Properties

Label 29.2.d.a.23.1
Level 29
Weight 2
Character 29.23
Analytic conductor 0.232
Analytic rank 0
Dimension 6
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 29.d (of order \(7\) and degree \(6\))

Newform invariants

Self dual: No
Analytic conductor: \(0.231566165862\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 23.1
Root \(0.222521 + 0.974928i\)
Character \(\chi\) = 29.23
Dual form 29.2.d.a.24.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-1.12349 + 1.40881i) q^{2}\) \(+(-0.0990311 + 0.433884i) q^{3}\) \(+(-0.277479 - 1.21572i) q^{4}\) \(+(0.222521 - 0.279032i) q^{5}\) \(+(-0.500000 - 0.626980i) q^{6}\) \(+(0.900969 - 3.94740i) q^{7}\) \(+(-1.22252 - 0.588735i) q^{8}\) \(+(2.52446 + 1.21572i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-1.12349 + 1.40881i) q^{2}\) \(+(-0.0990311 + 0.433884i) q^{3}\) \(+(-0.277479 - 1.21572i) q^{4}\) \(+(0.222521 - 0.279032i) q^{5}\) \(+(-0.500000 - 0.626980i) q^{6}\) \(+(0.900969 - 3.94740i) q^{7}\) \(+(-1.22252 - 0.588735i) q^{8}\) \(+(2.52446 + 1.21572i) q^{9}\) \(+(0.143104 + 0.626980i) q^{10}\) \(+(-2.62349 + 1.26341i) q^{11}\) \(+0.554958 q^{12}\) \(+(-4.67241 + 2.25011i) q^{13}\) \(+(4.54892 + 5.70416i) q^{14}\) \(+(0.0990311 + 0.124181i) q^{15}\) \(+(4.44989 - 2.14295i) q^{16}\) \(+1.10992 q^{17}\) \(+(-4.54892 + 2.19064i) q^{18}\) \(+(-0.455927 - 1.99755i) q^{19}\) \(+(-0.400969 - 0.193096i) q^{20}\) \(+(1.62349 + 0.781831i) q^{21}\) \(+(1.16756 - 5.11543i) q^{22}\) \(+(-2.57942 - 3.23449i) q^{23}\) \(+(0.376510 - 0.472129i) q^{24}\) \(+(1.08426 + 4.75046i) q^{25}\) \(+(2.07942 - 9.11052i) q^{26}\) \(+(-1.60992 + 2.01877i) q^{27}\) \(-5.04892 q^{28}\) \(+(4.38404 - 3.12733i) q^{29}\) \(-0.286208 q^{30}\) \(+(-3.96346 + 4.97002i) q^{31}\) \(+(-1.37651 + 6.03089i) q^{32}\) \(+(-0.288364 - 1.26341i) q^{33}\) \(+(-1.24698 + 1.56366i) q^{34}\) \(+(-0.900969 - 1.12978i) q^{35}\) \(+(0.777479 - 3.40636i) q^{36}\) \(+(2.62349 + 1.26341i) q^{37}\) \(+(3.32640 + 1.60191i) q^{38}\) \(+(-0.513574 - 2.25011i) q^{39}\) \(+(-0.436313 + 0.210117i) q^{40}\) \(+0.396125 q^{41}\) \(+(-2.92543 + 1.40881i) q^{42}\) \(+(3.57942 + 4.48845i) q^{43}\) \(+(2.26391 + 2.83885i) q^{44}\) \(+(0.900969 - 0.433884i) q^{45}\) \(+7.45473 q^{46}\) \(+(7.02930 - 3.38513i) q^{47}\) \(+(0.489115 + 2.14295i) q^{48}\) \(+(-8.46346 - 4.07579i) q^{49}\) \(+(-7.91066 - 3.80957i) q^{50}\) \(+(-0.109916 + 0.481575i) q^{51}\) \(+(4.03199 + 5.05596i) q^{52}\) \(+(-2.71648 + 3.40636i) q^{53}\) \(+(-1.03534 - 4.53614i) q^{54}\) \(+(-0.231250 + 1.01317i) q^{55}\) \(+(-3.42543 + 4.29535i) q^{56}\) \(+0.911854 q^{57}\) \(+(-0.519614 + 9.68981i) q^{58}\) \(-9.10992 q^{59}\) \(+(0.123490 - 0.154851i) q^{60}\) \(+(1.34601 - 5.89726i) q^{61}\) \(+(-2.54892 - 11.1675i) q^{62}\) \(+(7.07338 - 8.86973i) q^{63}\) \(+(-0.791053 - 0.991949i) q^{64}\) \(+(-0.411854 + 1.80445i) q^{65}\) \(+(2.10388 + 1.01317i) q^{66}\) \(+(-0.337282 - 0.162426i) q^{67}\) \(+(-0.307979 - 1.34934i) q^{68}\) \(+(1.65883 - 0.798852i) q^{69}\) \(+2.60388 q^{70}\) \(+(10.2763 - 4.94880i) q^{71}\) \(+(-2.37047 - 2.97247i) q^{72}\) \(+(-5.57942 - 6.99637i) q^{73}\) \(+(-4.72737 + 2.27658i) q^{74}\) \(-2.16852 q^{75}\) \(+(-2.30194 + 1.10855i) q^{76}\) \(+(2.62349 + 11.4943i) q^{77}\) \(+(3.74698 + 1.80445i) q^{78}\) \(+(0.535344 + 0.257808i) q^{79}\) \(+(0.392240 - 1.71851i) q^{80}\) \(+(4.52446 + 5.67349i) q^{81}\) \(+(-0.445042 + 0.558065i) q^{82}\) \(+(2.09903 + 9.19646i) q^{83}\) \(+(0.500000 - 2.19064i) q^{84}\) \(+(0.246980 - 0.309703i) q^{85}\) \(-10.3448 q^{86}\) \(+(0.922739 + 2.21187i) q^{87}\) \(+3.95108 q^{88}\) \(+(0.887395 - 1.11276i) q^{89}\) \(+(-0.400969 + 1.75676i) q^{90}\) \(+(4.67241 + 20.4712i) q^{91}\) \(+(-3.21648 + 4.03334i) q^{92}\) \(+(-1.76391 - 2.21187i) q^{93}\) \(+(-3.12833 + 13.7061i) q^{94}\) \(+(-0.658834 - 0.317278i) q^{95}\) \(+(-2.48039 - 1.19449i) q^{96}\) \(+(-3.50484 - 15.3557i) q^{97}\) \(+(15.2506 - 7.34432i) q^{98}\) \(-8.15883 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(6q \) \(\mathstrut -\mathstrut 2q^{2} \) \(\mathstrut -\mathstrut 5q^{3} \) \(\mathstrut -\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut -\mathstrut 3q^{6} \) \(\mathstrut +\mathstrut q^{7} \) \(\mathstrut -\mathstrut 7q^{8} \) \(\mathstrut +\mathstrut 6q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(6q \) \(\mathstrut -\mathstrut 2q^{2} \) \(\mathstrut -\mathstrut 5q^{3} \) \(\mathstrut -\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut -\mathstrut 3q^{6} \) \(\mathstrut +\mathstrut q^{7} \) \(\mathstrut -\mathstrut 7q^{8} \) \(\mathstrut +\mathstrut 6q^{9} \) \(\mathstrut +\mathstrut 9q^{10} \) \(\mathstrut -\mathstrut 11q^{11} \) \(\mathstrut +\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 5q^{13} \) \(\mathstrut +\mathstrut 9q^{14} \) \(\mathstrut +\mathstrut 5q^{15} \) \(\mathstrut +\mathstrut 4q^{16} \) \(\mathstrut +\mathstrut 8q^{17} \) \(\mathstrut -\mathstrut 9q^{18} \) \(\mathstrut +\mathstrut q^{19} \) \(\mathstrut +\mathstrut 2q^{20} \) \(\mathstrut +\mathstrut 5q^{21} \) \(\mathstrut +\mathstrut 6q^{22} \) \(\mathstrut -\mathstrut 7q^{23} \) \(\mathstrut +\mathstrut 7q^{24} \) \(\mathstrut -\mathstrut 24q^{25} \) \(\mathstrut +\mathstrut 4q^{26} \) \(\mathstrut -\mathstrut 11q^{27} \) \(\mathstrut -\mathstrut 12q^{28} \) \(\mathstrut +\mathstrut 6q^{29} \) \(\mathstrut -\mathstrut 18q^{30} \) \(\mathstrut +\mathstrut 5q^{31} \) \(\mathstrut -\mathstrut 13q^{32} \) \(\mathstrut +\mathstrut q^{33} \) \(\mathstrut +\mathstrut 2q^{34} \) \(\mathstrut -\mathstrut q^{35} \) \(\mathstrut +\mathstrut 5q^{36} \) \(\mathstrut +\mathstrut 11q^{37} \) \(\mathstrut +\mathstrut 2q^{38} \) \(\mathstrut +\mathstrut 3q^{39} \) \(\mathstrut +\mathstrut 14q^{40} \) \(\mathstrut +\mathstrut 20q^{41} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut +\mathstrut 13q^{43} \) \(\mathstrut +\mathstrut 20q^{44} \) \(\mathstrut +\mathstrut q^{45} \) \(\mathstrut +\mathstrut 11q^{47} \) \(\mathstrut +\mathstrut 6q^{48} \) \(\mathstrut -\mathstrut 22q^{49} \) \(\mathstrut +\mathstrut q^{50} \) \(\mathstrut -\mathstrut 2q^{51} \) \(\mathstrut -\mathstrut 10q^{52} \) \(\mathstrut +\mathstrut 3q^{53} \) \(\mathstrut +\mathstrut 6q^{54} \) \(\mathstrut -\mathstrut 17q^{55} \) \(\mathstrut -\mathstrut 7q^{56} \) \(\mathstrut -\mathstrut 2q^{57} \) \(\mathstrut -\mathstrut 16q^{58} \) \(\mathstrut -\mathstrut 56q^{59} \) \(\mathstrut -\mathstrut 4q^{60} \) \(\mathstrut +\mathstrut 3q^{61} \) \(\mathstrut +\mathstrut 3q^{62} \) \(\mathstrut +\mathstrut 15q^{63} \) \(\mathstrut +\mathstrut