Properties

Label 29.2.d.a.25.1
Level 29
Weight 2
Character 29.25
Analytic conductor 0.232
Analytic rank 0
Dimension 6
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 29.d (of order \(7\) and degree \(6\))

Newform invariants

Self dual: No
Analytic conductor: \(0.231566165862\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 25.1
Root \(0.900969 + 0.433884i\)
Character \(\chi\) = 29.25
Dual form 29.2.d.a.7.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.277479 + 1.21572i) q^{2}\) \(+(-1.62349 + 0.781831i) q^{3}\) \(+(0.400969 + 0.193096i) q^{4}\) \(+(0.900969 - 3.94740i) q^{5}\) \(+(-0.500000 - 2.19064i) q^{6}\) \(+(-0.623490 + 0.300257i) q^{7}\) \(+(-1.90097 + 2.38374i) q^{8}\) \(+(0.153989 - 0.193096i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.277479 + 1.21572i) q^{2}\) \(+(-1.62349 + 0.781831i) q^{3}\) \(+(0.400969 + 0.193096i) q^{4}\) \(+(0.900969 - 3.94740i) q^{5}\) \(+(-0.500000 - 2.19064i) q^{6}\) \(+(-0.623490 + 0.300257i) q^{7}\) \(+(-1.90097 + 2.38374i) q^{8}\) \(+(0.153989 - 0.193096i) q^{9}\) \(+(4.54892 + 2.19064i) q^{10}\) \(+(-1.77748 - 2.22889i) q^{11}\) \(-0.801938 q^{12}\) \(+(0.914542 + 1.14680i) q^{13}\) \(+(-0.192021 - 0.841301i) q^{14}\) \(+(1.62349 + 7.11297i) q^{15}\) \(+(-1.81551 - 2.27658i) q^{16}\) \(-1.60388 q^{17}\) \(+(0.192021 + 0.240787i) q^{18}\) \(+(2.42543 + 1.16802i) q^{19}\) \(+(1.12349 - 1.40881i) q^{20}\) \(+(0.777479 - 0.974928i) q^{21}\) \(+(3.20291 - 1.54244i) q^{22}\) \(+(1.14795 + 5.02949i) q^{23}\) \(+(1.22252 - 5.35621i) q^{24}\) \(+(-10.2654 - 4.94355i) q^{25}\) \(+(-1.64795 + 0.793610i) q^{26}\) \(+(1.10388 - 4.83639i) q^{27}\) \(-0.307979 q^{28}\) \(+(3.71379 + 3.89971i) q^{29}\) \(-9.09783 q^{30}\) \(+(0.434157 - 1.90216i) q^{31}\) \(+(-2.22252 + 1.07031i) q^{32}\) \(+(4.62833 + 2.22889i) q^{33}\) \(+(0.445042 - 1.94986i) q^{34}\) \(+(0.623490 + 2.73169i) q^{35}\) \(+(0.0990311 - 0.0476909i) q^{36}\) \(+(1.77748 - 2.22889i) q^{37}\) \(+(-2.09299 + 2.62453i) q^{38}\) \(+(-2.38135 - 1.14680i) q^{39}\) \(+(7.69687 + 9.65156i) q^{40}\) \(+6.49396 q^{41}\) \(+(0.969501 + 1.21572i) q^{42}\) \(+(-0.147948 - 0.648205i) q^{43}\) \(+(-0.282323 - 1.23694i) q^{44}\) \(+(-0.623490 - 0.781831i) q^{45}\) \(-6.43296 q^{46}\) \(+(-2.96346 - 3.71606i) q^{47}\) \(+(4.72737 + 2.27658i) q^{48}\) \(+(-4.06584 + 5.09841i) q^{49}\) \(+(8.85839 - 11.1081i) q^{50}\) \(+(2.60388 - 1.25396i) q^{51}\) \(+(0.145260 + 0.636426i) q^{52}\) \(+(-0.0108851 + 0.0476909i) q^{53}\) \(+(5.57338 + 2.68400i) q^{54}\) \(+(-10.3998 + 5.00827i) q^{55}\) \(+(0.469501 - 2.05702i) q^{56}\) \(-4.85086 q^{57}\) \(+(-5.77144 + 3.43282i) q^{58}\) \(-6.39612 q^{59}\) \(+(-0.722521 + 3.16557i) q^{60}\) \(+(1.17845 - 0.567511i) q^{61}\) \(+(2.19202 + 1.05562i) q^{62}\) \(+(-0.0380322 + 0.166630i) q^{63}\) \(+(-1.98039 - 8.67664i) q^{64}\) \(+(5.35086 - 2.57684i) q^{65}\) \(+(-3.99396 + 5.00827i) q^{66}\) \(+(9.32036 - 11.6874i) q^{67}\) \(+(-0.643104 - 0.309703i) q^{68}\) \(+(-5.79590 - 7.26782i) q^{69}\) \(-3.49396 q^{70}\) \(+(-1.40850 - 1.76621i) q^{71}\) \(+(0.167563 + 0.734141i) q^{72}\) \(+(-1.85205 - 8.11437i) q^{73}\) \(+(2.21648 + 2.77938i) q^{74}\) \(+20.5308 q^{75}\) \(+(0.746980 + 0.936683i) q^{76}\) \(+(1.77748 + 0.855989i) q^{77}\) \(+(2.05496 - 2.57684i) q^{78}\) \(+(-6.07338 + 7.61577i) q^{79}\) \(+(-10.6223 + 5.11543i) q^{80}\) \(+(2.15399 + 9.43724i) q^{81}\) \(+(-1.80194 + 7.89481i) q^{82}\) \(+(3.62349 + 1.74498i) q^{83}\) \(+(0.500000 - 0.240787i) q^{84}\) \(+(-1.44504 + 6.33114i) q^{85}\) \(+0.829085 q^{86}\) \(+(-9.07822 - 3.42758i) q^{87}\) \(+8.69202 q^{88}\) \(+(-2.50484 + 10.9744i) q^{89}\) \(+(1.12349 - 0.541044i) q^{90}\) \(+(-0.914542 - 0.440420i) q^{91}\) \(+(-0.510885 + 2.23833i) q^{92}\) \(+(0.782323 + 3.42758i) q^{93}\) \(+(5.33997 - 2.57159i) q^{94}\) \(+(6.79590 - 8.52179i) q^{95}\) \(+(2.77144 - 3.47527i) q^{96}\) \(+(4.11745 + 1.98286i) q^{97}\) \(+(-5.07002 - 6.35761i) q^{98}\) \(-0.704103 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(6q \) \(\mathstrut -\mathstrut 2q^{2} \) \(\mathstrut -\mathstrut 5q^{3} \) \(\mathstrut -\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut -\mathstrut 3q^{6} \) \(\mathstrut +\mathstrut q^{7} \) \(\mathstrut -\mathstrut 7q^{8} \) \(\mathstrut +\mathstrut 6q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(6q \) \(\mathstrut -\mathstrut 2q^{2} \) \(\mathstrut -\mathstrut 5q^{3} \) \(\mathstrut -\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut -\mathstrut 3q^{6} \) \(\mathstrut +\mathstrut q^{7} \) \(\mathstrut -\mathstrut 7q^{8} \) \(\mathstrut +\mathstrut 6q^{9} \) \(\mathstrut +\mathstrut 9q^{10} \) \(\mathstrut -\mathstrut 11q^{11} \) \(\mathstrut +\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 5q^{13} \) \(\mathstrut +\mathstrut 9q^{14} \) \(\mathstrut +\mathstrut 5q^{15} \) \(\mathstrut +\mathstrut 4q^{16} \) \(\mathstrut +\mathstrut 8q^{17} \) \(\mathstrut -\mathstrut 9q^{18} \) \(\mathstrut +\mathstrut q^{19} \) \(\mathstrut +\mathstrut 2q^{20} \) \(\mathstrut +\mathstrut 5q^{21} \) \(\mathstrut +\mathstrut 6q^{22} \) \(\mathstrut -\mathstrut 7q^{23} \) \(\mathstrut +\mathstrut 7q^{24} \) \(\mathstrut -\mathstrut 24q^{25} \) \(\mathstrut +\mathstrut 4q^{26} \) \(\mathstrut -\mathstrut 11q^{27} \) \(\mathstrut -\mathstrut 12q^{28} \) \(\mathstrut +\mathstrut 6q^{29} \) \(\mathstrut -\mathstrut 18q^{30} \) \(\mathstrut +\mathstrut 5q^{31} \) \(\mathstrut -\mathstrut 13q^{32} \) \(\mathstrut +\mathstrut q^{33} \) \(\mathstrut +\mathstrut 2q^{34} \) \(\mathstrut -\mathstrut q^{35} \) \(\mathstrut +\mathstrut 5q^{36} \) \(\mathstrut +\mathstrut 11q^{37} \) \(\mathstrut +\mathstrut 2q^{38} \) \(\mathstrut +\mathstrut 3q^{39} \) \(\mathstrut +\mathstrut 14q^{40} \) \(\mathstrut +\mathstrut 20q^{41} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut +\mathstrut 13q^{43} \) \(\mathstrut +\mathstrut 20q^{44} \) \(\mathstrut +\mathstrut q^{45} \) \(\mathstrut +\mathstrut 11q^{47} \) \(\mathstrut +\mathstrut 6q^{48} \) \(\mathstrut -\mathstrut 22q^{49} \) \(\mathstrut +\mathstrut q^{50} \) \(\mathstrut -\mathstrut 2q^{51} \) \(\mathstrut -\mathstrut 10q^{52} \) \(\mathstrut +\mathstrut 3q^{53} \) \(\mathstrut +\mathstrut 6q^{54} \) \(\mathstrut -\mathstrut 17q^{55} \) \(\mathstrut -\mathstrut 7q^{56} \) \(\mathstrut -\mathstrut 2q^{57} \) \(\mathstrut -\mathstrut 16q^{58} \) \(\mathstrut -\mathstrut 56q^{59} \) \(\mathstrut -\mathstrut 4q^{60} \) \(\mathstrut +\mathstrut 3q^{61} \) \(\mathstrut +\mathstrut 3q^{62} \) \(\mathstrut +\mathstrut 15q^{63} \) \(\mathstrut +\mathstrut