
\(545\) 247.260 + 1083.32i 0.453689 + 1.98774i
\(546\) −51.2780 + 224.664i −0.0939157 + 0.411472i
\(547\) 249.900 + 120.346i 0.456856 + 0.220010i 0.648135 0.761525i \(-0.275549\pi\)
−0.191279 + 0.981536i \(0.561263\pi\)
\(548\) 749.670 2142.43i 1.36801 3.90955i
\(549\) −142.638 227.007i −0.259814 0.413491i
\(550\) 43.8768i 0.0797761i
\(551\) 426.037 160.077i 0.773207 0.290521i
\(552\) −974.835 −1.76600
\(553\) 751.259 472.047i 1.35851 0.853611i
\(554\) −208.768 73.0512i −0.376838 0.131861i
\(555\) 271.048 562.838i 0.488375 1.01412i
\(556\) −2084.53 475.780i −3.74915 0.855719i
\(557\) 114.217 26.0694i 0.205058 0.0468032i −0.118758 0.992923i \(-0.537891\pi\)
0.323816 + 0.946120i \(0.395034\pi\)
\(558\) −483.246 + 232.719i −0.866032 + 0.417059i
\(559\) 7.53906 + 66.9110i 0.0134867 + 0.119698i
\(560\) −1657.08 1321.48i −2.95908 2.35979i
\(561\) −83.3797 + 29.1758i −0.148627 + 0.0520068i
\(562\) −121.451 + 1077.91i −0.216105 + 1.91798i
\(563\) 544.911 544.911i 0.967871 0.967871i −0.0316292 0.999500i \(-0.510070\pi\)
0.999500 + 0.0316292i \(0.0100696\pi\)
\(564\) 1174.57 936.687i 2.08257 1.66079i
\(565\) −279.289 + 444.486i −0.494317 + 0.786701i
\(566\) −719.832 452.301i −1.27179 0.799118i
\(567\) 175.333 + 219.861i 0.309230 + 0.387762i
\(568\) 1511.12 + 1511.12i 2.66042 + 2.66042i
\(569\) 877.995 + 98.9262i 1.54305 + 0.173860i 0.842088 0.539340i \(-0.181326\pi\)
0.700960 + 0.713200i \(0.252755\pi\)
\(570\) −246.805 705.329i −0.432992 1.23742i
\(571\) −118.851 + 149.035i −0.208146 + 0.261007i −0.874936 0.484239i \(-0.839096\pi\)
0.666790 + 0.745246i \(0.267668\pi\)
\(572\) 159.104 17.9267i 0.278153 0.0313404i
\(573\) 274.974 + 570.989i 0.479885 + 0.996491i
\(574\) 8.26835 + 36.2260i 0.0144048 + 0.0631115i
\(575\) 9.57287 41.9415i 0.0166485 0.0729417i
\(576\) 610.253 + 293.882i 1.05947 + 0.510212i
\(577\) 105.425 301.288i 0.182713 0.522163i −0.815701 0.578474i \(-0.803648\pi\)
0.998413 + 0.0563115i \(0.0179340\pi\)
\(578\) 434.561 + 691.600i 0.751836 + 1.19654i
\(579\) 421.386i 0.727783i
\(580\) 1296.10 + 986.085i 2.23466 + 1.70015i
\(581\) −57.2324 −0.0985068
\(582\) −105.840 + 66.5035i −0.181855 + 0.114267i
\(583\) −161.930 56.6618i −0.277753 0.0971901i
\(584\) 498.163 1034.45i 0.853019 1.77131i
\(585\) 61.1857 + 13.9652i 0.104591 + 0.0238722i
\(586\) −91.8156 + 20.9563i −0.156682 + 0.0357616i
\(587\) −927.516 + 446.668i −1.58009 + 0.760934i −0.998614 0.0526268i \(-0.983241\pi\)
−0.581481 + 0.813560i \(0.697526\pi\)
