Properties

Label 29.2.d.a.16.1
Level 29
Weight 2
Character 29.16
Analytic conductor 0.232
Analytic rank 0
Dimension 6
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 29.d (of order \(7\) and degree \(6\))

Newform invariants

Self dual: No
Analytic conductor: \(0.231566165862\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 16.1
Root \(-0.623490 - 0.781831i\)
Character \(\chi\) = 29.16
Dual form 29.2.d.a.20.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(0.400969 + 0.193096i) q^{2}\) \(+(-0.777479 + 0.974928i) q^{3}\) \(+(-1.12349 - 1.40881i) q^{4}\) \(+(-0.623490 - 0.300257i) q^{5}\) \(+(-0.500000 + 0.240787i) q^{6}\) \(+(0.222521 - 0.279032i) q^{7}\) \(+(-0.376510 - 1.64960i) q^{8}\) \(+(0.321552 + 1.40881i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.400969 + 0.193096i) q^{2}\) \(+(-0.777479 + 0.974928i) q^{3}\) \(+(-1.12349 - 1.40881i) q^{4}\) \(+(-0.623490 - 0.300257i) q^{5}\) \(+(-0.500000 + 0.240787i) q^{6}\) \(+(0.222521 - 0.279032i) q^{7}\) \(+(-0.376510 - 1.64960i) q^{8}\) \(+(0.321552 + 1.40881i) q^{9}\) \(+(-0.192021 - 0.240787i) q^{10}\) \(+(-1.09903 + 4.81517i) q^{11}\) \(+2.24698 q^{12}\) \(+(1.25786 - 5.51107i) q^{13}\) \(+(0.143104 - 0.0689153i) q^{14}\) \(+(0.777479 - 0.374414i) q^{15}\) \(+(-0.634375 + 2.77938i) q^{16}\) \(+4.49396 q^{17}\) \(+(-0.143104 + 0.626980i) q^{18}\) \(+(-1.46950 - 1.84270i) q^{19}\) \(+(0.277479 + 1.21572i) q^{20}\) \(+(0.0990311 + 0.433884i) q^{21}\) \(+(-1.37047 + 1.71851i) q^{22}\) \(+(-2.06853 + 0.996152i) q^{23}\) \(+(1.90097 + 0.915458i) q^{24}\) \(+(-2.81886 - 3.53474i) q^{25}\) \(+(1.56853 - 1.96688i) q^{26}\) \(+(-4.99396 - 2.40496i) q^{27}\) \(-0.643104 q^{28}\) \(+(-5.09783 - 1.73553i) q^{29}\) \(+0.384043 q^{30}\) \(+(6.02930 + 2.90356i) q^{31}\) \(+(-2.90097 + 3.63770i) q^{32}\) \(+(-3.83997 - 4.81517i) q^{33}\) \(+(1.80194 + 0.867767i) q^{34}\) \(+(-0.222521 + 0.107160i) q^{35}\) \(+(1.62349 - 2.03579i) q^{36}\) \(+(1.09903 + 4.81517i) q^{37}\) \(+(-0.233406 - 1.02262i) q^{38}\) \(+(4.39493 + 5.51107i) q^{39}\) \(+(-0.260553 + 1.14156i) q^{40}\) \(+3.10992 q^{41}\) \(+(-0.0440730 + 0.193096i) q^{42}\) \(+(3.06853 - 1.47773i) q^{43}\) \(+(8.01842 - 3.86147i) q^{44}\) \(+(0.222521 - 0.974928i) q^{45}\) \(-1.02177 q^{46}\) \(+(1.43416 - 6.28345i) q^{47}\) \(+(-2.21648 - 2.77938i) q^{48}\) \(+(1.52930 + 6.70031i) q^{49}\) \(+(-0.447730 - 1.96163i) q^{50}\) \(+(-3.49396 + 4.38129i) q^{51}\) \(+(-9.17725 + 4.41953i) q^{52}\) \(+(4.22737 + 2.03579i) q^{53}\) \(+(-1.53803 - 1.92863i) q^{54}\) \(+(2.13102 - 2.67222i) q^{55}\) \(+(-0.544073 - 0.262012i) q^{56}\) \(+2.93900 q^{57}\) \(+(-1.70895 - 1.68027i) q^{58}\) \(-12.4940 q^{59}\) \(+(-1.40097 - 0.674671i) q^{60}\) \(+(-1.02446 + 1.28463i) q^{61}\) \(+(1.85690 + 2.32847i) q^{62}\) \(+(0.464656 + 0.223767i) q^{63}\) \(+(3.27144 - 