q^{64} \) \(\mathstrut +\mathstrut 5q^{65} \) \(\mathstrut -\mathstrut 5q^{66} \) \(\mathstrut +\mathstrut 19q^{67} \) \(\mathstrut -\mathstrut 12q^{68} \) \(\mathstrut -\mathstrut 7q^{69} \) \(\mathstrut -\mathstrut 2q^{70} \) \(\mathstrut +\mathstrut 21q^{71} \) \(\mathstrut -\mathstrut 25q^{73} \) \(\mathstrut -\mathstrut 6q^{74} \) \(\mathstrut +\mathstrut 48q^{75} \) \(\mathstrut -\mathstrut 5q^{76} \) \(\mathstrut +\mathstrut 11q^{77} \) \(\mathstrut +\mathstrut 13q^{78} \) \(\mathstrut -\mathstrut 9q^{79} \) \(\mathstrut -\mathstrut 18q^{80} \) \(\mathstrut +\mathstrut 18q^{81} \) \(\mathstrut -\mathstrut 2q^{82} \) \(\mathstrut +\mathstrut 17q^{83} \) \(\mathstrut +\mathstrut 3q^{84} \) \(\mathstrut -\mathstrut 8q^{85} \) \(\mathstrut -\mathstrut 16q^{86} \) \(\mathstrut -\mathstrut 5q^{87} \) \(\mathstrut +\mathstrut 42q^{88} \) \(\mathstrut +\mathstrut 7q^{89} \) \(\mathstrut +\mathstrut 2q^{90} \) \(\mathstrut +\mathstrut 5q^{91} \) \(\mathstrut -\mathstrut 17q^{93} \) \(\mathstrut +\mathstrut 8q^{94} \) \(\mathstrut +\mathstrut 13q^{95} \) \(\mathstrut -\mathstrut 2q^{96} \) \(\mathstrut +\mathstrut q^{97} \) \(\mathstrut +\mathstrut 19q^{98} \) \(\mathstrut -\mathstrut 32q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.277479 + 1.21572i −0.196207 + 0.859640i 0.776961 + 0.629548i \(0.216760\pi\)
−0.973169 + 0.230092i \(0.926097\pi\)
\(3\) −1.62349 + 0.781831i −0.937322 + 0.451391i −0.839224 0.543786i \(-0.816990\pi\)
−0.0980984 + 0.995177i \(0.531276\pi\)
\(4\) 0.400969 + 0.193096i 0.200484 + 0.0965482i
\(5\) 0.900969 3.94740i 0.402926 1.76533i −0.212524 0.977156i \(-0.568168\pi\)
0.615450 0.788176i \(-0.288974\pi\)
\(6\) −0.500000 2.19064i −0.204124 0.894326i
\(7\) −0.623490 + 0.300257i −0.235657 + 0.113486i −0.547986 0.836488i \(-0.684605\pi\)
0.312329 + 0.949974i \(0.398891\pi\)
\(8\) −1.90097 + 2.38374i −0.672094 + 0.842779i
\(9\) 0.153989 0.193096i 0.0513298 0.0643655i
\(10\) 4.54892 + 2.19064i 1.43849 + 0.692742i
\(11\) −1.77748 2.22889i −0.535930 0.672035i 0.437976 0.898987i \(-0.355696\pi\)
−0.973906 + 0.226952i \(0.927124\pi\)
\(12\) −0.801938 −0.231499
\(13\) 0.914542 + 1.14680i 0.253648 + 0.318065i 0.892310 0.451422i \(-0.149083\pi\)
−0.638662 + 0.769487i \(0.720512\pi\)
\(14\) −0.192021 0.841301i −0.0513199 0.224847i
\(15\) 1.62349 + 7.11297i 0.419183 + 1.83656i
\(16\) −1.81551 2.27658i −0.453878 0.569145i
\(17\) −1.60388 −0.388997 −0.194498 0.980903i \(-0.562308\pi\)
−0.194498 + 0.980903i \(0.562308\pi\)
\(18\) 0.192021 + 0.240787i 0.0452599 + 0.0567541i
\(19\) 2.42543 + 1.16802i 0.556431 + 0.267963i 0.690895 0.722955i \(-0.257217\pi\)
−0.134463 + 0.990919i \(0.542931\pi\)
\(20\) 1.12349 1.40881i 0.251220 0.315020i
\(21\) 0.777479 0.974928i 0.169660 0.212747i
\(22\) 3.20291 1.54244i 0.682862 0.328849i
\(23\) 1.14795 + 5.02949i 0.239364 + 1.04872i 0.941588 + 0.336766i \(0.109333\pi\)
−0.702225 + 0.711955i \(0.747810\pi\)
\(24\) 1.22252 5.35621i 0.249546 1.09333i
\(25\) −10.2654 4.94355i −2.05308 0.988711i
\(26\) −1.64795 + 0.793610i −0.323189 + 0.155640i
\(27\) 1.10388 4.83639i 0.212441 0.930765i
\(28\) −0.307979 −0.0582025
\(29\) 3.71379 + 3.89971i 0.689634 + 0.724158i
\(30\) −9.09783 −1.66103
\(31\) 0.434157 1.90216i 0.0779769 0.341639i −0.920858 0.389898i \(-0.872510\pi\)
0.998835 + 0.0482592i \(0.0153674\pi\)
\(32\) −2.22252 + 1.07031i −0.392890 + 0.189206i
\(33\) 4.62833 + 2.22889i 0.805690 + 0.388000i
\(34\) 0.445042 1.94986i 0.0763241 0.334398i
\(35\) 0.623490 + 2.73169i 0.105389 + 0.461739i
\(36\) 0.0990311 0.0476909i 0.0165052 0.00794848i
\(37\) 1.77748 2.22889i 0.292216 0.366427i −0.613953 0.789342i \(-0.710422\pi\)
0.906169 + 0.422915i \(0.138993\pi\)
\(38\) −2.09299 + 2.62453i −0.339528 + 0.425754i
\(39\) −2.38135 1.14680i −0.381322 0.183635i
\(40\) 7.69687 + 9.65156i 1.21698 + 1.52605i
\(41\) 6.49396 1.01419 0.507093 0.861891i \(-0.330720\pi\)
0.507093 + 0.861891i \(0.330720\pi\)
\(42\) 0.969501 + 1.21572i 0.149597 + 0.187589i
\(43\) −0.147948 0.648205i −0.0225619 0.0988503i 0.962393 0.271660i \(-0.0875726\pi\)
−0.984955 + 0.172810i \(0.944715\pi\)
\(44\) −0.282323 1.23694i −0.0425619 0.186476i
\(45\) −0.623490 0.781831i −0.0929444 0.116549i
\(46\) −6.43296 −0.948488
\(47\) −2.96346 3.71606i −0.432265 0.542043i 0.517221 0.855852i \(-0.326966\pi\)
−0.949486 + 0.313809i \(0.898395\pi\)
\(48\) 4.72737 + 2.27658i 0.682336 + 0.328596i
\(49\) −4.06584 + 5.09841i −0.580835 + 0.728344i
\(50\) 8.85839 11.1081i 1.25277 1.57092i
\(51\) 2.60388 1.25396i 0.364615 0.175590i
\(52\) 0.145260 + 0.636426i 0.0201439 + 0.0882564i
\(53\) −0.0108851 + 0.0476909i −0.00149519 + 0.00655085i −0.975670 0.219244i \(-0.929641\pi\)
0.974175 + 0.225795i \(0.0724980\pi\)
\(54\) 5.57338 + 2.68400i 0.758440 + 0.365246i
\(55\) −10.3998 + 5.00827i −1.40231 + 0.675315i
\(56\) 0.469501 2.05702i 0.0627396 0.274880i
\(57\) −4.85086 −0.642511
\(58\) −5.77144 + 3.43282i −0.757827 + 0.450752i
\(59\) −6.39612 −0.832704 −0.416352 0.909203i \(-0.636692\pi\)
−0.416352 + 0.909203i \(0.636692\pi\)
\(60\) −0.722521 + 3.16557i −0.0932771 + 0.408673i
\(61\) 1.17845 0.567511i 0.150885 0.0726623i −0.356918 0.934136i \(-0.616172\pi\)
0.507802 + 0.861474i \(0.330458\pi\)
\(62\) 2.19202 + 1.05562i 0.278387 + 0.134064i
\(63\) −0.0380322 + 0.166630i −0.00479161 + 0.0209934i
\(64\) −1.98039 8.67664i −0.247548 1.08458i
\(65\) 5.35086 2.57684i 0.663692 0.319617i
\(66\) −3.99396 + 5.00827i −0.491622 + 0.616475i
\(67\) 9.32036 11.6874i 1.13866 1.42784i 0.250615 0.968087i \(-0.419367\pi\)
0.888048 0.459751i \(-0.152061\pi\)
\(68\) −0.643104 0.309703i −0.0779878 0.0375570i
\(69\) −5.79590 7.26782i −0.697744 0.874943i
\(70\) −3.49396 −0.417608
\(71\) −1.40850 1.76621i −0.167158 0.209610i 0.691196 0.722667i \(-0.257084\pi\)
−0.858354 + 0.513057i \(0.828513\pi\)
\(72\) 0.167563 + 0.734141i 0.0197475 + 0.0865193i
\(73\) −1.85205 8.11437i −0.216766 0.949715i −0.959849 0.280516i \(-0.909494\pi\)
0.743083 0.669199i \(-0.233363\pi\)
\(74\) 2.21648 + 2.77938i 0.257661 + 0.323096i
\(75\) 20.5308 2.37069
\(76\) 0.746980 + 0.936683i 0.0856844 + 0.107445i
\(77\) 1.77748 + 0.855989i 0.202563 + 0.0975490i
\(78\) 2.05496 2.57684i 0.232678 0.291769i
\(79\) −6.07338 + 7.61577i −0.683308 + 0.856841i −0.995654 0.0931270i \(-0.970314\pi\)
0.312346 + 0.949968i \(0.398885\pi\)
\(80\) −10.6223 + 5.11543i −1.18761 + 0.571922i
\(81\) 2.15399 + 9.43724i 0.239332 + 1.04858i
\(82\) −1.80194 + 7.89481i −0.198991 + 0.871835i
\(83\) 3.62349 + 1.74498i 0.397730 + 0.191537i 0.622047 0.782980i \(-0.286301\pi\)
−0.224318 + 0.974516i \(0.572015\pi\)