\(588\) 11.6697 + 103.572i 0.0198465 + 0.176143i
\(589\) −502.818 400.984i −0.853681 0.680788i
\(590\) 128.345 44.9097i 0.217533 0.0761181i
\(591\) −38.9178 + 345.405i −0.0658508 + 0.584442i
\(592\) −1964.69 + 1964.69i −3.31873 + 3.31873i
\(593\) −720.843 + 574.853i −1.21559 + 0.969398i −0.999975 0.00708137i \(-0.997746\pi\)
−0.215612 + 0.976479i \(0.569174\pi\)
\(594\) 256.788 408.676i 0.432303 0.688007i
\(595\) −282.627 177.586i −0.475003 0.298464i
\(596\) 1746.67 + 2190.26i 2.93066 + 3.67493i
\(597\) 357.362 + 357.362i 0.598597 + 0.598597i
\(598\) 214.442 + 24.1619i 0.358599 + 0.0404044i
\(599\) 53.8833 + 153.989i 0.0899553 + 0.257078i 0.980068 0.198663i \(-0.0636600\pi\)
−0.890112 + 0.455741i \(0.849374\pi\)
\(600\) 100.506 126.030i 0.167509 0.210050i
\(601\) −863.514 + 97.2947i −1.43680 + 0.161888i −0.795755 0.605619i \(-0.792926\pi\)
−0.641041 + 0.767507i \(0.721497\pi\)
\(602\) 233.602 + 485.080i 0.388044 + 0.805781i
\(603\) −28.8438 126.373i −0.0478338 0.209573i
\(604\) 307.206 1345.96i 0.508619 2.22841i
\(605\) −486.040 234.065i −0.803373 0.386884i
\(606\) −358.921 + 1025.74i −0.592278 + 1.69263i
\(607\) −310.491 494.143i −0.511517 0.814075i 0.486712 0.873562i \(-0.338196\pi\)
−0.998229 + 0.0594878i \(0.981053\pi\)
\(608\) 1717.99i 2.82564i
\(609\) −67.2347 494.946i −0.110402 0.812720i
\(610\) 1581.30 2.59229
\(611\) −176.094 + 110.647i −0.288206 + 0.181092i
\(612\) 299.732 + 104.881i 0.489759 + 0.171374i
\(613\) −246.942 + 512.779i −0.402841 + 0.836508i 0.596582 + 0.802552i \(0.296525\pi\)
−0.999423 + 0.0339560i \(0.989189\pi\)
\(614\) 508.521 + 116.067i 0.828211 + 0.189034i
\(615\) −16.1240 + 3.68019i −0.0262178 + 0.00598405i
\(616\) 721.299 347.359i 1.17094 0.563895i
\(617\) 30.7744 + 273.130i 0.0498775 + 0.442675i 0.993687 + 0.112186i \(0.0357851\pi\)
−0.943810 + 0.330489i \(0.892786\pi\)
\(618\) −303.840 242.304i −0.491651 0.392078i
\(619\) −477.311 + 167.018i −0.771100 + 0.269820i −0.687019 0.726639i \(-0.741081\pi\)
−0.0840811 + 0.996459i \(0.526795\pi\)
\(620\) 257.668 2286.87i 0.415594 3.68850i
\(621\) 334.625 334.625i 0.538848 0.538848i
\(622\) 921.049 734.512i 1.48079 1.18089i
\(623\) 432.340 688.065i 0.693965 1.10444i
\(624\) 386.268 + 242.708i 0.619020 + 0.388956i
\(625\) −426.820 535.215i −0.682911 0.856344i
\(626\) −946.353 946.353i −1.51175 1.51175i
\(627\) 158.240 + 17.8293i 0.252376 + 0.0284359i
\(628\) 340.459 + 972.977i 0.542133 + 1.54933i
\(629\) −272.821 + 342.107i −0.433738 + 0.543891i