q^{64} \) \(\mathstrut +\mathstrut 5q^{65} \) \(\mathstrut -\mathstrut 5q^{66} \) \(\mathstrut +\mathstrut 19q^{67} \) \(\mathstrut -\mathstrut 12q^{68} \) \(\mathstrut -\mathstrut 7q^{69} \) \(\mathstrut -\mathstrut 2q^{70} \) \(\mathstrut +\mathstrut 21q^{71} \) \(\mathstrut -\mathstrut 25q^{73} \) \(\mathstrut -\mathstrut 6q^{74} \) \(\mathstrut +\mathstrut 48q^{75} \) \(\mathstrut -\mathstrut 5q^{76} \) \(\mathstrut +\mathstrut 11q^{77} \) \(\mathstrut +\mathstrut 13q^{78} \) \(\mathstrut -\mathstrut 9q^{79} \) \(\mathstrut -\mathstrut 18q^{80} \) \(\mathstrut +\mathstrut 18q^{81} \) \(\mathstrut -\mathstrut 2q^{82} \) \(\mathstrut +\mathstrut 17q^{83} \) \(\mathstrut +\mathstrut 3q^{84} \) \(\mathstrut -\mathstrut 8q^{85} \) \(\mathstrut -\mathstrut 16q^{86} \) \(\mathstrut -\mathstrut 5q^{87} \) \(\mathstrut +\mathstrut 42q^{88} \) \(\mathstrut +\mathstrut 7q^{89} \) \(\mathstrut +\mathstrut 2q^{90} \) \(\mathstrut +\mathstrut 5q^{91} \) \(\mathstrut -\mathstrut 17q^{93} \) \(\mathstrut +\mathstrut 8q^{94} \) \(\mathstrut +\mathstrut 13q^{95} \) \(\mathstrut -\mathstrut 2q^{96} \) \(\mathstrut +\mathstrut q^{97} \) \(\mathstrut +\mathstrut 19q^{98} \) \(\mathstrut -\mathstrut 32q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.12349 + 1.40881i −0.794427 + 0.996180i 0.205419 + 0.978674i \(0.434144\pi\)
−0.999847 + 0.0175063i \(0.994427\pi\)
\(3\) −0.0990311 + 0.433884i −0.0571757 + 0.250503i −0.995437 0.0954255i \(-0.969579\pi\)
0.938261 + 0.345928i \(0.112436\pi\)
\(4\) −0.277479 1.21572i −0.138740 0.607858i
\(5\) 0.222521 0.279032i 0.0995144 0.124787i −0.729581 0.683895i \(-0.760285\pi\)
0.829095 + 0.559108i \(0.188856\pi\)
\(6\) −0.500000 0.626980i −0.204124 0.255964i
\(7\) 0.900969 3.94740i 0.340534 1.49198i −0.457415 0.889253i \(-0.651225\pi\)
0.797949 0.602725i \(-0.205918\pi\)
\(8\) −1.22252 0.588735i −0.432226 0.208149i
\(9\) 2.52446 + 1.21572i 0.841486 + 0.405238i
\(10\) 0.143104 + 0.626980i 0.0452535 + 0.198269i
\(11\) −2.62349 + 1.26341i −0.791012 + 0.380931i −0.785349 0.619053i \(-0.787517\pi\)
−0.00566249 + 0.999984i \(0.501802\pi\)
\(12\) 0.554958 0.160203
\(13\) −4.67241 + 2.25011i −1.29589 + 0.624069i −0.949425 0.313993i \(-0.898333\pi\)
−0.346467 + 0.938062i \(0.612619\pi\)
\(14\) 4.54892 + 5.70416i 1.21575 + 1.52450i
\(15\) 0.0990311 + 0.124181i 0.0255697 + 0.0320634i
\(16\) 4.44989 2.14295i 1.11247 0.535738i
\(17\) 1.10992 0.269194 0.134597 0.990900i \(-0.457026\pi\)
0.134597 + 0.990900i \(0.457026\pi\)
\(18\) −4.54892 + 2.19064i −1.07219 + 0.516340i
\(19\) −0.455927 1.99755i −0.104597 0.458269i −0.999917 0.0128465i \(-0.995911\pi\)
0.895321 0.445422i \(-0.146946\pi\)
\(20\) −0.400969 0.193096i −0.0896594 0.0431777i
\(21\) 1.62349 + 0.781831i 0.354275 + 0.170610i
\(22\) 1.16756 5.11543i 0.248925 1.09061i
\(23\) −2.57942 3.23449i −0.537846 0.674437i 0.436445 0.899731i \(-0.356237\pi\)
−0.974291 + 0.225294i \(0.927666\pi\)
\(24\) 0.376510 0.472129i 0.0768548 0.0963729i
\(25\) 1.08426 + 4.75046i 0.216852 + 0.950092i
\(26\) 2.07942 9.11052i 0.407807 1.78672i
\(27\) −1.60992 + 2.01877i −0.309829 + 0.388513i
\(28\) −5.04892 −0.954156
\(29\) 4.38404 3.12733i 0.814096 0.580730i
\(30\) −0.286208 −0.0522542
\(31\) −3.96346 + 4.97002i −0.711858 + 0.892642i −0.997847 0.0655910i \(-0.979107\pi\)
0.285988 + 0.958233i \(0.407678\pi\)
\(32\) −1.37651 + 6.03089i −0.243335 + 1.06612i
\(33\) −0.288364 1.26341i −0.0501978 0.219931i
\(34\) −1.24698 + 1.56366i −0.213855 + 0.268166i
\(35\) −0.900969 1.12978i −0.152292 0.190968i
\(36\) 0.777479 3.40636i 0.129580 0.567726i
\(37\) 2.62349 + 1.26341i 0.431299 + 0.207703i 0.636921 0.770929i \(-0.280208\pi\)
−0.205622 + 0.978631i \(0.565922\pi\)
\(38\) 3.32640 + 1.60191i 0.539613 + 0.259864i
\(39\) −0.513574 2.25011i −0.0822376 0.360306i
\(40\) −0.436313 + 0.210117i −0.0689871 + 0.0332224i
\(41\) 0.396125 0.0618643 0.0309321 0.999521i \(-0.490152\pi\)
0.0309321 + 0.999521i \(0.490152\pi\)
\(42\) −2.92543 + 1.40881i −0.451403 + 0.217384i
\(43\) 3.57942 + 4.48845i 0.545856 + 0.684482i 0.975873 0.218339i \(-0.0700639\pi\)
−0.430017 + 0.902821i \(0.641492\pi\)
\(44\) 2.26391 + 2.83885i 0.341297 + 0.427972i
\(45\) 0.900969 0.433884i 0.134309 0.0646796i
\(46\) 7.45473 1.09914
\(47\) 7.02930 3.38513i 1.02533 0.493773i 0.155870 0.987778i \(-0.450182\pi\)
0.869459 + 0.494005i \(0.164468\pi\)
\(48\) 0.489115 + 2.14295i 0.0705977 + 0.309309i
\(49\) −8.46346 4.07579i −1.20907 0.582255i
\(50\) −7.91066 3.80957i −1.11874 0.538755i
\(51\) −0.109916 + 0.481575i −0.0153914 + 0.0674339i
\(52\) 4.03199 + 5.05596i 0.559137 + 0.701135i
\(53\) −2.71648 + 3.40636i −0.373137 + 0.467899i −0.932577 0.360972i \(-0.882445\pi\)
0.559439 + 0.828871i \(0.311016\pi\)
\(54\) −1.03534 4.53614i −0.140892 0.617290i
\(55\) −0.231250 + 1.01317i −0.0311818 + 0.136616i
\(56\) −3.42543 + 4.29535i −0.457742 + 0.573990i
\(57\) 0.911854 0.120778
\(58\) −0.519614 + 9.68981i −0.0682287 + 1.27233i
\(59\) −9.10992 −1.18601 −0.593005 0.805199i \(-0.702059\pi\)
−0.593005 + 0.805199i \(0.702059\pi\)
\(60\) 0.123490 0.154851i 0.0159425 0.0199912i
\(61\) 1.34601 5.89726i 0.172339 0.755067i −0.812693 0.582693i \(-0.801999\pi\)
0.985032 0.172374i \(-0.0551437\pi\)
\(62\) −2.54892 11.1675i −0.323713 1.41828i
\(63\) 7.07338 8.86973i 0.891162 1.11748i
\(64\) −0.791053 0.991949i −0.0988816 0.123994i
\(65\) −0.411854 + 1.80445i −0.0510842 + 0.223815i
\(66\) 2.10388 + 1.01317i 0.258969 + 0.124713i
\(67\) −0.337282 0.162426i −0.0412055 0.0198435i 0.413168 0.910655i \(-0.364422\pi\)
−0.454373 + 0.890812i \(0.650137\pi\)
\(68\) −0.307979 1.34934i −0.0373479 0.163632i
\(69\) 1.65883 0.798852i 0.199700 0.0961705i
\(70\) 2.60388 0.311223
\(71\) 10.2763 4.94880i 1.21957 0.587314i 0.290379 0.956912i \(-0.406219\pi\)
0.929192 + 0.369598i \(0.120505\pi\)
\(72\) −2.37047 2.97247i −0.279362 0.350309i
\(73\) −5.57942 6.99637i −0.653021 0.818863i 0.339542 0.940591i \(-0.389728\pi\)
−0.992563 + 0.121728i \(0.961156\pi\)
\(74\) −4.72737 + 2.27658i −0.549545 + 0.264647i
\(75\) −2.16852 −0.250399
\(76\) −2.30194 + 1.10855i −0.264050 + 0.127160i
\(77\) 2.62349 + 11.4943i 0.298974 + 1.30989i
\(78\) 3.74698 + 1.80445i 0.424262 + 0.204314i
\(79\) 0.535344 + 0.257808i 0.0602309 + 0.0290057i 0.463757 0.885963i \(-0.346501\pi\)
−0.403526 + 0.914968i \(0.632215\pi\)
\(80\) 0.392240 1.71851i 0.0438537 0.192136i
\(81\) 4.52446 + 5.67349i 0.502718 + 0.630388i
\(82\) −0.445042 + 0.558065i −0.0491467 + 0.0616280i
\(83\) 2.09903 + 9.19646i 0.230399 + 1.00944i 0.949310 + 0.314341i \(0.101783\pi\)
−0.718912 + 0.695101i \(0.755359\pi\)
\(84\) 0.500000 2.19064i 0.0545545 0.239019i