\(84\) 0.500000 0.240787i 0.0545545 0.0262720i
\(85\) −1.44504 + 6.33114i −0.156737 + 0.686709i
\(86\) 0.829085 0.0894025
\(87\) −9.07822 3.42758i −0.973287 0.367475i
\(88\) 8.69202 0.926573
\(89\) −2.50484 + 10.9744i −0.265513 + 1.16329i 0.649659 + 0.760225i \(0.274912\pi\)
−0.915172 + 0.403063i \(0.867946\pi\)
\(90\) 1.12349 0.541044i 0.118426 0.0570311i
\(91\) −0.914542 0.440420i −0.0958701 0.0461686i
\(92\) −0.510885 + 2.23833i −0.0532635 + 0.233362i
\(93\) 0.782323 + 3.42758i 0.0811232 + 0.355424i
\(94\) 5.33997 2.57159i 0.550776 0.265240i
\(95\) 6.79590 8.52179i 0.697244 0.874317i
\(96\) 2.77144 3.47527i 0.282859 0.354694i
\(97\) 4.11745 + 1.98286i 0.418064 + 0.201329i 0.631077 0.775721i \(-0.282613\pi\)
−0.213013 + 0.977049i \(0.568328\pi\)
\(98\) −5.07002 6.35761i −0.512150 0.642215i
\(99\) −0.704103 −0.0707650
\(100\) −3.16152 3.96442i −0.316152 0.396442i
\(101\) −0.714988 3.13257i −0.0711440 0.311702i 0.926818 0.375510i \(-0.122533\pi\)
−0.997962 + 0.0638082i \(0.979675\pi\)
\(102\) 0.801938 + 3.51352i 0.0794037 + 0.347890i
\(103\) −4.07338 5.10785i −0.401362 0.503292i 0.539545 0.841957i \(-0.318596\pi\)
−0.940907 + 0.338665i \(0.890025\pi\)
\(104\) −4.47219 −0.438534
\(105\) −3.14795 3.94740i −0.307208 0.385227i
\(106\) −0.0549581 0.0264664i −0.00533801 0.00257065i
\(107\) −3.60656 + 4.52249i −0.348660 + 0.437205i −0.924978 0.380020i \(-0.875917\pi\)
0.576319 + 0.817225i \(0.304489\pi\)
\(108\) 1.37651 1.72609i 0.132455 0.166093i
\(109\) −8.27628 + 3.98565i −0.792724 + 0.381756i −0.786004 0.618222i \(-0.787853\pi\)
−0.00672026 + 0.999977i \(0.502139\pi\)
\(110\) −3.20291 14.0329i −0.305385 1.33798i
\(111\) −1.14310 + 5.00827i −0.108499 + 0.475364i
\(112\) 1.81551 + 0.874304i 0.171550 + 0.0826140i
\(113\) 8.07822 3.89027i 0.759935 0.365965i −0.0134437 0.999910i \(-0.504279\pi\)
0.773379 + 0.633944i \(0.218565\pi\)
\(114\) 1.34601 5.89726i 0.126065 0.552329i
\(115\) 20.8877 1.94779
\(116\) 0.736094 + 2.28078i 0.0683447 + 0.211765i
\(117\) 0.362273 0.0334921
\(118\) 1.77479 7.77587i 0.163383 0.715826i
\(119\) 1.00000 0.481575i 0.0916698 0.0441459i
\(120\) −20.0417 9.65156i −1.82955 0.881063i
\(121\) 0.639219 2.80060i 0.0581108 0.254600i
\(122\) 0.362937 + 1.59013i 0.0328587 + 0.143964i
\(123\) −10.5429 + 5.07718i −0.950619 + 0.457794i
\(124\) 0.541385 0.678875i 0.0486178 0.0609648i
\(125\) −16.1407 + 20.2398i −1.44367 + 1.81030i
\(126\) −0.192021 0.0924727i −0.0171066 0.00823812i
\(127\) 9.70440 + 12.1689i 0.861126 + 1.07982i 0.996035 + 0.0889600i \(0.0283543\pi\)
−0.134909 + 0.990858i \(0.543074\pi\)
\(128\) 6.16421 0.544844
\(129\) 0.746980 + 0.936683i 0.0657679 + 0.0824703i
\(130\) 1.64795 + 7.22013i 0.144535 + 0.633248i
\(131\) −2.98911 13.0962i −0.261160 1.14422i −0.919995 0.391930i \(-0.871808\pi\)
0.658835 0.752288i \(-0.271050\pi\)
\(132\) 1.42543 + 1.78743i 0.124068 + 0.155576i
\(133\) −1.86294 −0.161537
\(134\) 11.6223 + 14.5739i 1.00401 + 1.25899i
\(135\) −18.0966 8.71488i −1.55751 0.750058i
\(136\) 3.04892 3.82322i 0.261443 0.327839i
\(137\) −10.5945 + 13.2851i −0.905148 + 1.13502i 0.0851931 + 0.996364i \(0.472849\pi\)
−0.990341 + 0.138655i \(0.955722\pi\)
\(138\) 10.4438 5.02949i 0.889039 0.428139i
\(139\) −2.77359 12.1519i −0.235253 1.03071i −0.945209 0.326465i \(-0.894142\pi\)
0.709956 0.704246i \(-0.248715\pi\)
\(140\) −0.277479 + 1.21572i −0.0234513 + 0.102747i
\(141\) 7.71648 + 3.71606i 0.649845 + 0.312949i
\(142\) 2.53803 1.22225i 0.212987 0.102569i
\(143\) 0.930509 4.07683i 0.0778131 0.340921i
\(144\) −0.719169 −0.0599307
\(145\) 18.7397 11.1463i 1.55625 0.925651i
\(146\) 10.3787 0.858945
\(147\) 2.61476 11.4560i 0.215662 0.944876i
\(148\) 1.14310 0.550490i 0.0939626 0.0452500i
\(149\) 16.5015 + 7.94670i 1.35185 + 0.651019i 0.962805 0.270198i \(-0.0870890\pi\)
0.389050 + 0.921217i \(0.372803\pi\)
\(150\) −5.69687 + 24.9596i −0.465147 + 2.03794i
\(151\) 4.23609 + 18.5595i 0.344728 + 1.51035i 0.788961 + 0.614443i \(0.210619\pi\)
−0.444233 + 0.895911i \(0.646524\pi\)
\(152\) −7.39493 + 3.56121i −0.599808 + 0.288852i
\(153\) −0.246980 + 0.309703i −0.0199671 + 0.0250380i
\(154\) −1.53385 + 1.92339i −0.123601 + 0.154991i
\(155\) −7.11745 3.42758i −0.571687 0.275310i
\(156\) −0.733406 0.919662i −0.0587195 0.0736319i
\(157\) −11.4383 −0.912879 −0.456439 0.889755i \(-0.650875\pi\)
−0.456439 + 0.889755i \(0.650875\pi\)
\(158\) −7.57338 9.49671i −0.602505 0.755518i
\(159\) −0.0196143 0.0859360i −0.00155552 0.00681517i
\(160\) 2.22252 + 9.73750i 0.175706 + 0.769817i
\(161\) −2.22587 2.79116i −0.175423 0.219974i
\(162\) −12.0707 −0.948363
\(163\) −4.16152 5.21838i −0.325956 0.408735i 0.591671 0.806180i \(-0.298469\pi\)
−0.917626 + 0.397444i \(0.869897\pi\)
\(164\) 2.60388 + 1.25396i 0.203329 + 0.0979179i
\(165\) 12.9683 16.2617i 1.00958 1.26597i
\(166\) −3.12684 + 3.92094i −0.242690 + 0.304324i
\(167\) 13.2153 6.36415i 1.02263 0.492472i 0.154071 0.988060i \(-0.450761\pi\)
0.868558 + 0.495587i \(0.165047\pi\)
\(168\) 0.846011 + 3.70662i 0.0652711 + 0.285972i
\(169\) 2.41401 10.5765i 0.185693 0.813575i
\(170\) −7.29590 3.51352i −0.559570 0.269475i
\(171\) 0.599031 0.288478i 0.0458091 0.0220605i
\(172\) 0.0658433 0.288478i 0.00502050 0.0219963i
\(173\) −23.3599 −1.77602 −0.888009 0.459825i \(-0.847912\pi\)
−0.888009 + 0.459825i \(0.847912\pi\)
\(174\) 6.68598 10.0854i 0.506863 0.764576i
\(175\) 7.88471 0.596028
\(176\) −1.84721 + 8.09314i −0.139238 + 0.610044i
\(177\) 10.3840 5.00069i 0.780512 0.375875i
\(178\) −12.6468 6.09035i −0.947914 0.456491i
\(179\) 0.147948 0.648205i 0.0110582 0.0484491i −0.969098 0.246677i \(-0.920661\pi\)
0.980156 + 0.198228i \(0.0635185\pi\)
\(180\) −0.0990311 0.433884i −0.00738134 0.0323398i
\(181\) −9.88016 + 4.75803i −0.734386 + 0.353662i −0.763408 0.645917i \(-0.776475\pi\)
0.0290213 + 0.999579i \(0.490761\pi\)
\(182\) 0.789192 0.989616i 0.0584988 0.0733552i
\(183\) −1.46950 + 1.84270i −0.108629 + 0.136216i
\(184\) −14.1712 6.82450i −1.04472 0.503108i
\(185\) −7.19687 9.02458i −0.529124 0.663501i
\(186\) −4.38404 −0.321454
\(187\) 2.85086 + 3.57486i 0.208475 + 0.261420i
\(188\) −0.470697 2.06226i −0.0343291 0.150406i
\(189\) 0.763906 + 3.34689i 0.0555660 + 0.243450i
\(190\) 8.47434 + 10.6265i 0.614794 + 0.770927i
\(191\) −0.518122 −0.0374900 −0.0187450 0.999824i \(-0.505967\pi\)
−0.0187450 + 0.999824i \(0.505967\pi\)
\(192\) 9.99880 + 12.5381i 0.721601 + 0.904860i
\(193\) −1.24914 0.601552i −0.0899147 0.0433007i 0.388386 0.921497i \(-0.373033\pi\)
−0.478301 + 0.878196i \(0.658747\pi\)
\(194\) −3.55310 + 4.45544i −0.255098 + 0.319882i
\(195\) −6.67241 + 8.36693i −0.477821 + 0.599169i