\(630\) 498.661 56.1856i 0.791525 0.0891834i
\(631\) −251.062 521.335i −0.397879 0.826205i −0.999621 0.0275142i \(-0.991241\pi\)
0.601742 0.798690i \(-0.294473\pi\)
\(632\) −692.784 3035.29i −1.09618 4.80267i
\(633\) −5.14991 + 22.5632i −0.00813572 + 0.0356449i
\(634\) 1030.12 + 496.082i 1.62480 + 0.782463i
\(635\) −194.131 + 554.794i −0.305718 + 0.873691i
\(636\) −536.234 853.412i −0.843136 1.34184i
\(637\) 14.4284i 0.0226506i
\(638\) −424.992 + 216.745i −0.666131 + 0.339726i
\(639\) −285.453 −0.446718
\(640\) −1432.46 + 900.076i −2.23822 + 1.40637i
\(641\) −354.797 124.149i −0.553505 0.193680i 0.0390104 0.999239i \(-0.487579\pi\)
−0.592516 + 0.805559i \(0.701865\pi\)
\(642\) 19.3823 40.2478i 0.0301905 0.0626912i
\(643\) −13.7935 3.14829i −0.0214519 0.00489625i 0.211782 0.977317i \(-0.432073\pi\)
−0.233233 + 0.972421i \(0.574931\pi\)
\(644\) 1223.76 279.315i 1.90024 0.433718i
\(645\) −215.906 + 103.975i −0.334738 + 0.161201i
\(646\) 58.6043 + 520.127i 0.0907187 + 0.805151i
\(647\) 778.933 + 621.178i 1.20391 + 0.960090i 0.999822 0.0188619i \(-0.00600429\pi\)
0.204092 + 0.978952i \(0.434576\pi\)
\(648\) 931.393 325.908i 1.43733 0.502945i
\(649\) −3.24430 + 28.7939i −0.00499892 + 0.0443666i
\(650\) −25.2328 + 25.2328i −0.0388197 + 0.0388197i
\(651\) −551.843 + 440.080i −0.847686 + 0.676007i
\(652\) −521.660 + 830.217i −0.800092 + 1.27334i
\(653\) −240.927 151.384i −0.368954 0.231829i 0.334774 0.942298i \(-0.391340\pi\)
−0.703728 + 0.710469i \(0.748483\pi\)
\(654\) −1192.33 1495.13i −1.82313 2.28614i
\(655\) −714.742 714.742i −1.09121 1.09121i
\(656\) 73.0963 + 8.23598i 0.111427 + 0.0125548i
\(657\) 50.6524 + 144.756i 0.0770965 + 0.220329i
\(658\) −1036.81 + 1300.12i −1.57570 + 1.97586i
\(659\) 1062.63 119.729i 1.61249 0.181684i 0.740792 0.671734i \(-0.234450\pi\)
0.871694 + 0.490050i \(0.163022\pi\)
\(660\) 247.236 + 513.391i 0.374600 + 0.777865i
\(661\) 100.223 + 439.106i 0.151624 + 0.664306i 0.992414 + 0.122945i \(0.0392337\pi\)
−0.840790 + 0.541361i \(0.817909\pi\)
\(662\) 32.4579 142.207i 0.0490301 0.214815i
\(663\) 64.7287 + 31.1717i 0.0976300 + 0.0470161i
\(664\) −66.3289 + 189.557i −0.0998930 + 0.285478i
\(665\) 320.126 + 509.478i 0.481393 + 0.766133i
\(666\) 657.843i 0.987753i
\(667\) −453.534 + 114.462i −0.679961 + 0.171607i
\(668\) −1223.93 −1.83223
\(669\) 644.446 404.932i 0.963297 0.605280i
\(670\) 721.633 + 252.510i 1.07706 + 0.376881i
\(671\) −146.207 + 303.602i −0.217894 + 0.452462i