\(85\) 0.246980 0.309703i 0.0267887 0.0335920i
\(86\) −10.3448 −1.11551
\(87\) 0.922739 + 2.21187i 0.0989280 + 0.237137i
\(88\) 3.95108 0.421187
\(89\) 0.887395 1.11276i 0.0940637 0.117952i −0.732572 0.680689i \(-0.761680\pi\)
0.826636 + 0.562737i \(0.190252\pi\)
\(90\) −0.400969 + 1.75676i −0.0422658 + 0.185179i
\(91\) 4.67241 + 20.4712i 0.489801 + 2.14596i
\(92\) −3.21648 + 4.03334i −0.335341 + 0.420505i
\(93\) −1.76391 2.21187i −0.182908 0.229360i
\(94\) −3.12833 + 13.7061i −0.322663 + 1.41368i
\(95\) −0.658834 0.317278i −0.0675949 0.0325520i
\(96\) −2.48039 1.19449i −0.253153 0.121912i
\(97\) −3.50484 15.3557i −0.355863 1.55914i −0.763386 0.645943i \(-0.776464\pi\)
0.407523 0.913195i \(-0.366393\pi\)
\(98\) 15.2506 7.34432i 1.54055 0.741888i
\(99\) −8.15883 −0.819994
\(100\) 5.47434 2.63631i 0.547434 0.263631i
\(101\) −10.8753 13.6372i −1.08213 1.35695i −0.929564 0.368661i \(-0.879816\pi\)
−0.152570 0.988293i \(-0.548755\pi\)
\(102\) −0.554958 0.695895i −0.0549490 0.0689039i
\(103\) 2.53534 1.22096i 0.249815 0.120304i −0.304786 0.952421i \(-0.598585\pi\)
0.554601 + 0.832116i \(0.312871\pi\)
\(104\) 7.03684 0.690019
\(105\) 0.579417 0.279032i 0.0565453 0.0272308i
\(106\) −1.74698 7.65402i −0.169682 0.743424i
\(107\) 6.72132 + 3.23682i 0.649775 + 0.312915i 0.729580 0.683895i \(-0.239716\pi\)
−0.0798052 + 0.996810i \(0.525430\pi\)
\(108\) 2.90097 + 1.39703i 0.279146 + 0.134430i
\(109\) 0.367781 1.61135i 0.0352270 0.154340i −0.954255 0.298993i \(-0.903349\pi\)
0.989482 + 0.144653i \(0.0462066\pi\)
\(110\) −1.16756 1.46408i −0.111323 0.139594i
\(111\) −0.807979 + 1.01317i −0.0766899 + 0.0961661i
\(112\) −4.44989 19.4962i −0.420475 1.84222i
\(113\) −1.92274 + 8.42407i −0.180876 + 0.792470i 0.800338 + 0.599549i \(0.204653\pi\)
−0.981214 + 0.192921i \(0.938204\pi\)
\(114\) −1.02446 + 1.28463i −0.0959493 + 0.120317i
\(115\) −1.47650 −0.137684
\(116\) −5.01842 4.46198i −0.465948 0.414284i
\(117\) −14.5308 −1.34337
\(118\) 10.2349 12.8342i 0.942199 1.18148i
\(119\) 1.00000 4.38129i 0.0916698 0.401632i
\(120\) −0.0479579 0.210117i −0.00437793 0.0191810i
\(121\) −1.57188 + 1.97108i −0.142899 + 0.179189i
\(122\) 6.79590 + 8.52179i 0.615272 + 0.771526i
\(123\) −0.0392287 + 0.171872i −0.00353713 + 0.0154972i
\(124\) 7.14191 + 3.43936i 0.641362 + 0.308864i
\(125\) 3.17456 + 1.52879i 0.283942 + 0.136739i
\(126\) 4.54892 + 19.9301i 0.405250 + 1.77552i
\(127\) −9.43512 + 4.54371i −0.837231 + 0.403189i −0.802822 0.596219i \(-0.796669\pi\)
−0.0344090 + 0.999408i \(0.510955\pi\)
\(128\) −10.0858 −0.891463
\(129\) −2.30194 + 1.10855i −0.202674 + 0.0976028i
\(130\) −2.07942 2.60751i −0.182377 0.228693i
\(131\) −0.283520 0.355523i −0.0247712 0.0310622i 0.769292 0.638898i \(-0.220609\pi\)
−0.794063 + 0.607836i \(0.792038\pi\)
\(132\) −1.45593 + 0.701137i −0.126722 + 0.0610262i
\(133\) −8.29590 −0.719345
\(134\) 0.607760 0.292682i 0.0525025 0.0252839i
\(135\) 0.205063 + 0.898438i 0.0176490 + 0.0773252i
\(136\) −1.35690 0.653447i −0.116353 0.0560326i
\(137\) 11.9291 + 5.74474i 1.01917 + 0.490806i 0.867401 0.497610i \(-0.165789\pi\)
0.151769 + 0.988416i \(0.451503\pi\)
\(138\) −0.738250 + 3.23449i −0.0628440 + 0.275338i
\(139\) −1.74363 2.18644i −0.147893 0.185451i 0.702367 0.711815i \(-0.252127\pi\)
−0.850260 + 0.526364i \(0.823555\pi\)
\(140\) −1.12349 + 1.40881i −0.0949522 + 0.119066i
\(141\) 0.772635 + 3.38513i 0.0650676 + 0.285080i
\(142\) −4.57338 + 20.0373i −0.383789 + 1.68149i
\(143\) 9.41521 11.8063i 0.787339 0.987292i
\(144\) 13.8388 1.15323
\(145\) 0.102916 1.91919i 0.00854671 0.159380i
\(146\) 16.1250 1.33451
\(147\) 2.60656 3.26853i 0.214986 0.269584i
\(148\) 0.807979 3.53999i 0.0664154 0.290985i
\(149\) −0.602679 2.64051i −0.0493734 0.216319i 0.944223 0.329307i \(-0.106815\pi\)
−0.993596 + 0.112988i \(0.963958\pi\)
\(150\) 2.43631 3.05504i 0.198924 0.249443i
\(151\) −1.51842 1.90404i −0.123567 0.154948i 0.716200 0.697895i \(-0.245880\pi\)
−0.839767 + 0.542947i \(0.817308\pi\)
\(152\) −0.618645 + 2.71046i −0.0501788 + 0.219848i
\(153\) 2.80194 + 1.34934i 0.226523 + 0.109088i
\(154\) −19.1407 9.21768i −1.54240 0.742782i
\(155\) 0.504844 + 2.21187i 0.0405501 + 0.177661i
\(156\) −2.59299 + 1.24872i −0.207605 + 0.0999775i
\(157\) 17.6775 1.41082 0.705411 0.708799i \(-0.250762\pi\)
0.705411 + 0.708799i \(0.250762\pi\)
\(158\) −0.964656 + 0.464554i −0.0767439 + 0.0369579i
\(159\) −1.20895 1.51597i −0.0958758 0.120224i
\(160\) 1.37651 + 1.72609i 0.108823 + 0.136459i
\(161\) −15.0918 + 7.26782i −1.18940 + 0.572785i
\(162\) −13.0761 −1.02735
\(163\) 4.47434 2.15473i 0.350458 0.168772i −0.250370 0.968150i \(-0.580552\pi\)
0.600827 + 0.799379i \(0.294838\pi\)
\(164\) −0.109916 0.481575i −0.00858302 0.0376047i
\(165\) −0.416698 0.200671i −0.0324399 0.0156222i
\(166\) −15.3143 7.37499i −1.18862 0.572410i
\(167\) −3.21864 + 14.1018i −0.249066 + 1.09123i 0.683422 + 0.730024i \(0.260491\pi\)
−0.932487 + 0.361203i \(0.882366\pi\)
\(168\) −1.52446 1.91161i −0.117615 0.147484i
\(169\) 8.66301 10.8631i 0.666386 0.835621i
\(170\) 0.158834 + 0.695895i 0.0121820 + 0.0533727i
\(171\) 1.27748 5.59700i 0.0976913 0.428013i
\(172\) 4.46346 5.59700i 0.340336 0.426767i
\(173\) 10.5133 0.799314 0.399657 0.916665i \(-0.369129\pi\)
0.399657 + 0.916665i \(0.369129\pi\)
\(174\) −4.15279 1.18505i −0.314822 0.0898380i
\(175\) 19.7289 1.49136
\(176\) −8.96681 + 11.2440i −0.675899 + 0.847550i
\(177\) 0.902165 3.95264i 0.0678109 0.297099i
\(178\) 0.570688 + 2.50035i 0.0427748 + 0.187409i
\(179\) −3.57942 + 4.48845i −0.267538 + 0.335482i −0.897394 0.441230i \(-0.854542\pi\)
0.629856 + 0.776712i \(0.283114\pi\)
\(180\) −0.777479 0.974928i −0.0579499 0.0726668i
\(181\) 1.47770 6.47421i 0.109836 0.481225i −0.889852 0.456250i \(-0.849192\pi\)
0.999688 0.0249747i \(-0.00795053\pi\)
\(182\) −34.0894 16.4166i −2.52687 1.21688i
\(183\) 2.42543 + 1.16802i 0.179293 + 0.0863428i
\(184\) 1.24914 + 5.47282i 0.0920875 + 0.403462i
\(185\) 0.936313 0.450904i 0.0688391 0.0331512i
\(186\) 5.09783 0.373791
\(187\) −2.91185 + 1.40227i −0.212936 + 0.102545i
\(188\) −6.06584 7.60633i −0.442397 0.554748i
\(189\) 6.51842 + 8.17384i 0.474145 + 0.594559i
\(190\) 1.18718 0.571714i 0.0861269 0.0414765i
\(191\) −18.8116 −1.36116 −0.680581 0.732673i \(-0.738272\pi\)
−0.680581 + 0.732673i \(0.738272\pi\)
\(192\) 0.508729 0.244991i 0.0367144 0.0176807i
\(193\) −2.42208 10.6118i −0.174345 0.763854i −0.984176 0.177192i \(-0.943299\pi\)
0.809832 0.586662i \(-0.199558\pi\)
\(194\) 25.5710 + 12.3143i 1.83589 + 0.884118i
\(195\) −0.742135 0.357394i −0.0531454 0.0255935i
\(196\) −2.60656 + 11.4201i −0.186183 + 0.815722i