\(196\) −2.61476 + 1.25920i −0.186769 + 0.0899430i
\(197\) −2.88351 12.6335i −0.205442 0.900099i −0.967556 0.252656i \(-0.918696\pi\)
0.762114 0.647442i \(-0.224161\pi\)
\(198\) 0.195374 0.855989i 0.0138846 0.0608325i
\(199\) 17.5722 + 8.46232i 1.24566 + 0.599878i 0.936345 0.351082i \(-0.114186\pi\)
0.309314 + 0.950960i \(0.399901\pi\)
\(200\) 31.2983 15.0725i 2.21313 1.06579i
\(201\) −5.99396 + 26.2613i −0.422781 + 1.85233i
\(202\) 4.00670 0.281911
\(203\) −3.48643 1.31634i −0.244699 0.0923889i
\(204\) 1.28621 0.0900526
\(205\) 5.85086 25.6343i 0.408641 1.79038i
\(206\) 7.33997 3.53474i 0.511400 0.246277i
\(207\) 1.14795 + 0.552823i 0.0797879 + 0.0384238i
\(208\) 0.950419 4.16406i 0.0658997 0.288725i
\(209\) −1.70775 7.48215i −0.118128 0.517551i
\(210\) 5.67241 2.73169i 0.391433 0.188504i
\(211\) −12.8632 + 16.1300i −0.885541 + 1.11043i 0.107679 + 0.994186i \(0.465658\pi\)
−0.993220 + 0.116248i \(0.962913\pi\)
\(212\) −0.0135735 + 0.0170207i −0.000932234 + 0.00116898i
\(213\) 3.66756 + 1.76621i 0.251297 + 0.121018i
\(214\) −4.49731 5.63945i −0.307430 0.385505i
\(215\) −2.69202 −0.183594
\(216\) 9.43027 + 11.8252i 0.641649 + 0.804602i
\(217\) 0.300446 + 1.31634i 0.0203956 + 0.0893589i
\(218\) −2.54892 11.1675i −0.172634 0.756361i
\(219\) 9.35086 + 11.7256i 0.631872 + 0.792343i
\(220\) −5.13706 −0.346341
\(221\) −1.46681 1.83932i −0.0986685 0.123726i
\(222\) −5.77144 2.77938i −0.387354 0.186540i
\(223\) −13.1561 + 16.4973i −0.881001 + 1.10474i 0.112806 + 0.993617i \(0.464016\pi\)
−0.993807 + 0.111123i \(0.964555\pi\)
\(224\) 1.06435 1.33465i 0.0711150 0.0891753i
\(225\) −2.53534 + 1.22096i −0.169023 + 0.0813971i
\(226\) 2.48792 + 10.9003i 0.165494 + 0.725076i
\(227\) −1.58761 + 6.95579i −0.105374 + 0.461672i 0.894519 + 0.447030i \(0.147518\pi\)
−0.999893 + 0.0146424i \(0.995339\pi\)
\(228\) −1.94504 0.936683i −0.128814 0.0620333i
\(229\) 2.02930 0.977261i 0.134100 0.0645792i −0.365631 0.930760i \(-0.619147\pi\)
0.499731 + 0.866181i \(0.333432\pi\)
\(230\) −5.79590 + 25.3935i −0.382170 + 1.67440i
\(231\) −3.55496 −0.233899
\(232\) −16.3557 + 1.43948i −1.07380 + 0.0945066i
\(233\) 18.9095 1.23880 0.619400 0.785076i \(-0.287376\pi\)
0.619400 + 0.785076i \(0.287376\pi\)
\(234\) −0.100523 + 0.440420i −0.00657140 + 0.0287912i
\(235\) −17.3388 + 8.34991i −1.13106 + 0.544688i
\(236\) −2.56465 1.23507i −0.166944 0.0803961i
\(237\) 3.90581 17.1125i 0.253710 1.11158i
\(238\) 0.307979 + 1.34934i 0.0199633 + 0.0874649i
\(239\) 18.4448 8.88255i 1.19310 0.574564i 0.271395 0.962468i \(-0.412515\pi\)
0.921700 + 0.387904i \(0.126801\pi\)
\(240\) 13.2458 16.6097i 0.855012 1.07215i
\(241\) 4.59448 5.76130i 0.295957 0.371118i −0.611514 0.791234i \(-0.709439\pi\)
0.907470 + 0.420116i \(0.138011\pi\)
\(242\) 3.22737 + 1.55422i 0.207463 + 0.0999089i
\(243\) −1.59634 2.00175i −0.102405 0.128412i
\(244\) 0.582105 0.0372655
\(245\) 16.4623 + 20.6430i 1.05174 + 1.31883i
\(246\) −3.24698 14.2259i −0.207020 0.907013i
\(247\) 0.878666 + 3.84969i 0.0559082 + 0.244950i
\(248\) 3.70895 + 4.65087i 0.235518 + 0.295331i
\(249\) −7.24698 −0.459259
\(250\) −20.1271 25.2386i −1.27295 1.59623i
\(251\) −11.6724 5.62114i −0.736756 0.354803i 0.0275815 0.999620i \(-0.491219\pi\)
−0.764337 + 0.644817i \(0.776934\pi\)
\(252\) −0.0474254 + 0.0594696i −0.00298752 + 0.00374623i
\(253\) 9.16972 11.4985i 0.576495 0.722902i
\(254\) −17.4867 + 8.42116i −1.09721 + 0.528391i
\(255\) −2.60388 11.4083i −0.163061 0.714417i
\(256\) 2.25033 9.85935i 0.140646 0.616209i
\(257\) −15.0390 7.24240i −0.938107 0.451768i −0.0986056 0.995127i \(-0.531438\pi\)
−0.839501 + 0.543358i \(0.817153\pi\)
\(258\) −1.34601 + 0.648205i −0.0837990 + 0.0403555i
\(259\) −0.439001 + 1.92339i −0.0272782 + 0.119514i
\(260\) 2.64310 0.163918
\(261\) 1.32490 0.116606i 0.0820095 0.00721774i
\(262\) 16.7506 1.03486
\(263\) −3.91843 + 17.1678i −0.241621 + 1.05861i 0.697921 + 0.716175i \(0.254109\pi\)
−0.939542 + 0.342434i \(0.888749\pi\)
\(264\) −14.1114 + 6.79570i −0.868497 + 0.418246i
\(265\) 0.178448 + 0.0859360i 0.0109620 + 0.00527901i
\(266\) 0.516926 2.26480i 0.0316948 0.138864i
\(267\) −4.51357 19.7753i −0.276226 1.21023i
\(268\) 5.99396 2.88654i 0.366139 0.176323i
\(269\) 4.18329 5.24568i 0.255060 0.319835i −0.637772 0.770225i \(-0.720144\pi\)
0.892832 + 0.450390i \(0.148715\pi\)
\(270\) 15.6163 19.5822i 0.950375 1.19173i
\(271\) −11.4133 5.49638i −0.693311 0.333881i 0.0538264 0.998550i \(-0.482858\pi\)
−0.747138 + 0.664669i \(0.768573\pi\)
\(272\) 2.91185 + 3.65135i 0.176557 + 0.221396i
\(273\) 1.82908 0.110701
\(274\) −13.2111 16.5662i −0.798112 1.00080i
\(275\) 7.22790 + 31.6675i 0.435859 + 1.90962i
\(276\) −0.920583 4.03334i −0.0554126 0.242778i
\(277\) 9.81431 + 12.3068i 0.589685 + 0.739442i 0.983731 0.179649i \(-0.0574963\pi\)
−0.394046 + 0.919091i \(0.628925\pi\)
\(278\) 15.5429 0.932200
\(279\) −0.300446 0.376747i −0.0179872 0.0225553i
\(280\) −7.69687 3.70662i −0.459976 0.221513i
\(281\) 7.36629 9.23703i 0.439436 0.551035i −0.511959 0.859010i \(-0.671080\pi\)
0.951394 + 0.307975i \(0.0996513\pi\)
\(282\) −6.65883 + 8.34991i −0.396528 + 0.497230i
\(283\) 1.98039 0.953703i 0.117722 0.0566918i −0.374096 0.927390i \(-0.622047\pi\)
0.491818 + 0.870698i \(0.336333\pi\)
\(284\) −0.223717 0.980170i −0.0132752 0.0581624i
\(285\) −4.37047 + 19.1483i −0.258884 + 1.13425i
\(286\) 4.69806 + 2.26247i 0.277802 + 0.133783i
\(287\) −4.04892 + 1.94986i −0.239000 + 0.115096i
\(288\) −0.135571 + 0.593977i −0.00798862 + 0.0350004i
\(289\) −14.4276 −0.848681
\(290\) 8.35086 + 25.8751i 0.490379 + 1.51944i
\(291\) −8.23490 −0.482738
\(292\) 0.824240 3.61123i 0.0482350 0.211331i
\(293\) 18.5993 8.95696i 1.08658 0.523271i 0.197168 0.980370i \(-0.436826\pi\)
0.889416 + 0.457098i \(0.151111\pi\)
\(294\) 13.2017 + 6.35761i 0.769939 + 0.370783i
\(295\) −5.76271 + 25.2481i −0.335518 + 1.47000i
\(296\) 1.93416 + 8.47409i 0.112421 + 0.492547i
\(297\) −12.7419 + 6.13617i −0.739360 + 0.356057i
\(298\) −14.2397 + 17.8561i −0.824886 + 1.03437i
\(299\) −4.71797 + 5.91615i −0.272847 + 0.342140i
\(300\) 8.23221 + 3.96442i 0.475287 + 0.228886i
\(301\) 0.286872 + 0.359726i 0.0165350 + 0.0207343i
\(302\) −23.7385 −1.36600
\(303\) 3.60992 + 4.52669i 0.207384 + 0.260052i
\(304\) −1.74429 7.64224i −0.100042 0.438312i
\(305\) −1.17845 5.16312i −0.0674777 0.295639i
\(306\) −0.307979 0.386193i −0.0176060 0.0220772i
\(307\) 22.8116 1.30193 0.650964 0.759108i \(-0.274365\pi\)
0.650964 + 0.759108i \(0.274365\pi\)
\(308\) 0.547425 + 0.686450i 0.0311925 + 0.0391141i
\(309\) 10.6066 + 5.10785i 0.603386 + 0.290576i
\(310\) 6.14191 7.70171i 0.348837 0.437428i