\(672\) 1838.22 + 419.562i 2.73545 + 0.624348i
\(673\) −665.540 + 151.905i −0.988915 + 0.225713i −0.686236 0.727379i \(-0.740738\pi\)
−0.302679 + 0.953092i \(0.597881\pi\)
\(674\) −238.541 + 114.875i −0.353919 + 0.170438i
\(675\) 8.76160 + 77.7614i 0.0129802 + 0.115202i
\(676\) 1308.87 + 1043.79i 1.93619 + 1.54406i
\(677\) 140.624 49.2065i 0.207716 0.0726831i −0.224415 0.974494i \(-0.572047\pi\)
0.432132 + 0.901810i \(0.357762\pi\)
\(678\) 101.153 897.759i 0.149193 1.32413i
\(679\) 71.1709 71.1709i 0.104817 0.104817i
\(680\) −915.722 + 730.264i −1.34665 + 1.07392i
\(681\) 326.804 520.106i 0.479889 0.763739i
\(682\) 570.819 + 358.670i 0.836978 + 0.525908i
\(683\) −562.476 705.323i −0.823538 1.03268i −0.998839 0.0481690i \(-0.984661\pi\)
0.175301 0.984515i \(-0.443910\pi\)
\(684\) −404.775 404.775i −0.591776 0.591776i
\(685\) −1111.23 125.206i −1.62224 0.182782i
\(686\) 413.818 + 1182.62i 0.603233 + 1.72394i
\(687\) −430.705 + 540.087i −0.626936 + 0.786153i
\(688\) 1059.14 119.336i 1.53944 0.173453i
\(689\) 60.5379 + 125.708i 0.0878635 + 0.182450i
\(690\) 170.899 + 748.757i 0.247680 + 1.08515i
\(691\) 174.983 766.650i 0.253231 1.10948i −0.675101 0.737726i \(-0.735900\pi\)
0.928332 0.371753i \(-0.121243\pi\)
\(692\) −825.667 397.620i −1.19316 0.574596i
\(693\) −35.3189 + 100.936i −0.0509652 + 0.145650i
\(694\) −519.841 827.322i −0.749050 1.19211i
\(695\) 1053.39i 1.51567i
\(696\) −1717.21 350.928i −2.46726 0.504207i
\(697\) 11.5844 0.0166204
\(698\) −1307.01 + 821.246i −1.87250 + 1.17657i
\(699\) 18.3904 + 6.43509i 0.0263096 + 0.00920614i
\(700\) −90.0589 + 187.009i −0.128656 + 0.267156i
\(701\) 1133.94 + 258.815i 1.61761 + 0.369208i 0.933048 0.359751i \(-0.117138\pi\)
0.684557 + 0.728959i \(0.259995\pi\)
\(702\) −382.697 + 87.3480i −0.545152 + 0.124427i
\(703\) 710.676 342.243i 1.01092 0.486833i
\(704\) −95.3188 845.978i −0.135396 1.20167i
\(705\) −578.674 461.477i −0.820814 0.654577i
\(706\) 2337.43 817.901i 3.31080 1.15850i
\(707\) 97.9734 869.538i 0.138576 1.22990i
\(708\) −120.374 + 120.374i −0.170020 + 0.170020i
\(709\) 70.9559 56.5854i 0.100079 0.0798102i −0.572172 0.820134i \(-0.693899\pi\)
0.672251 + 0.740323i \(0.265328\pi\)
\(710\) 895.755 1425.59i 1.26163 2.00787i
\(711\) 352.119 + 221.251i 0.495245 + 0.311183i
\(712\) −1777.86 2229.36i −2.49699 3.13112i
\(713\) 467.388 + 467.388i 0.655523 + 0.655523i
\(714\) 570.840 + 64.3182i 0.799496 + 0.0900816i
\(715\) −26.0529 74.4550i −0.0364377 0.104133i