\(197\) −5.23759 6.56773i −0.373163 0.467931i 0.559422 0.828883i \(-0.311023\pi\)
−0.932584 + 0.360952i \(0.882452\pi\)
\(198\) 9.16637 11.4943i 0.651425 0.816861i
\(199\) 1.47339 + 6.45532i 0.104446 + 0.457606i 0.999922 + 0.0124967i \(0.00397793\pi\)
−0.895476 + 0.445109i \(0.853165\pi\)
\(200\) 1.47123 6.44588i 0.104032 0.455792i
\(201\) 0.103875 0.130256i 0.00732681 0.00918753i
\(202\) 31.4306 2.21145
\(203\) −8.39493 20.1232i −0.589208 1.41237i
\(204\) 0.615957 0.0431256
\(205\) 0.0881460 0.110532i 0.00615638 0.00771986i
\(206\) −1.12833 + 4.94355i −0.0786148 + 0.344434i
\(207\) −2.57942 11.3012i −0.179282 0.785485i
\(208\) −15.9698 + 20.0255i −1.10731 + 1.38852i
\(209\) 3.71983 + 4.66452i 0.257306 + 0.322652i
\(210\) −0.257865 + 1.12978i −0.0177944 + 0.0779622i
\(211\) 7.29805 + 3.51456i 0.502419 + 0.241952i 0.667887 0.744263i \(-0.267199\pi\)
−0.165468 + 0.986215i \(0.552913\pi\)
\(212\) 4.89493 + 2.35727i 0.336185 + 0.161898i
\(213\) 1.12953 + 4.94880i 0.0773942 + 0.339086i
\(214\) −12.1114 + 5.83255i −0.827919 + 0.398705i
\(215\) 2.04892 0.139735
\(216\) 3.15668 1.52018i 0.214785 0.103435i
\(217\) 16.0477 + 20.1232i 1.08939 + 1.36605i
\(218\) 1.85690 + 2.32847i 0.125765 + 0.157704i
\(219\) 3.58815 1.72796i 0.242464 0.116765i
\(220\) 1.29590 0.0873694
\(221\) −5.18598 + 2.49744i −0.348847 + 0.167996i
\(222\) −0.519614 2.27658i −0.0348742 0.152794i
\(223\) −19.7485 9.51036i −1.32246 0.636861i −0.366512 0.930413i \(-0.619448\pi\)
−0.955943 + 0.293552i \(0.905163\pi\)
\(224\) 22.5661 + 10.8673i 1.50776 + 0.726101i
\(225\) −3.03803 + 13.3105i −0.202535 + 0.887366i
\(226\) −9.70775 12.1731i −0.645750 0.809745i
\(227\) −11.3964 + 14.2907i −0.756407 + 0.948504i −0.999770 0.0214309i \(-0.993178\pi\)
0.243363 + 0.969935i \(0.421749\pi\)
\(228\) −0.253020 1.10855i −0.0167567 0.0734158i
\(229\) −3.56584 + 15.6230i −0.235638 + 1.03240i 0.709239 + 0.704968i \(0.249039\pi\)
−0.944876 + 0.327427i \(0.893818\pi\)
\(230\) 1.65883 2.08011i 0.109380 0.137158i
\(231\) −5.24698 −0.345226
\(232\) −7.20075 + 1.24218i −0.472752 + 0.0815532i
\(233\) 1.95646 0.128172 0.0640860 0.997944i \(-0.479587\pi\)
0.0640860 + 0.997944i \(0.479587\pi\)
\(234\) 16.3252 20.4712i 1.06721 1.33824i
\(235\) 0.619605 2.71467i 0.0404186 0.177085i
\(236\) 2.52781 + 11.0751i 0.164546 + 0.720925i
\(237\) −0.164874 + 0.206746i −0.0107097 + 0.0134296i
\(238\) 5.04892 + 6.33114i 0.327273 + 0.410387i
\(239\) 1.99449 8.73844i 0.129013 0.565243i −0.868558 0.495587i \(-0.834953\pi\)
0.997571 0.0696554i \(-0.0221900\pi\)
\(240\) 0.706791 + 0.340373i 0.0456232 + 0.0219710i
\(241\) −17.9291 8.63419i −1.15491 0.556177i −0.244407 0.969673i \(-0.578593\pi\)
−0.910506 + 0.413496i \(0.864308\pi\)
\(242\) −1.01089 4.42898i −0.0649822 0.284705i
\(243\) −9.88889 + 4.76224i −0.634372 + 0.305498i
\(244\) −7.54288 −0.482883
\(245\) −3.02057 + 1.45463i −0.192977 + 0.0929330i
\(246\) −0.198062 0.248362i −0.0126280 0.0158350i
\(247\) 6.62498 + 8.30746i 0.421537 + 0.528591i
\(248\) 7.77144 3.74253i 0.493487 0.237651i
\(249\) −4.19806 −0.266041
\(250\) −5.72037 + 2.75478i −0.361788 + 0.174228i
\(251\) −5.74214 25.1579i −0.362440 1.58795i −0.746980 0.664847i \(-0.768497\pi\)
0.384540 0.923108i \(-0.374360\pi\)
\(252\) −12.7458 6.13805i −0.802909 0.386661i
\(253\) 10.8535 + 5.22679i 0.682356 + 0.328606i
\(254\) 4.19902 18.3971i 0.263470 1.15434i
\(255\) 0.109916 + 0.137831i 0.00688322 + 0.00863129i
\(256\) 12.9133 16.1928i 0.807084 1.01205i
\(257\) −2.65937 11.6514i −0.165887 0.726797i −0.987612 0.156914i \(-0.949846\pi\)
0.821726 0.569883i \(-0.193012\pi\)
\(258\) 1.02446 4.48845i 0.0637800 0.279438i
\(259\) 7.35086 9.21768i 0.456760 0.572759i
\(260\) 2.30798 0.143135
\(261\) 14.8693 2.56506i 0.920385 0.158773i
\(262\) 0.819396 0.0506225
\(263\) −0.207455 + 0.260141i −0.0127923 + 0.0160410i −0.788186 0.615437i \(-0.788980\pi\)
0.775394 + 0.631477i \(0.217551\pi\)
\(264\) −0.391280 + 1.71431i −0.0240816 + 0.105509i
\(265\) 0.346011 + 1.51597i 0.0212553 + 0.0931254i
\(266\) 9.32036 11.6874i 0.571468 0.716598i
\(267\) 0.394928 + 0.495224i 0.0241692 + 0.0303072i
\(268\) −0.103875 + 0.455108i −0.00634520 + 0.0278002i
\(269\) 0.958615 + 0.461645i 0.0584478 + 0.0281470i 0.462879 0.886421i \(-0.346816\pi\)
−0.404432 + 0.914568i \(0.632531\pi\)
\(270\) −1.49612 0.720491i −0.0910507 0.0438477i
\(271\) 3.66368 + 16.0516i 0.222553 + 0.975067i 0.955549 + 0.294834i \(0.0952642\pi\)
−0.732996 + 0.680233i \(0.761879\pi\)
\(272\) 4.93900 2.37850i 0.299471 0.144218i
\(273\) −9.34481 −0.565574
\(274\) −21.4955 + 10.3517i −1.29859 + 0.625367i
\(275\) −8.84631 11.0929i −0.533452 0.668928i
\(276\) −1.43147 1.79500i −0.0861643 0.108047i
\(277\) −5.94116 + 2.86111i −0.356970 + 0.171907i −0.603769 0.797159i \(-0.706335\pi\)
0.246800 + 0.969066i \(0.420621\pi\)
\(278\) 5.03923 0.302233
\(279\) −16.0477 + 7.72818i −0.960752 + 0.462674i
\(280\) 0.436313 + 1.91161i 0.0260747 + 0.114241i
\(281\) 27.5112 + 13.2487i 1.64118 + 0.790350i 0.999731 + 0.0231840i \(0.00738037\pi\)
0.641448 + 0.767166i \(0.278334\pi\)
\(282\) −5.63706 2.71467i −0.335682 0.161656i
\(283\) 0.791053 3.46583i 0.0470232 0.206022i −0.945959 0.324286i \(-0.894876\pi\)
0.992982 + 0.118264i \(0.0377330\pi\)
\(284\) −8.86778 11.1198i −0.526206 0.659841i
\(285\) 0.202907 0.254437i 0.0120191 0.0150715i
\(286\) 6.05496 + 26.5285i 0.358037 + 1.56866i
\(287\) 0.356896 1.56366i 0.0210669 0.0923001i
\(288\) −10.8068 + 13.5513i −0.636796 + 0.798517i
\(289\) −15.7681 −0.927534
\(290\) 2.58815 + 2.30117i 0.151981 + 0.135130i
\(291\) 7.00969 0.410915
\(292\) −6.95742 + 8.72433i −0.407152 + 0.510553i
\(293\) −7.31647 + 32.0556i −0.427433 + 1.87271i 0.0578127 + 0.998327i \(0.481587\pi\)
−0.485246 + 0.874378i \(0.661270\pi\)
\(294\) 1.67629 + 7.34432i 0.0977633 + 0.428329i
\(295\) −2.02715 + 2.54196i −0.118025 + 0.147999i
\(296\) −2.46346 3.08908i −0.143186 0.179549i
\(297\) 1.67307 7.33020i 0.0970814 0.425342i
\(298\) 4.39708 + 2.11752i 0.254716 + 0.122665i
\(299\) 19.3300 + 9.30886i 1.11789 + 0.538345i
\(300\) 0.601720 + 2.63631i 0.0347403 + 0.152207i
\(301\) 20.9426 10.0854i 1.20711 0.581316i
\(302\) 4.38835 0.252521
\(303\) 6.99396 3.36811i 0.401792 0.193493i
\(304\) −6.30947 7.91183i −0.361873 0.453774i
\(305\) −1.34601 1.68784i −0.0770724 0.0966457i
\(306\) −5.04892 + 2.43143i −0.288627 + 0.138996i
\(307\) 14.6703 0.837275 0.418638 0.908153i \(-0.362508\pi\)
0.418638 + 0.908153i \(0.362508\pi\)
\(308\) 13.2458 6.37883i 0.754749 0.363468i
\(309\) 0.278676 + 1.22096i 0.0158533 + 0.0694578i
\(310\) −3.68329 1.77378i −0.209197 0.100744i