\(311\) 19.3843 24.3072i 1.09918 1.37833i 0.180392 0.983595i \(-0.442263\pi\)
0.918793 0.394740i \(-0.129165\pi\)
\(312\) 7.26055 3.49650i 0.411048 0.197950i
\(313\) 2.49947 + 10.9509i 0.141278 + 0.618980i 0.995139 + 0.0984792i \(0.0313978\pi\)
−0.853861 + 0.520501i \(0.825745\pi\)
\(314\) 3.17390 13.9058i 0.179113 0.784747i
\(315\) 0.623490 + 0.300257i 0.0351297 + 0.0169176i
\(316\) −3.90581 + 1.88094i −0.219719 + 0.105811i
\(317\) 1.31886 5.77832i 0.0740748 0.324543i −0.924291 0.381688i \(-0.875343\pi\)
0.998366 + 0.0571456i \(0.0181999\pi\)
\(318\) 0.109916 0.00616380
\(319\) 2.09083 15.2093i 0.117064 0.851556i
\(320\) −36.0344 −2.01439
\(321\) 2.31940 10.1619i 0.129456 0.567184i
\(322\) 4.01089 1.93154i 0.223518 0.107641i
\(323\) −3.89008 1.87337i −0.216450 0.104237i
\(324\) −0.958615 + 4.19997i −0.0532564 + 0.233332i
\(325\) −3.71887 16.2934i −0.206286 0.903798i
\(326\) 7.49880 3.61123i 0.415320 0.200008i
\(327\) 10.3204 12.9413i 0.570717 0.715656i
\(328\) −12.3448 + 15.4799i −0.681628 + 0.854735i
\(329\) 2.96346 + 1.42713i 0.163381 + 0.0786801i
\(330\) 16.1712 + 20.2781i 0.890196 + 1.11627i
\(331\) 30.9095 1.69894 0.849469 0.527639i \(-0.176923\pi\)
0.849469 + 0.527639i \(0.176923\pi\)
\(332\) 1.11596 + 1.39937i 0.0612461 + 0.0768002i
\(333\) −0.156678 0.686450i −0.00858588 0.0376172i
\(334\) 4.07002 + 17.8319i 0.222702 + 0.975720i
\(335\) −37.7373 47.3211i −2.06181 2.58543i
\(336\) −3.63102 −0.198089
\(337\) 4.99731 + 6.26643i 0.272221 + 0.341354i 0.899085 0.437775i \(-0.144233\pi\)
−0.626864 + 0.779129i \(0.715662\pi\)
\(338\) 12.1881 + 5.86950i 0.662947 + 0.319259i
\(339\) −10.0734 + 12.6316i −0.547111 + 0.686055i
\(340\) −1.80194 + 2.25956i −0.0977238 + 0.122542i
\(341\) −5.01142 + 2.41337i −0.271383 + 0.130691i
\(342\) 0.184489 + 0.808298i 0.00997601 + 0.0437077i
\(343\) 2.08211 9.12230i 0.112423 0.492558i
\(344\) 1.82640 + 0.879546i 0.0984727 + 0.0474220i
\(345\) −33.9110 + 16.3307i −1.82570 + 0.879213i
\(346\) 6.48188 28.3990i 0.348468 1.52674i
\(347\) −2.26337 −0.121504 −0.0607521 0.998153i \(-0.519350\pi\)
−0.0607521 + 0.998153i \(0.519350\pi\)
\(348\) −2.97823 3.12733i −0.159650 0.167642i
\(349\) −23.5690 −1.26162 −0.630809 0.775938i \(-0.717277\pi\)
−0.630809 + 0.775938i \(0.717277\pi\)
\(350\) −2.18784 + 9.58556i −0.116945 + 0.512370i
\(351\) 6.55592 3.15716i 0.349929 0.168517i
\(352\) 6.33609 + 3.05130i 0.337714 + 0.162635i
\(353\) 0.218636 0.957907i 0.0116368 0.0509843i −0.968776 0.247937i \(-0.920247\pi\)
0.980413 + 0.196953i \(0.0631045\pi\)
\(354\) 3.19806 + 14.0116i 0.169975 + 0.744710i
\(355\) −8.24094 + 3.96863i −0.437384 + 0.210633i
\(356\) −3.12349 + 3.91673i −0.165545 + 0.207586i
\(357\) −1.24698 + 1.56366i −0.0659972 + 0.0827578i
\(358\) 0.746980 + 0.359726i 0.0394791 + 0.0190121i
\(359\) −4.91454 6.16264i −0.259380 0.325252i 0.635041 0.772478i \(-0.280983\pi\)
−0.894421 + 0.447227i \(0.852412\pi\)
\(360\) 3.04892 0.160692
\(361\) −7.32789 9.18888i −0.385678 0.483625i
\(362\) −3.04288 13.3317i −0.159930 0.700699i
\(363\) 1.15183 + 5.04651i 0.0604556 + 0.264873i
\(364\) −0.281659 0.353190i −0.0147630 0.0185122i
\(365\) −33.6993 −1.76390
\(366\) −1.83244 2.29780i −0.0957830 0.120108i
\(367\) 26.4056 + 12.7163i 1.37836 + 0.663783i 0.968649 0.248432i \(-0.0799154\pi\)
0.409711 + 0.912216i \(0.365630\pi\)
\(368\) 9.36592 11.7445i 0.488232 0.612224i
\(369\) 1.00000 1.25396i 0.0520579 0.0652786i
\(370\) 12.9683 6.24521i 0.674190 0.324673i
\(371\) −0.00753275 0.0330031i −0.000391081 0.00171344i
\(372\) −0.348167 + 1.52542i −0.0180516 + 0.0790892i
\(373\) 3.43512 + 1.65426i 0.177864 + 0.0856546i 0.520697 0.853742i \(-0.325672\pi\)
−0.342833 + 0.939396i \(0.611387\pi\)
\(374\) −5.13706 + 2.47388i −0.265631 + 0.127921i
\(375\) 10.3802 45.4784i 0.536029 2.34850i
\(376\) 14.4916 0.747345
\(377\) −1.07577 + 7.82543i −0.0554049 + 0.403030i
\(378\) −4.28083 −0.220182
\(379\) −2.00849 + 8.79978i −0.103169 + 0.452014i 0.896785 + 0.442466i \(0.145896\pi\)
−0.999954 + 0.00954794i \(0.996961\pi\)
\(380\) 4.37047 2.10471i 0.224200 0.107969i
\(381\) −25.2690 12.1689i −1.29457 0.623433i
\(382\) 0.143768 0.629889i 0.00735582 0.0322279i
\(383\) 7.38524 + 32.3568i 0.377368 + 1.65336i 0.705488 + 0.708722i \(0.250728\pi\)
−0.328120 + 0.944636i \(0.606415\pi\)
\(384\) −10.0075 + 4.81937i −0.510695 + 0.245938i
\(385\) 4.98039 6.24521i 0.253824 0.318285i
\(386\) 1.07792 1.35168i 0.0548649 0.0687984i
\(387\) −0.147948 0.0712482i −0.00752064 0.00362175i
\(388\) 1.26809 + 1.59013i 0.0643773 + 0.0807266i
\(389\) 27.5362 1.39614 0.698070 0.716030i \(-0.254043\pi\)
0.698070 + 0.716030i \(0.254043\pi\)
\(390\) −8.32036 10.4334i −0.421318 0.528316i
\(391\) −1.84117 8.06668i −0.0931118 0.407949i
\(392\) −4.42423 19.3838i −0.223457 0.979031i
\(393\) 15.0918 + 18.9245i 0.761280 + 0.954615i
\(394\) 16.1588 0.814070
\(395\) 24.5906 + 30.8356i 1.23729 + 1.55151i
\(396\) −0.282323 0.135960i −0.0141873 0.00683224i
\(397\) −11.9852 + 15.0290i −0.601521 + 0.754284i −0.985614 0.169010i \(-0.945943\pi\)
0.384093 + 0.923294i \(0.374514\pi\)
\(398\) −15.1637 + 19.0147i −0.760086 + 0.953118i
\(399\) 3.02446 1.45650i 0.151412 0.0729163i
\(400\) 7.38255 + 32.3451i 0.369128 + 1.61725i
\(401\) −2.45353 + 10.7496i −0.122524 + 0.536811i 0.875991 + 0.482327i \(0.160208\pi\)
−0.998515 + 0.0544837i \(0.982649\pi\)
\(402\) −30.2630 14.5739i −1.50938 0.726880i
\(403\) 2.57846 1.24172i 0.128442 0.0618545i
\(404\) 0.318200 1.39412i 0.0158310 0.0693603i
\(405\) 39.1933 1.94753
\(406\) 2.56770 3.87325i 0.127433 0.192226i
\(407\) −8.12737 −0.402859
\(408\) −1.96077 + 8.59070i −0.0970726 + 0.425303i
\(409\) −30.4720 + 14.6745i −1.50674 + 0.725608i −0.991337 0.131339i \(-0.958072\pi\)
−0.515404 + 0.856948i \(0.672358\pi\)
\(410\) 29.5405 + 14.2259i 1.45890 + 0.702569i
\(411\) 6.81336 29.8513i 0.336078 1.47245i
\(412\) −0.646989 2.83464i −0.0318749 0.139653i
\(413\) 3.98792 1.92048i 0.196233 0.0945007i
\(414\) −0.990607 + 1.24218i −0.0486857 + 0.0610499i
\(415\) 10.1528 12.7312i 0.498381 0.624950i
\(416\) −3.26002 1.56994i −0.159836 0.0769728i
\(417\) 14.0036 + 17.5600i 0.685762 + 0.859918i
\(418\) 9.57002 0.468085
\(419\) −22.2080 27.8480i −1.08493 1.36046i −0.927882 0.372874i \(-0.878372\pi\)
−0.157052 0.987590i \(-0.550199\pi\)
\(420\) −0.500000 2.19064i −0.0243975 0.106892i
\(421\) 2.10441 + 9.22001i 0.102563 + 0.449356i 0.999967 + 0.00814670i \(0.00259320\pi\)
−0.897404 + 0.441209i \(0.854550\pi\)
\(422\) −16.0402 20.1138i −0.780824 0.979123i
\(423\) −1.17390 −0.0570769
\(424\) −0.0929903 0.116606i −0.00451601 0.00566290i