\(716\) −560.416 + 702.740i −0.782704 + 0.981480i
\(717\) 375.571 42.3167i 0.523809 0.0590191i
\(718\) −25.6719 53.3083i −0.0357548 0.0742456i
\(719\) 8.99364 + 39.4037i 0.0125085 + 0.0548035i 0.980797 0.195031i \(-0.0624808\pi\)
−0.968288 + 0.249835i \(0.919624\pi\)
\(720\) 221.056 968.510i 0.307022 1.34515i
\(721\) 281.937 + 135.774i 0.391036 + 0.188313i
\(722\) −145.139 + 414.782i −0.201023 + 0.574491i
\(723\) 136.888 + 217.857i 0.189334 + 0.301323i
\(724\) 406.642i 0.561661i
\(725\) 31.9614 70.4356i 0.0440847 0.0971525i
\(726\) 928.422 1.27882
\(727\) −358.094 + 225.005i −0.492564 + 0.309498i −0.755311 0.655366i \(-0.772514\pi\)
0.262747 + 0.964865i \(0.415371\pi\)
\(728\) −614.566 215.046i −0.844184 0.295393i
\(729\) −327.910 + 680.913i −0.449808 + 0.934037i
\(730\) −881.877 201.283i −1.20805 0.275730i
\(731\) 163.645 37.3509i 0.223865 0.0510957i
\(732\) −1783.66 + 858.965i −2.43669 + 1.17345i
\(733\) −14.7149 130.599i −0.0200749 0.178170i 0.979673 0.200599i \(-0.0642887\pi\)
−0.999748 + 0.0224286i \(0.992860\pi\)
\(734\) −1982.74 1581.18i −2.70128 2.15420i
\(735\) 48.4680 16.9597i 0.0659429 0.0230744i
\(736\) 197.695 1754.59i 0.268607 2.38396i
\(737\) −115.203 + 115.203i −0.156314 + 0.156314i
\(738\) −13.6164 + 10.8587i −0.0184504 + 0.0147137i
\(739\) −152.535 + 242.758i −0.206407 + 0.328495i −0.933845 0.357679i \(-0.883568\pi\)
0.727438 + 0.686174i \(0.240711\pi\)
\(740\) 2389.94 + 1501.70i 3.22965 + 2.02932i
\(741\) −80.7475 101.254i −0.108971 0.136645i
\(742\) 788.872 + 788.872i 1.06317 + 1.06317i
\(743\) 286.805 + 32.3151i 0.386009 + 0.0434928i 0.302837 0.953042i \(-0.402066\pi\)
0.0831723 + 0.996535i \(0.473495\pi\)
\(744\) 818.019 + 2337.76i 1.09949 + 3.14216i
\(745\) 860.533 1079.07i 1.15508 1.44842i
\(746\) −1684.08 + 189.750i −2.25748 + 0.254357i
\(747\) −11.6390 24.1686i −0.0155810 0.0323543i
\(748\) −88.8146 389.122i −0.118736 0.520217i
\(749\) −8.00411 + 35.0683i −0.0106864 + 0.0468202i
\(750\) 958.079 + 461.386i 1.27744 + 0.615182i
\(751\) 14.9942 42.8510i 0.0199657 0.0570586i −0.933469 0.358657i \(-0.883235\pi\)
0.953435 + 0.301599i \(0.0975203\pi\)
\(752\) 1751.44 + 2787.40i 2.32904 + 3.70664i
\(753\) 27.8420i 0.0369747i
\(754\) 369.051 + 119.759i 0.489458 + 0.158831i
\(755\) −680.165 −0.900881
\(756\) −1933.29 + 1214.77i −2.55726 + 1.60683i
\(757\) −467.425 163.559i −0.617470 0.216062i 0.00337645 0.999994i \(-0.498925\pi\)
−0.620846 + 0.783932i \(0.713211\pi\)
\(758\) 154.272 320.350i