\(311\) −16.6918 8.03834i −0.946504 0.455812i −0.104045 0.994573i \(-0.533179\pi\)
−0.842459 + 0.538760i \(0.818893\pi\)
\(312\) −0.696866 + 3.05317i −0.0394523 + 0.172852i
\(313\) 14.3354 + 17.9760i 0.810286 + 1.01607i 0.999418 + 0.0341147i \(0.0108612\pi\)
−0.189132 + 0.981952i \(0.560567\pi\)
\(314\) −19.8605 + 24.9043i −1.12080 + 1.40543i
\(315\) −0.900969 3.94740i −0.0507638 0.222411i
\(316\) 0.164874 0.722362i 0.00927491 0.0406360i
\(317\) 8.76540 10.9915i 0.492314 0.617342i −0.472162 0.881512i \(-0.656526\pi\)
0.964476 + 0.264170i \(0.0850979\pi\)
\(318\) 3.49396 0.195932
\(319\) −7.55041 + 13.7433i −0.422742 + 0.769479i
\(320\) −0.452812 −0.0253129
\(321\) −2.07002 + 2.59573i −0.115537 + 0.144879i
\(322\) 6.71648 29.4268i 0.374295 1.63989i
\(323\) −0.506041 2.21711i −0.0281569 0.123363i
\(324\) 5.64191 7.07473i 0.313439 0.393040i
\(325\) −15.7552 19.7564i −0.873940 1.09589i
\(326\) −1.99127 + 8.72433i −0.110286 + 0.483196i
\(327\) 0.662718 + 0.319148i 0.0366484 + 0.0176489i
\(328\) −0.484271 0.233212i −0.0267394 0.0128770i
\(329\) −7.02930 30.7974i −0.387538 1.69792i
\(330\) 0.750864 0.361597i 0.0413337 0.0199053i
\(331\) 13.9565 0.767116 0.383558 0.923517i \(-0.374699\pi\)
0.383558 + 0.923517i \(0.374699\pi\)
\(332\) 10.5978 5.10365i 0.581632 0.280099i
\(333\) 5.08695 + 6.37883i 0.278763 + 0.349558i
\(334\) −16.2506 20.3776i −0.889195 1.11501i
\(335\) −0.120374 + 0.0579692i −0.00657676 + 0.00316720i
\(336\) 8.89977 0.485522
\(337\) 12.6114 6.07333i 0.686987 0.330836i −0.0576199 0.998339i \(-0.518351\pi\)
0.744607 + 0.667503i \(0.232637\pi\)
\(338\) 5.57122 + 24.4091i 0.303034 + 1.32768i
\(339\) −3.46466 1.66849i −0.188174 0.0906200i
\(340\) −0.445042 0.214321i −0.0241358 0.0116232i
\(341\) 4.11894 18.0463i 0.223053 0.977260i
\(342\) 6.44989 + 8.08790i 0.348770 + 0.437344i
\(343\) −6.04288 + 7.57753i −0.326285 + 0.409148i
\(344\) −1.73341 7.59455i −0.0934590 0.409471i
\(345\) 0.146220 0.640630i 0.00787220 0.0344903i
\(346\) −11.8116 + 14.8113i −0.634997 + 0.796261i
\(347\) −19.8538 −1.06581 −0.532905 0.846175i \(-0.678900\pi\)
−0.532905 + 0.846175i \(0.678900\pi\)
\(348\) 2.43296 1.73553i 0.130420 0.0930344i
\(349\) −26.9202 −1.44101 −0.720503 0.693452i \(-0.756089\pi\)
−0.720503 + 0.693452i \(0.756089\pi\)
\(350\) −22.1652 + 27.7942i −1.18478 + 1.48566i
\(351\) 2.97972 13.0550i 0.159046 0.696825i
\(352\) −4.00820 17.5611i −0.213638 0.936007i
\(353\) −2.50335 + 3.13910i −0.133240 + 0.167078i −0.843976 0.536382i \(-0.819791\pi\)
0.710736 + 0.703459i \(0.248362\pi\)
\(354\) 4.55496 + 5.71174i 0.242093 + 0.303575i
\(355\) 0.905813 3.96863i 0.0480756 0.210633i
\(356\) −1.59903 0.770053i −0.0847485 0.0408127i
\(357\) 1.80194 + 0.867767i 0.0953687 + 0.0459271i
\(358\) −2.30194 10.0854i −0.121661 0.533032i
\(359\) 0.672407 0.323814i 0.0354883 0.0170903i −0.416055 0.909339i \(-0.636588\pi\)
0.451544 + 0.892249i \(0.350873\pi\)
\(360\) −1.35690 −0.0715147
\(361\) 13.3361 6.42232i 0.701899 0.338017i
\(362\) 7.46077 + 9.35551i 0.392129 + 0.491715i
\(363\) −0.699554 0.877213i −0.0367171 0.0460418i
\(364\) 23.5906 11.3606i 1.23648 0.595459i
\(365\) −3.19375 −0.167169
\(366\) −4.37047 + 2.10471i −0.228448 + 0.110015i
\(367\) 7.57660 + 33.1952i 0.395495 + 1.73278i 0.644799 + 0.764352i \(0.276941\pi\)
−0.249304 + 0.968425i \(0.580202\pi\)
\(368\) −18.4095 8.86553i −0.959659 0.462148i
\(369\) 1.00000 + 0.481575i 0.0520579 + 0.0250698i
\(370\) −0.416698 + 1.82567i −0.0216631 + 0.0949123i
\(371\) 10.9988 + 13.7921i 0.571029 + 0.716048i
\(372\) −2.19955 + 2.75815i −0.114042 + 0.143004i
\(373\) −6.23072 27.2986i −0.322614 1.41347i −0.832882 0.553450i \(-0.813311\pi\)
0.510268 0.860015i \(-0.329546\pi\)
\(374\) 1.29590 5.67770i 0.0670092 0.293587i
\(375\) −0.977697 + 1.22599i −0.0504881 + 0.0633100i
\(376\) −10.5864 −0.545953
\(377\) −13.4472 + 24.4767i −0.692566 + 1.26062i
\(378\) −18.8388 −0.968962
\(379\) 14.2661 17.8891i 0.732798 0.918900i −0.266188 0.963921i \(-0.585764\pi\)
0.998986 + 0.0450211i \(0.0143355\pi\)
\(380\) −0.202907 + 0.888992i −0.0104089 + 0.0456043i
\(381\) −1.03707 4.54371i −0.0531308 0.232781i
\(382\) 21.1347 26.5020i 1.08134 1.35596i
\(383\) 7.39344 + 9.27108i 0.377787 + 0.473730i 0.933981 0.357323i \(-0.116310\pi\)
−0.556194 + 0.831052i \(0.687739\pi\)
\(384\) 0.998804 4.37604i 0.0509700 0.223314i
\(385\) 3.79105 + 1.82567i 0.193210 + 0.0930450i
\(386\) 17.6712 + 8.51001i 0.899441 + 0.433148i
\(387\) 3.57942 + 15.6824i 0.181952 + 0.797184i
\(388\) −17.6957 + 8.52179i −0.898362 + 0.432628i
\(389\) −10.3913 −0.526862 −0.263431 0.964678i \(-0.584854\pi\)
−0.263431 + 0.964678i \(0.584854\pi\)
\(390\) 1.33728 0.644001i 0.0677159 0.0326103i
\(391\) −2.86294 3.59001i −0.144785 0.181555i
\(392\) 7.94720 + 9.96547i 0.401394 + 0.503332i
\(393\) 0.182333 0.0878068i 0.00919747 0.00442927i
\(394\) 15.1371 0.762594
\(395\) 0.191062 0.0920106i 0.00961337 0.00462956i
\(396\) 2.26391 + 9.91882i 0.113766 + 0.498439i
\(397\) −7.40366 3.56541i −0.371579 0.178943i 0.238769 0.971076i \(-0.423256\pi\)
−0.610348 + 0.792133i \(0.708970\pi\)
\(398\) −10.7497 5.17677i −0.538832 0.259488i
\(399\) 0.821552 3.59945i 0.0411290 0.180198i
\(400\) 15.0048 + 18.8155i 0.750242 + 0.940774i
\(401\) 15.5130 19.4527i 0.774684 0.971423i −0.225312 0.974287i \(-0.572340\pi\)
0.999996 + 0.00286337i \(0.000911439\pi\)
\(402\) 0.0668027 + 0.292682i 0.00333182 + 0.0145976i
\(403\) 7.33579 32.1402i 0.365422 1.60102i
\(404\) −13.5613 + 17.0053i −0.674700 + 0.846047i
\(405\) 2.58987 0.128692
\(406\) 37.7814 + 10.7813i 1.87506 + 0.535069i
\(407\) −8.47889 −0.420283
\(408\) 0.417895 0.524023i 0.0206889 0.0259430i
\(409\) −4.20464 + 18.4217i −0.207906 + 0.910895i 0.758052 + 0.652194i \(0.226151\pi\)
−0.965958 + 0.258701i \(0.916706\pi\)
\(410\) 0.0566871 + 0.248362i 0.00279957 + 0.0122657i
\(411\) −3.67390 + 4.60692i −0.181220 + 0.227243i
\(412\) −2.18784 2.74347i −0.107787 0.135161i
\(413\) −8.20775 + 35.9605i −0.403877 + 1.76950i
\(414\) 18.8192 + 9.06283i 0.924911 + 0.445414i
\(415\) 3.03319 + 1.46071i 0.148893 + 0.0717033i
\(416\) −7.13856 31.2761i −0.349996 1.53343i
\(417\) 1.12133 0.540006i 0.0549120 0.0264442i
\(418\) −10.7506 −0.525830
\(419\) 9.81378 4.72607i 0.479435 0.230884i −0.178527 0.983935i \(-0.557133\pi\)
0.657962 + 0.753051i \(0.271419\pi\)
\(420\) −0.500000 0.626980i −0.0243975 0.0305935i
\(421\) −12.4453 15.6060i −0.606549 0.760588i 0.379834 0.925055i \(-0.375981\pi\)
−0.986383 + 0.164467i \(0.947410\pi\)
\(422\) −13.1506 + 6.33301i −0.640163 + 0.308286i
\(423\) 21.8605 1.06290
\(424\) 5.32640 2.56506i 0.258673 0.124570i