\(425\) 16.4644 + 7.92885i 0.798642 + 0.384606i
\(426\) −3.16487 + 3.96863i −0.153339 + 0.192281i
\(427\) −0.564351 + 0.707674i −0.0273109 + 0.0342468i
\(428\) −2.31940 + 1.11696i −0.112112 + 0.0539904i
\(429\) 1.67672 + 7.34619i 0.0809528 + 0.354677i
\(430\) 0.746980 3.27273i 0.0360226 0.157825i
\(431\) −0.887928 0.427603i −0.0427700 0.0205969i 0.412377 0.911014i \(-0.364699\pi\)
−0.455146 + 0.890417i \(0.650413\pi\)
\(432\) −13.0145 + 6.26747i −0.626162 + 0.301544i
\(433\) 6.38285 27.9651i 0.306740 1.34392i −0.552999 0.833182i \(-0.686517\pi\)
0.859739 0.510734i \(-0.170626\pi\)
\(434\) −1.68366 −0.0808183
\(435\) −21.7092 + 32.7472i −1.04088 + 1.57011i
\(436\) −4.08815 −0.195787
\(437\) −3.09030 + 13.5395i −0.147829 + 0.647682i
\(438\) −16.8497 + 8.11437i −0.805108 + 0.387719i
\(439\) 5.94116 + 2.86111i 0.283556 + 0.136553i 0.570256 0.821467i \(-0.306844\pi\)
−0.286700 + 0.958020i \(0.592558\pi\)
\(440\) 7.83124 34.3109i 0.373340 1.63571i
\(441\) 0.358388 + 1.57020i 0.0170661 + 0.0747714i
\(442\) 2.64310 1.27285i 0.125720 0.0605434i
\(443\) −13.3354 + 16.7221i −0.633585 + 0.794490i −0.990184 0.139767i \(-0.955365\pi\)
0.356599 + 0.934257i \(0.383936\pi\)
\(444\) −1.42543 + 1.78743i −0.0676478 + 0.0848277i
\(445\) 41.0637 + 19.7753i 1.94661 + 0.937437i
\(446\) −16.4054 20.5718i −0.776820 0.974102i
\(447\) −33.0030 −1.56099
\(448\) 3.83997 + 4.81517i 0.181422 + 0.227495i
\(449\) −6.51022 28.5231i −0.307236 1.34609i −0.858951 0.512058i \(-0.828883\pi\)
0.551715 0.834033i \(-0.313974\pi\)
\(450\) −0.780831 3.42105i −0.0368087 0.161270i
\(451\) −11.5429 14.4743i −0.543533 0.681569i
\(452\) 3.99031 0.187688
\(453\) −21.3877 26.8193i −1.00488 1.26008i
\(454\) −8.01573 3.86017i −0.376197 0.181167i
\(455\) −2.56249 + 3.21326i −0.120131 + 0.150640i
\(456\) 9.22132 11.5632i 0.431828 0.541495i
\(457\) 0.217677 0.104828i 0.0101825 0.00490362i −0.428786 0.903406i \(-0.641058\pi\)
0.438968 + 0.898503i \(0.355344\pi\)
\(458\) 0.624982 + 2.73822i 0.0292035 + 0.127949i
\(459\) −1.77048 + 7.75697i −0.0826389 + 0.362065i
\(460\) 8.37531 + 4.03334i 0.390501 + 0.188055i
\(461\) −15.6211 + 7.52272i −0.727547 + 0.350368i −0.760719 0.649081i \(-0.775153\pi\)
0.0331719 + 0.999450i \(0.489439\pi\)
\(462\) 0.986426 4.32182i 0.0458927 0.201069i
\(463\) 4.24996 0.197513 0.0987563 0.995112i \(-0.468514\pi\)
0.0987563 + 0.995112i \(0.468514\pi\)
\(464\) 2.13557 15.5347i 0.0991414 0.721181i
\(465\) 14.2349 0.660128
\(466\) −5.24698 + 22.9885i −0.243062 + 1.06492i
\(467\) 25.9780 12.5103i 1.20212 0.578910i 0.277839 0.960628i \(-0.410382\pi\)
0.924279 + 0.381718i \(0.124667\pi\)
\(468\) 0.145260 + 0.0699536i 0.00671465 + 0.00323360i
\(469\) −2.30194 + 10.0854i −0.106294 + 0.465703i
\(470\) −5.33997 23.3959i −0.246314 1.07917i
\(471\) 18.5700 8.94285i 0.855662 0.412065i
\(472\) 12.1588 15.2467i 0.559656 0.701786i
\(473\) −1.18180 + 1.48193i −0.0543392 + 0.0681392i
\(474\) 19.7201 + 9.49671i 0.905775 + 0.436198i
\(475\) −19.1238 23.9805i −0.877459 1.10030i
\(476\) 0.493959 0.0226406
\(477\) 0.00753275 + 0.00944576i 0.000344901 + 0.000432492i
\(478\) 5.68060 + 24.8884i 0.259825 + 1.13837i
\(479\) 5.37986 + 23.5707i 0.245812 + 1.07697i 0.935628 + 0.352988i \(0.114834\pi\)
−0.689816 + 0.723985i \(0.742308\pi\)
\(480\) −11.2213 14.0711i −0.512181 0.642255i
\(481\) 4.18167 0.190668
\(482\) 5.72923 + 7.18422i 0.260959 + 0.327232i
\(483\) 5.79590 + 2.79116i 0.263722 + 0.127002i
\(484\) 0.797093 0.999524i 0.0362315 0.0454329i
\(485\) 11.5368 14.4667i 0.523861 0.656901i
\(486\) 2.87651 1.38525i 0.130481 0.0628364i
\(487\) −4.29709 18.8268i −0.194720 0.853124i −0.974018 0.226470i \(-0.927281\pi\)
0.779298 0.626653i \(-0.215576\pi\)
\(488\) −0.887395 + 3.88793i −0.0401705 + 0.175998i
\(489\) 10.8361 + 5.21838i 0.490025 + 0.235983i
\(490\) −29.6640 + 14.2854i −1.34008 + 0.645349i
\(491\) −8.20895 + 35.9657i −0.370465 + 1.62311i 0.355010 + 0.934863i \(0.384477\pi\)
−0.725475 + 0.688249i \(0.758380\pi\)
\(492\) −5.20775 −0.234784
\(493\) −5.95646 6.25465i −0.268265 0.281695i
\(494\) −4.92394 −0.221538
\(495\) −0.634375 + 2.77938i −0.0285130 + 0.124924i
\(496\) −5.11865 + 2.46501i −0.229834 + 0.110682i
\(497\) 1.40850 + 0.678299i 0.0631799 + 0.0304259i
\(498\) 2.01089 8.81026i 0.0901099 0.394797i
\(499\) −8.39254 36.7701i −0.375701 1.64606i −0.710450 0.703748i \(-0.751508\pi\)
0.334748 0.942308i \(-0.391349\pi\)
\(500\) −10.3802 + 4.99882i −0.464215 + 0.223554i
\(501\) −16.4792 + 20.6642i −0.736236 + 0.923211i
\(502\) 10.0725 12.6306i 0.449560 0.563730i
\(503\) 6.31551 + 3.04139i 0.281595 + 0.135609i 0.569350 0.822095i \(-0.307195\pi\)
−0.287756 + 0.957704i \(0.592909\pi\)
\(504\) −0.324904 0.407417i −0.0144724 0.0181478i
\(505\) −13.0097 −0.578924
\(506\) 11.4345 + 14.3383i 0.508323 + 0.637417i
\(507\) 4.34990 + 19.0581i 0.193186 + 0.846402i
\(508\) 1.54138 + 6.75325i 0.0683879 + 0.299627i
\(509\) 11.4641 + 14.3756i 0.508138 + 0.637185i 0.968043 0.250783i \(-0.0806880\pi\)
−0.459905 + 0.887968i \(0.652117\pi\)
\(510\) 14.5918 0.646135
\(511\) 3.59113 + 4.50313i 0.158862 + 0.199207i
\(512\) 22.4693 + 10.8206i 0.993011 + 0.478209i
\(513\) 8.32640 10.4410i 0.367619 0.460980i
\(514\) 12.9777 16.2735i 0.572422 0.717794i
\(515\) −23.8327 + 11.4772i −1.05020 + 0.505748i
\(516\) 0.118645 + 0.519820i 0.00522308 + 0.0228838i
\(517\) −3.01520 + 13.2104i −0.132608 + 0.580995i
\(518\) −2.21648 1.06740i −0.0973865 0.0468989i
\(519\) 37.9245 18.2635i 1.66470 0.801678i
\(520\) −4.02930 + 17.6535i −0.176697 + 0.774159i
\(521\) 3.94571 0.172865 0.0864323 0.996258i \(-0.472453\pi\)
0.0864323 + 0.996258i \(0.472453\pi\)
\(522\) −0.225873 + 1.64306i −0.00988621 + 0.0719149i
\(523\) −33.9952 −1.48651 −0.743253 0.669010i \(-0.766718\pi\)
−0.743253 + 0.669010i \(0.766718\pi\)
\(524\) 1.33028 5.82834i 0.0581136 0.254612i
\(525\) −12.8007 + 6.16451i −0.558670 + 0.269041i
\(526\) −19.7838 9.52738i −0.862615 0.415414i
\(527\) −0.696333 + 3.05084i −0.0303328 + 0.132896i
\(528\) −3.32855 14.5833i −0.144857 0.634658i
\(529\) −3.25571 + 1.56787i −0.141553 + 0.0681681i
\(530\) −0.153989 + 0.193096i −0.00668887 + 0.00838757i
\(531\) −0.984935 + 1.23507i −0.0427425 + 0.0535974i
\(532\) −0.746980 0.359726i −0.0323857 0.0155961i
\(533\) 5.93900 + 7.44727i 0.257247 + 0.322577i
\(534\) 25.2935 1.09456
\(535\) 14.6027 + 18.3112i 0.631329 + 0.791661i
\(536\) 10.1419 + 44.4346i 0.438064 + 1.91928i
\(537\) 0.266594 + 1.16802i 0.0115044 + 0.0504040i
\(538\) 5.21648 + 6.54126i 0.224898 + 0.282014i
\(539\) 18.5907 0.800759
\(540\) −5.57338 6.98879i −0.239840 0.300750i
\(541\) −21.1151 10.1685i −0.907807 0.437177i −0.0791047 0.996866i \(-0.525206\pi\)
−0.828702 + 0.559689i \(0.810920\pi\)
\(542\) 9.84899 12.3502i 0.423051 0.530489i
\(543\) 12.3204 15.4492i 0.528717 0.662990i
\(544\) 3.56465 1.71664i 0.152833 0.0736005i
\(545\) 8.27628 + 36.2608i 0.354517 + 1.55324i
\(546\) −0.507533 + 2.22365i −0.0217204 + 0.0951633i
\(547\) −29.0976 14.0127i −1.24412 0.599138i −0.308193 0.951324i \(-0.599724\pi\)
−0.935930 + 0.352186i \(0.885439\pi\)
\(548\) −6.81336 + 3.28114i −0.291052 + 0.140163i
\(549\) 0.0718841 0.314945i 0.00306794 0.0134415i
\(550\) −40.5042 −1.72711
\(551\) 4.45257 + 13.7963i 0.189686 + 0.587741i
\(552\) 28.3424 1.20633
\(553\) 1.50000 6.57193i 0.0637865 0.279467i
\(554\) −17.6848 + 8.51654i −0.751354 + 0.361833i
\(555\) 18.7397 + 9.02458i 0.795458 + 0.383072i
\(556\) 1.23437 5.40811i 0.0523488 0.229355i
\(557\) −3.61045 15.8184i −0.152980 0.670248i −0.992010 0.126162i \(-0.959734\pi\)
0.839030 0.544085i \(-0.183123\pi\)
\(558\) 0.541385 0.260717i 0.0229186 0.0110370i
\(559\) 0.608056 0.762478i 0.0257180 0.0322494i
\(560\) 5.08695 6.37883i 0.214963 0.269555i
\(561\) −7.42327 3.57486i −0.313411 0.150931i
\(562\) 9.18561 + 11.5184i 0.387472 + 0.485874i
\(563\) −21.9168 −0.923681 −0.461841 0.886963i \(-0.652811\pi\)
−0.461841 + 0.886963i \(0.652811\pi\)
\(564\) 2.37651 + 2.98005i 0.100069 + 0.125483i
\(565\) −8.07822 35.3930i −0.339853 1.48899i
\(566\) 0.609916 + 2.67222i 0.0256367 + 0.112322i
\(567\) −4.17659 5.23728i −0.175400 0.219945i
\(568\) 6.88769 0.289001
\(569\) −23.3790 29.3163i −0.980097 1.22900i −0.973421 0.229025i \(-0.926446\pi\)
−0.00667655 0.999978i \(-0.502125\pi\)
\(570\) −22.0661 10.6265i −0.924249 0.445095i
\(571\) 17.2201 21.5934i 0.720640 0.903654i −0.277734 0.960658i \(-0.589583\pi\)
0.998374 + 0.0570041i \(0.0181548\pi\)
\(572\) 1.16033 1.45500i 0.0485156 0.0608367i
\(573\) 0.841166 0.405084i 0.0351402 0.0169226i
\(574\) −1.24698 5.46337i −0.0520479 0.228037i
\(575\) 13.0794 57.3047i 0.545449 2.38977i
\(576\) −1.98039 0.953703i −0.0825161 0.0397376i
\(577\) 5.70387 2.74684i 0.237455 0.114352i −0.311372 0.950288i \(-0.600789\pi\)
0.548827 + 0.835936i \(0.315074\pi\)
\(578\) 4.00335 17.5398i 0.166518 0.729561i
\(579\) 2.49827 0.103825
\(580\) 9.66637 0.850747i 0.401374 0.0353253i
\(581\) −2.78315 −0.115465
\(582\) 2.28501 10.0113i 0.0947168 0.414981i
\(583\) 0.125646 0.0605078i 0.00520371 0.00250598i
\(584\) 22.8632 + 11.0104i 0.946087 + 0.455612i
\(585\) 0.326396 1.43004i 0.0134948 0.0591247i
\(586\) 5.72819 + 25.0969i 0.236629 + 1.03674i
\(587\) 17.5939 8.47280i 0.726180 0.349710i −0.0340005 0.999422i \(-0.510825\pi\)
0.760180 + 0.649712i \(0.225110\pi\)
\(588\) 3.26055 4.08860i 0.134463 0.168611i
\(589\) 3.27479 4.10646i 0.134935 0.169204i
\(590\) −29.0954 14.0116i −1.19784 0.576850i
\(591\) 14.5586 + 18.2559i 0.598861 + 0.750948i
\(592\) −8.30127 −0.341180
\(593\) −1.53720 1.92759i −0.0631254 0.0791568i 0.749266 0.662269i \(-0.230406\pi\)
−0.812392 + 0.583112i \(0.801835\pi\)
\(594\) −3.92423 17.1932i −0.161013 0.705445i
\(595\) −1.00000 4.38129i −0.0409960 0.179615i
\(596\) 5.08211 + 6.37276i 0.208171 + 0.261038i
\(597\) −35.1444 −1.43836
\(598\) −5.88321 7.37732i −0.240583 0.301681i
\(599\) 4.65064 + 2.23963i 0.190020 + 0.0915087i 0.526474 0.850191i \(-0.323514\pi\)
−0.336455 + 0.941700i \(0.609228\pi\)
\(600\) −39.0284 + 48.9401i −1.59333 + 1.99797i
\(601\) −18.3723 + 23.0381i −0.749420 + 0.939743i −0.999595 0.0284577i \(-0.990940\pi\)
0.250175 + 0.968201i \(0.419512\pi\)
\(602\) −0.516926 + 0.248938i −0.0210683 + 0.0101460i
\(603\) −0.821552 3.59945i −0.0334562 0.146581i
\(604\) −1.88524 + 8.25977i −0.0767093 + 0.336085i
\(605\) −10.4792 5.04651i −0.426040 0.205170i
\(606\) −6.50484 + 3.13257i −0.264241 + 0.127252i
\(607\) −7.71068 + 33.7827i −0.312967 + 1.37120i 0.536654 + 0.843802i \(0.319688\pi\)
−0.849621 + 0.527394i \(0.823169\pi\)
\(608\) −6.64071 −0.269316
\(609\) 6.68933 0.588735i 0.271065 0.0238567i
\(610\) 6.60388 0.267383
\(611\) 1.55137 6.79699i 0.0627617 0.274977i
\(612\) −0.158834 + 0.0764902i −0.00642047 + 0.00309193i
\(613\) −24.7407 11.9145i −0.999268 0.481222i −0.138578 0.990352i \(-0.544253\pi\)
−0.860690 + 0.509130i \(0.829967\pi\)
\(614\) −6.32975 + 27.7324i −0.255448 + 1.11919i
\(615\) 10.5429 + 46.1914i 0.425130 + 1.86262i
\(616\) −5.41939 + 2.60984i −0.218353 + 0.105153i
\(617\) 21.3723 26.8000i 0.860415 1.07893i −0.135690 0.990751i \(-0.543325\pi\)
0.996105 0.0881746i \(-0.0281033\pi\)
\(618\) −9.15279 + 11.4772i −0.368179 + 0.461682i
\(619\) −23.1247 11.1363i −0.929462 0.447605i −0.0930221 0.995664i \(-0.529653\pi\)
−0.836440 + 0.548059i \(0.815367\pi\)
\(620\) −2.19202 2.74871i −0.0880337 0.110391i
\(621\) 25.5918 1.02696
\(622\) 24.1719 + 30.3106i 0.969204 + 1.21534i
\(623\) −1.73341 7.59455i −0.0694474 0.304269i
\(624\) 1.71260 + 7.50337i 0.0685587 + 0.300375i
\(625\) 29.8330 + 37.4094i 1.19332 + 1.49638i
\(626\) −14.0067 −0.559821
\(627\) 8.62229 + 10.8120i 0.344341 + 0.431790i
\(628\) −4.58642 2.20870i −0.183018 0.0881368i
\(629\) −2.85086 + 3.57486i −0.113671 + 0.142539i
\(630\) −0.538032 + 0.674671i −0.0214357 + 0.0268795i
\(631\) 26.4894 12.7566i 1.05453 0.507833i 0.175438 0.984491i \(-0.443866\pi\)
0.879089 + 0.476657i \(0.158152\pi\)
\(632\) −6.60872 28.9547i −0.262881 1.15176i
\(633\) 8.27240 36.2437i 0.328798 1.44056i
\(634\) 6.65883 + 3.20673i 0.264456 + 0.127355i
\(635\) 56.7790 27.3433i 2.25321 1.08509i
\(636\) 0.00872920 0.0382451i 0.000346135 0.00151652i
\(637\) −9.56524 −0.378989
\(638\) 17.9100 + 6.76212i 0.709063 + 0.267715i
\(639\) −0.557942 −0.0220718
\(640\) 5.55376 24.3326i 0.219532 0.961831i
\(641\) 9.43080 4.54164i 0.372494 0.179384i −0.238265 0.971200i \(-0.576579\pi\)
0.610759 + 0.791816i \(0.290864\pi\)
\(642\) 11.7104 + 5.63945i 0.462174 + 0.222571i
\(643\) −0.678743 + 2.97377i −0.0267670 + 0.117274i −0.986546 0.163481i \(-0.947728\pi\)
0.959779 + 0.280755i \(0.0905849\pi\)
\(644\) −0.353543 1.54898i −0.0139316 0.0610382i
\(645\) 4.37047 2.10471i 0.172087 0.0828728i
\(646\) 3.35690 4.20941i 0.132075 0.165617i
\(647\) −18.5824 + 23.3016i −0.730550 + 0.916080i −0.998883 0.0472458i \(-0.984956\pi\)
0.268334 + 0.963326i \(0.413527\pi\)
\(648\) −26.5906 12.8054i −1.04458 0.503042i
\(649\) 11.3690 + 14.2562i 0.446271 + 0.559607i
\(650\) 20.8401 0.817416
\(651\) −1.51693 1.90216i −0.0594530 0.0745517i
\(652\) −0.660990 2.89598i −0.0258863 0.113416i
\(653\) −2.53438 11.1039i −0.0991781 0.434528i −1.00000 0.000338791i \(-0.999892\pi\)
0.900822 0.434189i \(-0.142965\pi\)
\(654\) 12.8693 + 16.1376i 0.503228 + 0.631028i