\(425\) 1.20344 + 5.27261i 0.0583754 + 0.255759i
\(426\) −8.24094 3.96863i −0.399275 0.192281i
\(427\) −22.0661 10.6265i −1.06786 0.514252i
\(428\) 2.07002 9.06937i 0.100058 0.438384i
\(429\) 4.19016 + 5.25430i 0.202303 + 0.253680i
\(430\) −2.30194 + 2.88654i −0.111009 + 0.139201i
\(431\) 6.71797 + 29.4334i 0.323593 + 1.41776i 0.831108 + 0.556112i \(0.187707\pi\)
−0.507514 + 0.861643i \(0.669436\pi\)
\(432\) −2.83781 + 12.4333i −0.136534 + 0.598196i
\(433\) −12.5891 + 15.7862i −0.604994 + 0.758638i −0.986147 0.165874i \(-0.946956\pi\)
0.381153 + 0.924512i \(0.375527\pi\)
\(434\) −46.3793 −2.22628
\(435\) 0.822512 + 0.234713i 0.0394364 + 0.0112536i
\(436\) −2.06100 −0.0987039
\(437\) −5.28501 + 6.62720i −0.252816 + 0.317022i
\(438\) −1.59688 + 6.99637i −0.0763016 + 0.334299i
\(439\) 2.37316 + 10.3975i 0.113265 + 0.496245i 0.999458 + 0.0329287i \(0.0104834\pi\)
−0.886193 + 0.463316i \(0.846659\pi\)
\(440\) 0.879199 1.10248i 0.0419141 0.0525587i
\(441\) −16.4107 20.5783i −0.781460 0.979920i
\(442\) 2.30798 10.1119i 0.109779 0.480975i
\(443\) 18.3349 + 8.82962i 0.871117 + 0.419508i 0.815372 0.578937i \(-0.196532\pi\)
0.0557448 + 0.998445i \(0.482247\pi\)
\(444\) 1.45593 + 0.701137i 0.0690952 + 0.0332745i
\(445\) −0.113032 0.495224i −0.00535822 0.0234759i
\(446\) 35.5855 17.1371i 1.68502 0.811464i
\(447\) 1.20536 0.0570115
\(448\) −4.62833 + 2.22889i −0.218668 + 0.105305i
\(449\) 12.1102 + 15.1857i 0.571516 + 0.716659i 0.980640 0.195820i \(-0.0627369\pi\)
−0.409124 + 0.912479i \(0.634166\pi\)
\(450\) −15.3388 19.2342i −0.723077 0.906710i
\(451\) −1.03923 + 0.500466i −0.0489354 + 0.0235660i
\(452\) 10.7748 0.506804
\(453\) 0.976501 0.470258i 0.0458800 0.0220946i
\(454\) −7.32908 32.1108i −0.343971 1.50704i
\(455\) 6.75182 + 3.25151i 0.316530 + 0.152433i
\(456\) −1.11476 0.536840i −0.0522034 0.0251399i
\(457\) 2.76391 12.1095i 0.129290 0.566457i −0.868236 0.496152i \(-0.834746\pi\)
0.997526 0.0703045i \(-0.0223971\pi\)
\(458\) −18.0036 22.5759i −0.841255 1.05490i
\(459\) −1.78687 + 2.24067i −0.0834041 + 0.104585i
\(460\) 0.409698 + 1.79500i 0.0191023 + 0.0836925i
\(461\) 4.88351 21.3961i 0.227448 0.996514i −0.724265 0.689522i \(-0.757821\pi\)
0.951712 0.306991i \(-0.0993223\pi\)
\(462\) 5.89493 7.39201i 0.274257 0.343907i
\(463\) −33.0073 −1.53398 −0.766990 0.641660i \(-0.778246\pi\)
−0.766990 + 0.641660i \(0.778246\pi\)
\(464\) 12.8068 23.3110i 0.594540 1.08219i
\(465\) −1.00969 −0.0468232
\(466\) −2.19806 + 2.75628i −0.101823 + 0.127682i
\(467\) 5.80851 25.4487i 0.268786 1.17763i −0.642642 0.766167i \(-0.722162\pi\)
0.911427 0.411461i \(-0.134981\pi\)
\(468\) 4.03199 + 17.6653i 0.186379 + 0.816579i
\(469\) −0.945042 + 1.18505i −0.0436380 + 0.0547203i
\(470\) 3.12833 + 3.92281i 0.144299 + 0.180946i
\(471\) −1.75063 + 7.67000i −0.0806647 + 0.353415i
\(472\) 11.1371 + 5.36333i 0.512625 + 0.246867i
\(473\) −15.0613 7.25314i −0.692519 0.333500i
\(474\) −0.106031 0.464554i −0.00487018 0.0213377i
\(475\) 8.99492 4.33172i 0.412715 0.198753i
\(476\) −5.60388 −0.256853
\(477\) −10.9988 + 5.29674i −0.503601 + 0.242521i
\(478\) 10.0700 + 12.6274i 0.460592 + 0.577564i
\(479\) 20.6163 + 25.8520i 0.941981 + 1.18121i 0.983287 + 0.182060i \(0.0582765\pi\)
−0.0413068 + 0.999147i \(0.513152\pi\)
\(480\) −0.885239 + 0.426309i −0.0404055 + 0.0194582i
\(481\) −15.1008 −0.688538
\(482\) 32.3071 15.5583i 1.47155 0.708660i
\(483\) −1.65883 7.26782i −0.0754795 0.330697i
\(484\) 2.83244 + 1.36403i 0.128747 + 0.0620014i
\(485\) −5.06465 2.43901i −0.229974 0.110750i
\(486\) 4.40097 19.2819i 0.199632 0.874645i
\(487\) −6.33244 7.94063i −0.286950 0.359824i 0.617375 0.786669i \(-0.288196\pi\)
−0.904325 + 0.426845i \(0.859625\pi\)
\(488\) −5.11745 + 6.41708i −0.231656 + 0.290487i
\(489\) 0.491803 + 2.15473i 0.0222401 + 0.0974403i
\(490\) 1.34428 5.88968i 0.0607285 0.266069i
\(491\) −12.2714 + 15.3879i −0.553802 + 0.694446i −0.977399 0.211405i \(-0.932196\pi\)
0.423596 + 0.905851i \(0.360768\pi\)
\(492\) 0.219833 0.00991082
\(493\) 4.86592 3.47107i 0.219150 0.156329i
\(494\) −19.1468 −0.861453
\(495\) −1.81551 + 2.27658i −0.0816012 + 0.102325i
\(496\) −6.98643 + 30.6095i −0.313700 + 1.37441i
\(497\) −10.2763 45.0233i −0.460954 2.01957i
\(498\) 4.71648 5.91428i 0.211351 0.265025i
\(499\) 17.3639 + 21.7736i 0.777315 + 0.974722i 1.00000 0.000168534i \(-5.36461e-5\pi\)
−0.222685 + 0.974890i \(0.571482\pi\)
\(500\) 0.977697 4.28357i 0.0437240 0.191567i
\(501\) −5.79978 2.79303i −0.259115 0.124783i
\(502\) 41.8940 + 20.1751i 1.86982 + 0.900459i
\(503\) 0.0501138 + 0.219563i 0.00223446 + 0.00978982i 0.976033 0.217623i \(-0.0698304\pi\)
−0.973798 + 0.227413i \(0.926973\pi\)
\(504\) −13.8693 + 6.67909i −0.617787 + 0.297510i
\(505\) −6.22521 −0.277018
\(506\) −19.5574 + 9.41835i −0.869433 + 0.418697i
\(507\) 3.85540 + 4.83452i 0.171224 + 0.214709i
\(508\) 8.14191 + 10.2096i 0.361239 + 0.452979i
\(509\) 22.7974 10.9786i 1.01048 0.486620i 0.145995 0.989285i \(-0.453362\pi\)
0.864481 + 0.502665i \(0.167647\pi\)
\(510\) −0.317667 −0.0140665
\(511\) −32.6444 + 15.7207i −1.44410 + 0.695443i
\(512\) 3.81604 + 16.7192i 0.168647 + 0.738890i
\(513\) 4.76659 + 2.29547i 0.210450 + 0.101348i
\(514\) 19.4025 + 9.34373i 0.855806 + 0.412134i
\(515\) 0.223480 0.979132i 0.00984772 0.0431457i
\(516\) 1.98643 + 2.49090i 0.0874475 + 0.109656i
\(517\) −14.1645 + 17.7617i −0.622954 + 0.781160i
\(518\) 4.72737 + 20.7119i 0.207709 + 0.910030i
\(519\) −1.04115 + 4.56157i −0.0457013 + 0.200231i
\(520\) 1.56584 1.96351i 0.0686668 0.0861054i
\(521\) 23.5797 1.03305 0.516523 0.856273i \(-0.327226\pi\)
0.516523 + 0.856273i \(0.327226\pi\)
\(522\) −13.0918 + 23.8298i −0.573012 + 1.04300i
\(523\) 3.96508 0.173381 0.0866905 0.996235i \(-0.472371\pi\)
0.0866905 + 0.996235i \(0.472371\pi\)
\(524\) −0.353543 + 0.443330i −0.0154446 + 0.0193669i
\(525\) −1.95377 + 8.56003i −0.0852696 + 0.373590i
\(526\) −0.133415 0.584531i −0.00581719 0.0254868i
\(527\) −4.39911 + 5.51631i −0.191628 + 0.240294i
\(528\) −3.99061 5.00406i −0.173669 0.217774i
\(529\) 1.30947 5.73717i 0.0569335 0.249442i
\(530\) −2.52446 1.21572i −0.109655 0.0528073i
\(531\) −22.9976 11.0751i −0.998011 0.480617i
\(532\) 2.30194 + 10.0854i 0.0998017 + 0.437260i
\(533\) −1.85086 + 0.891325i −0.0801694 + 0.0386076i
\(534\) −1.14138 −0.0493921
\(535\) 2.39881 1.15521i 0.103710 0.0499440i
\(536\) 0.316708 + 0.397139i 0.0136797 + 0.0171538i
\(537\) −1.59299 1.99755i −0.0687426 0.0862005i
\(538\) −1.72737 + 0.831855i −0.0744720 + 0.0358638i
\(539\) 27.3532 1.17818
\(540\) 1.03534 0.498595i 0.0445541 0.0214561i
\(541\) 5.48739 + 24.0418i 0.235921 + 1.03364i 0.944630 + 0.328137i \(0.106421\pi\)