\(655\) −54.3889 −2.12515
\(656\) −11.7899 14.7840i −0.460317 0.577219i
\(657\) −1.85205 0.891901i −0.0722554 0.0347964i
\(658\) −2.55728 + 3.20673i −0.0996931 + 0.125011i
\(659\) −2.86025 + 3.58664i −0.111419 + 0.139716i −0.834414 0.551138i \(-0.814194\pi\)
0.722995 + 0.690854i \(0.242765\pi\)
\(660\) 8.33997 4.01632i 0.324633 0.156335i
\(661\) 2.86712 + 12.5617i 0.111518 + 0.488592i 0.999583 + 0.0288743i \(0.00919225\pi\)
−0.888065 + 0.459718i \(0.847951\pi\)
\(662\) −8.57673 + 37.5771i −0.333344 + 1.46048i
\(663\) 3.81940 + 1.83932i 0.148333 + 0.0714334i
\(664\) −11.0477 + 5.32030i −0.428735 + 0.206468i
\(665\) −1.67845 + 7.35376i −0.0650874 + 0.285167i
\(666\) 0.878002 0.0340219
\(667\) −15.3503 + 23.1551i −0.594367 + 0.896571i
\(668\) 6.52781 0.252569
\(669\) 8.46077 37.0691i 0.327112 1.43317i
\(670\) 68.0004 32.7472i 2.62708 1.26514i
\(671\) −3.35958 1.61789i −0.129695 0.0624580i
\(672\) −0.684489 + 2.99894i −0.0264047 + 0.115687i
\(673\) −1.06518 4.66686i −0.0410596 0.179894i 0.950240 0.311519i \(-0.100838\pi\)
−0.991300 + 0.131625i \(0.957981\pi\)
\(674\) −9.00484 + 4.33650i −0.346854 + 0.167036i
\(675\) −35.2407 + 44.1904i −1.35642 + 1.70089i
\(676\) 3.01022 3.77470i 0.115778 0.145181i
\(677\) 27.5034 + 13.2449i 1.05704 + 0.509045i 0.879909 0.475142i \(-0.157603\pi\)
0.177133 + 0.984187i \(0.443318\pi\)
\(678\) −12.5613 15.7514i −0.482414 0.604928i
\(679\) −3.16255 −0.121368
\(680\) −12.3448 15.4799i −0.473402 0.593627i
\(681\) −2.86078 12.5339i −0.109625 0.480300i
\(682\) −1.54341 6.76212i −0.0591002 0.258935i
\(683\) 5.95138 + 7.46279i 0.227723 + 0.285556i 0.882545 0.470227i \(-0.155828\pi\)
−0.654822 + 0.755783i \(0.727257\pi\)
\(684\) 0.295897 0.0113139
\(685\) 42.8962 + 53.7901i 1.63898 + 2.05521i
\(686\) 10.5124 + 5.06249i 0.401364 + 0.193287i
\(687\) −2.53050 + 3.17315i −0.0965446 + 0.121063i
\(688\) −1.20709 + 1.51364i −0.0460198 + 0.0577070i
\(689\) −0.0646468 + 0.0311323i −0.00246285 + 0.00118604i
\(690\) −10.4438 45.7575i −0.397590 1.74196i
\(691\) 3.66799 16.0705i 0.139537 0.611351i −0.856000 0.516976i \(-0.827058\pi\)
0.995537 0.0943750i \(-0.0300853\pi\)
\(692\) −9.36658 4.51071i −0.356064 0.171471i
\(693\) 0.439001 0.211412i 0.0166763 0.00803087i
\(694\) 0.628039 2.75162i 0.0238400 0.104450i
\(695\) −50.4674 −1.91434
\(696\) 25.4279 15.1244i 0.963841 0.573288i
\(697\) −10.4155 −0.394515
\(698\) 6.53989 28.6531i 0.247539 1.08454i
\(699\) −30.6993 + 14.7840i −1.16115 + 0.559183i
\(700\) 3.16152 + 1.52251i 0.119494 + 0.0575454i
\(701\) −10.4288 + 45.6915i −0.393890 + 1.72574i 0.256858 + 0.966449i \(0.417313\pi\)
−0.650748 + 0.759294i \(0.725544\pi\)
\(702\) 2.01908 + 8.84618i 0.0762053 + 0.333877i
\(703\) 6.91454 3.32987i 0.260787 0.125588i
\(704\) −15.8192 + 19.8366i −0.596207 + 0.747620i
\(705\) 21.6211 27.1120i 0.814298 1.02110i
\(706\) 1.10388 + 0.531598i 0.0415449 + 0.0200070i
\(707\) 1.38636 + 1.73844i 0.0521395 + 0.0653809i
\(708\) 5.12929 0.192771
\(709\) 6.60955 + 8.28811i 0.248227 + 0.311267i 0.890298 0.455379i \(-0.150496\pi\)
−0.642071 + 0.766645i \(0.721925\pi\)
\(710\) −2.53803 11.1198i −0.0952507 0.417320i
\(711\) 0.535344 + 2.34549i 0.0200770 + 0.0879629i
\(712\) −21.3986 26.8330i −0.801946 1.00561i
\(713\) 10.0653 0.376949
\(714\) −1.55496 1.94986i −0.0581928 0.0729715i
\(715\) −15.2545 7.34619i −0.570486 0.274732i
\(716\) 0.184489 0.231342i 0.00689467 0.00864564i
\(717\) −23.0003 + 28.8415i −0.858962 + 1.07710i
\(718\) 8.85570 4.26468i 0.330492 0.159156i
\(719\) 2.96064 + 12.9714i 0.110413 + 0.483752i 0.999654 + 0.0263121i \(0.00837637\pi\)
−0.889241 + 0.457440i \(0.848766\pi\)
\(720\) −0.647948 + 2.83885i −0.0241476 + 0.105798i
\(721\) 4.07338 + 1.96163i 0.151700 + 0.0730551i
\(722\) 13.2044 6.35890i 0.491417 0.236654i
\(723\) −2.95473 + 12.9455i −0.109888 + 0.481449i
\(724\) −4.88040 −0.181378
\(725\) −18.8451 58.3914i −0.699890 2.16860i
\(726\) −6.45473 −0.239558
\(727\) −7.34708 + 32.1896i −0.272488 + 1.19385i 0.634578 + 0.772859i \(0.281174\pi\)
−0.907066 + 0.420989i \(0.861683\pi\)
\(728\) 2.78836 1.34281i 0.103344 0.0497677i
\(729\) −22.0073 10.5982i −0.815085 0.392524i
\(730\) 9.35086 40.9688i 0.346091 1.51632i
\(731\) 0.237291 + 1.03964i 0.00877652 + 0.0384525i
\(732\) −0.945042 + 0.455108i −0.0349298 + 0.0168213i
\(733\) 19.8240 24.8585i 0.732216 0.918170i −0.266744 0.963768i \(-0.585948\pi\)
0.998960 + 0.0455974i \(0.0145191\pi\)
\(734\) −22.7863 + 28.5732i −0.841059 + 1.05465i
\(735\) −42.8657 20.6430i −1.58112 0.761429i
\(736\) −7.93445 9.94949i −0.292468 0.366743i
\(737\) −42.6165 −1.56980
\(738\) 1.24698 + 1.56366i 0.0459020 + 0.0575592i
\(739\) 5.32616 + 23.3354i 0.195926 + 0.858408i 0.973331 + 0.229407i \(0.0736786\pi\)
−0.777405 + 0.629001i \(0.783464\pi\)
\(740\) −1.14310 5.00827i −0.0420213 0.184108i
\(741\) −4.43631 5.56296i −0.162972 0.204360i
\(742\) 0.0422126 0.00154967
\(743\) −4.62163 5.79534i −0.169551 0.212610i 0.689795 0.724005i \(-0.257701\pi\)
−0.859346 + 0.511394i \(0.829129\pi\)
\(744\) −9.65764 4.65087i −0.354066 0.170509i
\(745\) 46.2362 57.9783i 1.69396 2.12416i
\(746\) −2.96429 + 3.71710i −0.108530 + 0.136093i
\(747\) 0.894928 0.430975i 0.0327437 0.0157685i
\(748\) 0.452812 + 1.98390i 0.0165564 + 0.0725385i
\(749\) 0.890748 3.90262i 0.0325472 0.142599i
\(750\) 52.4086 + 25.2386i 1.91369 + 0.921585i
\(751\) 17.4448 8.40098i 0.636570 0.306556i −0.0876226 0.996154i \(-0.527927\pi\)
0.724193 + 0.689598i \(0.242213\pi\)
\(752\) −3.07971 + 13.4931i −0.112306 + 0.492043i
\(753\) 23.3448 0.850732
\(754\) −9.21499 3.47922i −0.335590 0.126706i
\(755\) 77.0786 2.80518
\(756\) −0.339970 + 1.48951i −0.0123646 + 0.0541728i
\(757\) 30.8463 14.8548i 1.12113 0.539907i 0.220887 0.975299i \(-0.429105\pi\)
0.900241 + 0.435393i \(0.143390\pi\)
\(758\) −10.1407 4.88351i −0.368327 0.177377i
\(759\) −5.89708 + 25.8368i −0.214051 + 0.937817i
\(760\) 7.39493 + 32.3993i 0.268242 + 1.17525i
\(761\) −13.1174 + 6.31703i −0.475507 + 0.228992i −0.656258 0.754537i \(-0.727862\pi\)
0.180751 + 0.983529i \(0.442147\pi\)
\(762\) 21.8056 27.3433i 0.789933 0.990545i
\(763\) 3.96346 4.97002i 0.143487 0.179927i
\(764\) −0.207751 0.100048i −0.00751617 0.00361959i
\(765\) 1.00000 + 1.25396i 0.0361551 + 0.0453370i
\(766\) −41.3860 −1.49534
\(767\) −5.84953 7.33507i −0.211214 0.264854i
\(768\) 4.05496 + 17.7659i 0.146321 + 0.641073i
\(769\) −2.57314 11.2737i −0.0927898 0.406539i 0.907107 0.420900i \(-0.138286\pi\)
−0.999897 + 0.0143613i \(0.995428\pi\)
\(770\) 6.21044 + 7.78764i 0.223809 + 0.280647i
\(771\) 30.0780 1.08323
\(772\) −0.384707 0.482407i −0.0138459 0.0173622i
\(773\) −7.54503