−0.708709 + 0.705501i \(0.750722\pi\)
\(542\) −26.7298 12.8724i −1.14814 0.552917i
\(543\) 2.66272 + 1.28230i 0.114268 + 0.0550287i
\(544\) −1.52781 + 6.69378i −0.0655044 + 0.286993i
\(545\) −0.367781 0.461183i −0.0157540 0.0197549i
\(546\) 10.4988 13.1651i 0.449307 0.563414i
\(547\) −5.52768 24.2183i −0.236347 1.03550i −0.944259 0.329202i \(-0.893220\pi\)
0.707913 0.706300i \(-0.249637\pi\)
\(548\) 3.67390 16.0964i 0.156941 0.687604i
\(549\) 10.5673 13.2510i 0.451003 0.565540i
\(550\) 25.5666 1.09016
\(551\) −8.24578 7.33150i −0.351282 0.312332i
\(552\) −2.49827 −0.106333
\(553\) 1.50000 1.88094i 0.0637865 0.0799857i
\(554\) 2.64406 11.5844i 0.112335 0.492174i
\(555\) 0.102916 + 0.450904i 0.00436854 + 0.0191398i
\(556\) −2.17427 + 2.72645i −0.0922095 + 0.115627i
\(557\) 4.84146 + 6.07100i 0.205139 + 0.257237i 0.873749 0.486377i \(-0.161682\pi\)
−0.668610 + 0.743613i \(0.733110\pi\)
\(558\) 7.14191 31.2907i 0.302341 1.32464i
\(559\) −26.8240 12.9178i −1.13453 0.546363i
\(560\) −6.43027 3.09666i −0.271729 0.130858i
\(561\) −0.320060 1.40227i −0.0135129 0.0592041i
\(562\) −49.5734 + 23.8733i −2.09113 + 1.00703i
\(563\) 20.8009 0.876652 0.438326 0.898816i \(-0.355571\pi\)
0.438326 + 0.898816i \(0.355571\pi\)
\(564\) 3.90097 1.87861i 0.164260 0.0791036i
\(565\) 1.92274 + 2.41104i 0.0808902 + 0.101433i
\(566\) 3.99396 + 5.00827i 0.167879 + 0.210513i
\(567\) 26.4720 12.7482i 1.11172 0.535375i
\(568\) −15.4765 −0.649380
\(569\) −2.53103 + 1.21888i −0.106106 + 0.0510981i −0.486184 0.873856i \(-0.661612\pi\)
0.380078 + 0.924955i \(0.375897\pi\)
\(570\) 0.130490 + 0.571714i 0.00546563 + 0.0239465i
\(571\) −2.60603 1.25500i −0.109059 0.0525201i 0.378559 0.925577i \(-0.376420\pi\)
−0.487618 + 0.873057i \(0.662134\pi\)
\(572\) −16.9656 8.17021i −0.709368 0.341614i
\(573\) 1.86294 8.16206i 0.0778253 0.340975i
\(574\) 1.80194 + 2.25956i 0.0752114 + 0.0943121i
\(575\) 12.5685 15.7604i 0.524144 0.657256i
\(576\) −0.791053 3.46583i −0.0329605 0.144409i
\(577\) −1.59970 + 7.00872i −0.0665962 + 0.291777i −0.997249 0.0741270i \(-0.976383\pi\)
0.930653 + 0.365904i \(0.119240\pi\)
\(578\) 17.7153 22.2143i 0.736859 0.923992i
\(579\) 4.84415 0.201316
\(580\) −2.36174 + 0.407417i −0.0980659 + 0.0169171i
\(581\) 38.1933 1.58452
\(582\) −7.87531 + 9.87533i −0.326442 + 0.409346i
\(583\) 2.82304 12.3686i 0.116919 0.512254i
\(584\) 2.70195 + 11.8380i 0.111807 + 0.489860i
\(585\) −3.23341 + 4.05456i −0.133685 + 0.167636i
\(586\) −36.9403 46.3216i −1.52599 1.91353i
\(587\) 6.90635 30.2587i 0.285055 1.24891i −0.606165 0.795339i \(-0.707293\pi\)
0.891220 0.453570i \(-0.149850\pi\)
\(588\) −4.69687 2.26189i −0.193695 0.0932788i
\(589\) 11.7349 + 5.65123i 0.483528 + 0.232855i
\(590\) −1.30367 5.71174i −0.0536711 0.235148i
\(591\) 3.36831 1.62209i 0.138554 0.0667240i
\(592\) 14.3817 0.591082
\(593\) −32.8560 + 15.8226i −1.34923 + 0.649757i −0.962209 0.272312i \(-0.912212\pi\)
−0.387025 + 0.922069i \(0.626497\pi\)
\(594\) 8.44720 + 10.5925i 0.346593 + 0.434614i
\(595\) −1.00000 1.25396i −0.0409960 0.0514074i
\(596\) −3.04288 + 1.46537i −0.124641 + 0.0600240i
\(597\) −2.94677 −0.120603
\(598\) −34.8315 + 16.7740i −1.42437 + 0.685939i
\(599\) −6.69083 29.3144i −0.273380 1.19775i −0.905995 0.423288i \(-0.860876\pi\)
0.632615 0.774466i \(-0.281981\pi\)
\(600\) 2.65106 + 1.27669i 0.108229 + 0.0521205i
\(601\) 29.8995 + 14.3989i 1.21963 + 0.587342i 0.929208 0.369558i \(-0.120491\pi\)
0.290420 + 0.956899i \(0.406205\pi\)
\(602\) −9.32036 + 40.8351i −0.379869 + 1.66432i
\(603\) −0.653989 0.820077i −0.0266325 0.0333961i
\(604\) −1.89344 + 2.37429i −0.0770428 + 0.0966086i
\(605\) 0.200218 + 0.877213i 0.00814003 + 0.0356638i
\(606\) −3.11260 + 13.6372i −0.126441 + 0.553974i
\(607\) −9.42729 + 11.8214i −0.382642 + 0.479818i −0.935434 0.353502i \(-0.884991\pi\)
0.552792 + 0.833319i \(0.313562\pi\)
\(608\) 12.6746 0.514021
\(609\) 9.56249 1.64960i 0.387492 0.0668451i
\(610\) 3.89008 0.157505
\(611\) −25.2268 + 31.6334i −1.02057 + 1.27975i
\(612\) 0.862937 3.78077i 0.0348821 0.152829i
\(613\) −0.835658 3.66126i −0.0337519 0.147877i 0.955244 0.295818i \(-0.0955923\pi\)
−0.988996 + 0.147942i \(0.952735\pi\)
\(614\) −16.4819 + 20.6676i −0.665154 + 0.834077i
\(615\) 0.0392287 + 0.0491912i 0.00158185 + 0.00198358i
\(616\) 3.55980 15.5965i 0.143429 0.628401i
\(617\) −26.8995 12.9541i −1.08293 0.521514i −0.194681 0.980867i \(-0.562367\pi\)
−0.888254 + 0.459353i \(0.848081\pi\)
\(618\) −2.03319 0.979132i −0.0817868 0.0393865i
\(619\) 10.2622 + 44.9615i 0.412472 + 1.80716i 0.572338 + 0.820018i \(0.306037\pi\)
−0.159866 + 0.987139i \(0.551106\pi\)
\(620\) 2.54892 1.22749i 0.102367 0.0492973i
\(621\) 10.6823 0.428667
\(622\) 30.0776 14.4846i 1.20600 0.580779i
\(623\) −3.59299 4.50547i −0.143950 0.180508i
\(624\) −7.10723 8.91218i −0.284517 0.356773i
\(625\) −20.8174 + 10.0251i −0.832697 + 0.401006i
\(626\) −41.4306 −1.65590
\(627\) −2.39224 + 1.15204i −0.0955368 + 0.0460081i
\(628\) −4.90515 21.4909i −0.195737 0.857579i
\(629\) 2.91185 + 1.40227i 0.116103 + 0.0559124i
\(630\) 6.57338 + 3.16557i 0.261890 + 0.126119i
\(631\) −2.81043 + 12.3133i −0.111881 + 0.490185i 0.887677 + 0.460467i \(0.152318\pi\)
−0.999558 + 0.0297178i \(0.990539\pi\)
\(632\) −0.502688 0.630351i −0.0199959 0.0250740i
\(633\) −2.24764 + 2.81846i −0.0893358 + 0.112024i
\(634\) 5.63706 + 24.6976i 0.223876 + 0.980867i
\(635\) −0.831668 + 3.64377i −0.0330037 + 0.144599i
\(636\) −1.50753 + 1.89039i −0.0597776 + 0.0749587i
\(637\) 48.7157 1.93019
\(638\) −10.8790 26.0776i −0.430702 1.03242i
\(639\) 31.9584 1.26425
\(640\) −2.24429 + 2.81425i −0.0887134 + 0.111243i
\(641\) −8.67874 + 38.0241i −0.342790 + 1.50186i 0.450368 + 0.892843i \(0.351293\pi\)
−0.793157 + 0.609017i \(0.791564\pi\)
\(642\) −1.33124 5.83255i −0.0525399 0.230192i
\(643\) 25.7479 32.2869i 1.01540 1.27327i 0.0538762 0.998548i \(-0.482842\pi\)
0.961523 0.274723i \(-0.0885862\pi\)
\(644\) 13.0233 + 16.3307i 0.513188 + 0.643518i
\(645\) −0.202907 + 0.888992i −0.00798944 + 0.0350040i
\(646\) 3.69202 + 1.77798i 0.145261 + 0.0699538i
\(647\) 16.1368 + 7.77109i 0.634404 + 0.305513i 0.723306 0.690527i \(-0.242622\pi\)
−0.0889021 + 0.996040i \(0.528336\pi\)
\(648\) −2.19106 9.59967i −0.0860730 0.377111i
\(649\) 23.8998 11.5095i 0.938148 0.451788i
\(650\) 45.5338 1.78598
\(651\) −10.3204 + 4.97002i −0.404487 + 0.194790i
\(652\) −3.86108 4.84164i −0.151211 0.189613i
\(653\) −8.30529 10.4145i −0.325011 0.407551i 0.592303 0.805715i \(-0.298219\pi\)
−0.917314 + 0.398164i \(0.869647\pi\)
\(654\) −1.19418 + 0.575086i −0.0466960 + 0.0224876i
\(655\) −0.162291 −0.00634125
\(656\) 1.76271 0.848876i 0.0688222 0.0331430i
\(657\) −5.57942 24.4450i −0.217674 0.953691i
\(658\) 51.2851 + 24.6976i 1.99930 + 0.962812i
\(659\) −16.9073 8.14213i −0.658615 0.317172i 0.0745557 0.997217i \(-0.476246\pi\)
−0.733171 + 0.680045i \(0.761960\pi\)
\(660\) −0.128334 + 0.562269i −0.00499540 + 0.0218863i
\(661\) −15.4182 19.3338i −0.599698 0.751998i 0.385633 0.922652i \(-0.373983\pi\)
−0.985331 + 0.170655i \(0.945412\pi\)
\(662\) −15.6799 + 19.6620i −0.609418 + 0.764186i
\(663\) −0.570024 2.49744i −0.0221379 0.0969924i
\(664\) 2.84817 12.4786i 0.110530 0.484265i
\(665\) −1.84601 + 2.31482i −0.0715852 + 0.0897650i
\(666\) −14.7017 −0.569680
\(667\) −21.4236 6.11345i −0.829524 0.236714i
\(668\) 18.0368 0.697866
\(669\) 6.08211 7.62672i 0.235148 0.294866i
\(670\) 0.0535716 0.234713i 0.00206965 0.00906774i
\(671\) 3.91939 + 17.1720i 0.151306 + 0.662916i
\(672\) −6.94989 + 8.71488i −0.268098 + 0.336184i
\(673\) 15.8632 + 19.8919i 0.611483 + 0.766775i 0.987118 0.159992i \(-0.0511470\pi\)
−0.375636 + 0.926767i \(0.622576\pi\)
\(674\) −5.61260 + 24.5904i −0.216189 + 0.947188i
\(675\) −11.3357 5.45897i −0.436310 0.210116i
\(676\) −15.6102 7.51748i −0.600393 0.289134i
\(677\) −0.137195 0.601090i −0.00527283 0.0231018i 0.972223 0.234056i \(-0.0752000\pi\)
−0.977496 + 0.210954i \(0.932343\pi\)
\(678\) 6.24309 3.00652i 0.239765 0.115465i
\(679\) −63.7730 −2.44738
\(680\) −0.484271 + 0.233212i −0.0185709 + 0.00894329i
\(681\) −5.07188 6.35994i −0.194355 0.243713i
\(682\) 20.7962 + 26.0776i 0.796327 + 0.998563i
\(683\) −16.2371 + 7.81935i −0.621294 + 0.299199i −0.717924 0.696121i \(-0.754908\pi\)
0.0966308 + 0.995320i \(0.469193\pi\)
\(684\) −7.15883 −0.273725
\(685\) 4.25744 2.05027i 0.162668 0.0783369i
\(686\) −3.88620 17.0265i −0.148376 0.650077i
\(687\) −6.42543 3.09432i −0.245145 0.118056i
\(688\) 25.5465 + 12.3026i 0.973952 + 0.469031i
\(689\) 5.02781 22.0283i 0.191544 0.839211i
\(690\) 0.738250 + 0.925737i 0.0281047 + 0.0352422i
\(691\) 7.69769 9.65260i 0.292834 0.367202i −0.613551 0.789655i \(-0.710259\pi\)
0.906385 + 0.422453i \(0.138831\pi\)
\(692\) −2.91723 12.7812i −0.110896 0.485869i
\(693\) −7.35086 + 32.2062i −0.279236 + 1.22341i
\(694\) 22.3056 27.9703i 0.846708 1.06174i
\(695\) −0.998081 −0.0378594
\(696\) 0.174136 3.24730i 0.00660061 0.123089i
\(697\) 0.439665 0.0166535
\(698\) 30.2446 37.9255i 1.14477 1.43550i
\(699\) −0.193750 + 0.848876i −0.00732831 + 0.0321074i
\(700\) −5.47434 23.9847i −0.206911 0.906535i
\(701\) −21.2594 + 26.6584i −0.802955 + 1.00687i 0.196696 + 0.980464i \(0.436979\pi\)
−0.999651 + 0.0264091i \(0.991593\pi\)
\(702\) 15.0444 + 18.8650i 0.567813 + 0.712015i
\(703\) 1.32759 5.81656i 0.0500711 0.219376i
\(704\) 3.32855 + 1.60295i 0.125450 + 0.0604133i
\(705\) 1.11649 + 0.537673i 0.0420494 + 0.0202499i
\(706\) −1.60992 7.05350i −0.0605900 0.265462i
\(707\) −63.6299 + 30.6425i −2.39305 + 1.15243i
\(708\) −5.05562 −0.190002
\(709\) −37.9267 + 18.2645i −1.42437 + 0.685939i −0.977941 0.208882i \(-0.933018\pi\)
−0.446426 + 0.894821i \(0.647303\pi\)
\(710\) 4.57338 + 5.73483i 0.171636 + 0.215224i
\(711\) 1.03803 + 1.30165i 0.0389292 + 0.0488157i
\(712\) −1.73998 + 0.837930i −0.0652085 + 0.0314028i
\(713\) 26.2989 0.984901
\(714\) −3.24698 + 1.56366i −0.121515 + 0.0585186i
\(715\) −1.19926 5.25430i −0.0448497 0.196500i
\(716\) 6.44989 + 3.10610i 0.241044 + 0.116080i
\(717\) 3.59395 + 1.73076i 0.134219 + 0.0646362i
\(718\) −0.299249 + 1.31110i −0.0111679 + 0.0489297i
\(719\) −32.5800 40.8540i −1.21503 1.52360i −0.783362 0.621566i \(-0.786497\pi\)
−0.431667 0.902033i \(-0.642074\pi\)
\(720\) 3.07942 3.86147i 0.114763 0.143908i
\(721\) −2.53534 11.1081i −0.0944211 0.413686i
\(722\) −5.93512 + 26.0034i −0.220882 + 0.967748i
\(723\) 5.52177 6.92408i 0.205357 0.257509i
\(724\) −8.28083 −0.307755
\(725\) 19.6097 + 17.4354i 0.728285 + 0.647534i
\(726\) 2.02177 0.0750349
\(727\) 18.6953 23.4432i 0.693370 0.869459i −0.303138 0.952947i \(-0.598034\pi\)
0.996509 + 0.0834876i \(0.0266059\pi\)
\(728\) 6.33997 27.7772i 0.234975 1.02949i
\(729\) 3.75733 + 16.4619i 0.139160 + 0.609702i
\(730\) 3.58815 4.49939i 0.132803 0.166530i
\(731\) 3.97285 + 4.98180i 0.146941 + 0.184259i
\(732\) 0.746980 3.27273i 0.0276092 0.120964i
\(733\) −2.71595 1.30793i −0.100316 0.0483096i 0.383053 0.923726i \(-0.374873\pi\)
−0.483369 + 0.875417i \(0.660587\pi\)
\(734\) −55.2781 26.6205i −2.04035 0.982581i
\(735\) −0.332010 1.45463i −0.0122464 0.0536549i
\(736\) 23.0574 11.1039i 0.849907 0.409294i
\(737\) 1.09006 0.0401531
\(738\) −1.80194 + 0.867767i −0.0663302 + 0.0319430i
\(739\) −12.9919 16.2914i −0.477916 0.599288i 0.483174 0.875525i \(-0.339484\pi\)
−0.961090 + 0.276237i \(0.910913\pi\)
\(740\) −0.807979 1.01317i −0.0297019 0.0372450i
\(741\) −4.26055 + 2.05177i −0.156515 + 0.0753738i
\(742\) −31.7875 −1.16695
\(743\) 27.7189 13.3487i 1.01691 0.489718i 0.150266 0.988646i \(-0.451987\pi\)
0.866643 + 0.498928i \(0.166273\pi\)
\(744\) 0.854207 + 3.74253i 0.0313168 + 0.137208i
\(745\) −0.870896 0.419402i −0.0319072 0.0153657i
\(746\) 45.4587 + 21.8917i 1.66436 + 0.801514i
\(747\) −5.88135 + 25.7679i −0.215188 + 0.942798i
\(748\) 2.51275 + 3.15088i 0.0918751 + 0.115208i
\(749\) 18.8327 23.6155i 0.688133 0.862892i
\(750\) −0.628761 2.75478i −0.0229591 0.100590i
\(751\) 0.994492 4.35715i 0.0362895 0.158995i −0.953537 0.301277i \(-0.902587\pi\)
0.989826 + 0.142283i \(0.0454442\pi\)
\(752\) 24.0254 30.1269i 0.876117 1.09862i
\(753\) 11.4843 0.418510
\(754\) −19.3753 46.4439i −0.705607 1.69139i
\(755\) −0.869167 −0.0316322
\(756\) 8.12833 10.1926i 0.295625 0.370702i
\(757\) 1.88159 8.24379i 0.0683876 0.299626i −0.929155 0.369691i \(-0.879464\pi\)
0.997542 + 0.0700652i \(0.0223207\pi\)
\(758\) 9.17456 + 40.1964i 0.333235 + 1.46000i
\(759\) −3.34266 + 4.19156i −0.121331 + 0.152144i
\(760\) 0.618645 + 0.775757i 0.0224406 + 0.0281397i
\(761\) −5.49516 + 24.0759i −0.199199 + 0.872749i 0.772216 + 0.635361i \(0.219149\pi\)
−0.971415 + 0.237388i \(0.923709\pi\)
\(762\) 7.56638 + 3.64377i 0.274101 + 0.132000i
\(763\) −6.02930 2.90356i −0.218275 0.105116i
\(764\) 5.21983 + 22.8696i 0.188847 + 0.827392i
\(765\) 1.00000 0.481575i 0.0361551 0.0174114i
\(766\) −21.3676 −0.772045
\(767\) 42.5652 20.4983i 1.53694 0.740152i
\(768\) 5.74698 + 7.20648i 0.207376 + 0.260042i
\(769\) 18.7939 + 23.5668i 0.677724 + 0.849839i 0.995142 0.0984462i \(-0.0313872\pi\)
−0.317418 + 0.948286i \(0.602816\pi\)
\(770\) −6.83124 + 3.28975i −0.246181 + 0.118554i
\(771\) 5.31873 0.191549
\(772\) −12.2289 + 5.88911i −0.440126 + 0.211954i
\(773\) &minus