1.57544i) q^{64}\) \(+(-2.43900 + 3.05841i) q^{65}\) \(+(-0.609916 - 2.67222i) q^{66}\) \(+(0.516926 + 2.26480i) q^{67}\) \(+(-5.04892 - 6.33114i) q^{68}\) \(+(0.637063 - 2.79116i) q^{69}\) \(-0.109916 q^{70}\) \(+(1.63222 - 7.15122i) q^{71}\) \(+(2.20291 - 1.06086i) q^{72}\) \(+(-5.06853 + 2.44088i) q^{73}\) \(+(-0.489115 + 2.14295i) q^{74}\) \(+5.63773 q^{75}\) \(+(-0.945042 + 4.14050i) q^{76}\) \(+(1.09903 + 1.37814i) q^{77}\) \(+(0.698062 + 3.05841i) q^{78}\) \(+(1.03803 + 4.54792i) q^{79}\) \(+(1.23005 - 1.54244i) q^{80}\) \(+(2.32155 - 1.11800i) q^{81}\) \(+(1.24698 + 0.600514i) q^{82}\) \(+(2.77748 + 3.48285i) q^{83}\) \(+(0.500000 - 0.626980i) q^{84}\) \(+(-2.80194 - 1.34934i) q^{85}\) \(+1.51573 q^{86}\) \(+(5.65548 - 3.62068i) q^{87}\) \(+8.35690 q^{88}\) \(+(5.11745 + 2.46443i) q^{89}\) \(+(0.277479 - 0.347948i) q^{90}\) \(+(-1.25786 - 1.57731i) q^{91}\) \(+(3.72737 + 1.79500i) q^{92}\) \(+(-7.51842 + 3.62068i) q^{93}\) \(+(1.78836 - 2.24254i) q^{94}\) \(+(0.362937 + 1.59013i) q^{95}\) \(+(-1.29105 - 5.65647i) q^{96}\) \(+(-0.112605 - 0.141202i) q^{97}\) \(+(-0.680604 + 2.98192i) q^{98}\) \(-7.13706 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(6q \) \(\mathstrut -\mathstrut 2q^{2} \) \(\mathstrut -\mathstrut 5q^{3} \) \(\mathstrut -\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut -\mathstrut 3q^{6} \) \(\mathstrut +\mathstrut q^{7} \) \(\mathstrut -\mathstrut 7q^{8} \) \(\mathstrut +\mathstrut 6q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(6q \) \(\mathstrut -\mathstrut 2q^{2} \) \(\mathstrut -\mathstrut 5q^{3} \) \(\mathstrut -\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut -\mathstrut 3q^{6} \) \(\mathstrut +\mathstrut q^{7} \) \(\mathstrut -\mathstrut 7q^{8} \) \(\mathstrut +\mathstrut 6q^{9} \) \(\mathstrut +\mathstrut 9q^{10} \) \(\mathstrut -\mathstrut 11q^{11} \) \(\mathstrut +\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 5q^{13} \) \(\mathstrut +\mathstrut 9q^{14} \) \(\mathstrut +\mathstrut 5q^{15} \) \(\mathstrut +\mathstrut 4q^{16} \) \(\mathstrut +\mathstrut 8q^{17} \) \(\mathstrut -\mathstrut 9q^{18} \) \(\mathstrut +\mathstrut q^{19} \) \(\mathstrut +\mathstrut 2q^{20} \) \(\mathstrut +\mathstrut 5q^{21} \) \(\mathstrut +\mathstrut 6q^{22} \) \(\mathstrut -\mathstrut 7q^{23} \) \(\mathstrut +\mathstrut 7q^{24} \) \(\mathstrut -\mathstrut 24q^{25} \) \(\mathstrut +\mathstrut 4q^{26} \) \(\mathstrut -\mathstrut 11q^{27} \) \(\mathstrut -\mathstrut 12q^{28} \) \(\mathstrut +\mathstrut 6q^{29} \) \(\mathstrut -\mathstrut 18q^{30} \) \(\mathstrut +\mathstrut 5q^{31} \) \(\mathstrut -\mathstrut 13q^{32} \) \(\mathstrut +\mathstrut q^{33} \) \(\mathstrut +\mathstrut 2q^{34} \) \(\mathstrut -\mathstrut q^{35} \) \(\mathstrut +\mathstrut 5q^{36} \) \(\mathstrut +\mathstrut 11q^{37} \) \(\mathstrut +\mathstrut 2q^{38} \) \(\mathstrut +\mathstrut 3q^{39} \) \(\mathstrut +\mathstrut 14q^{40} \) \(\mathstrut +\mathstrut 20q^{41} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut +\mathstrut 13q^{43} \) \(\mathstrut +\mathstrut 20q^{44} \) \(\mathstrut +\mathstrut q^{45} \) \(\mathstrut +\mathstrut 11q^{47} \) \(\mathstrut +\mathstrut 6q^{48} \) \(\mathstrut -\mathstrut 22q^{49} \) \(\mathstrut +\mathstrut q^{50} \) \(\mathstrut -\mathstrut 2q^{51} \) \(\mathstrut -\mathstrut 10q^{52} \) \(\mathstrut +\mathstrut 3q^{53} \) \(\mathstrut +\mathstrut 6q^{54} \) \(\mathstrut -\mathstrut 17q^{55} \) \(\mathstrut -\mathstrut 7q^{56} \) \(\mathstrut -\mathstrut 2q^{57} \) \(\mathstrut -\mathstrut 16q^{58} \) \(\mathstrut -\mathstrut 56q^{59} \) \(\mathstrut -\mathstrut 4q^{60} \) \(\mathstrut +\mathstrut 3q^{61} \) \(\mathstrut +\mathstrut 3q^{62} \) \(\mathstrut +\mathstrut 15q^{63} \) \(\mathstrut +\mathstrut q^{64} \) \(\mathstrut +\mathstrut 5q^{65} \) \(\mathstrut -\mathstrut 5q^{66} \) \(\mathstrut +\mathstrut 19q^{67} \) \(\mathstrut -\mathstrut 12q^{68} \) \(\mathstrut -\mathstrut 7q^{69} \) \(\mathstrut -\mathstrut 2q^{70} \) \(\mathstrut +\mathstrut 21q^{71} \) \(\mathstrut -\mathstrut 25q^{73} \) \(\mathstrut -\mathstrut 6q^{74} \) \(\mathstrut +\mathstrut 48q^{75} \) \(\mathstrut -\mathstrut 5q^{76} \) \(\mathstrut +\mathstrut 11q^{77} \) \(\mathstrut +\mathstrut 13q^{78} \) \(\mathstrut -\mathstrut 9q^{79} \) \(\mathstrut -\mathstrut 18q^{80} \) \(\mathstrut +\mathstrut 18q^{81} \) \(\mathstrut -\mathstrut 2q^{82} \) \(\mathstrut +\mathstrut 17q^{83} \) \(\mathstrut +\mathstrut 3q^{84} \) \(\mathstrut -\mathstrut 8q^{85} \) \(\mathstrut -\mathstrut 16q^{86} \) \(\mathstrut -\mathstrut 5q^{87} \) \(\mathstrut +\mathstrut 42q^{88} \) \(\mathstrut +\mathstrut 7q^{89} \) \(\mathstrut +\mathstrut 2q^{90} \) \(\mathstrut +\mathstrut 5q^{91} \) \(\mathstrut -\mathstrut 17q^{93} \) \(\mathstrut +\mathstrut 8q^{94} \) \(\mathstrut +\mathstrut 13q^{95} \) \(\mathstrut -\mathstrut 2q^{96} \) \(\mathstrut +\mathstrut q^{97} \) \(\mathstrut +\mathstrut 19q^{98} \) \(\mathstrut -\mathstrut 32q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.400969 + 0.193096i 0.283528 + 0.136540i 0.570243 0.821476i \(-0.306849\pi\)
−0.286715 + 0.958016i \(0.592563\pi\)
\(3\) −0.777479 + 0.974928i −0.448878 + 0.562875i −0.953859 0.300256i \(-0.902928\pi\)
0.504981 + 0.863130i \(0.331499\pi\)
\(4\) −1.12349 1.40881i −0.561745 0.704406i
\(5\) −0.623490 0.300257i −0.278833 0.134279i 0.289241 0.957256i \(-0.406597\pi\)
−0.568074 + 0.822977i \(0.692311\pi\)
\(6\) −0.500000 + 0.240787i −0.204124 + 0.0983010i
\(7\) 0.222521 0.279032i 0.0841050 0.105464i −0.737999 0.674802i \(-0.764229\pi\)
0.822104 + 0.569338i \(0.192800\pi\)
\(8\) −0.376510 1.64960i −0.133116 0.583221i
\(9\) 0.321552 + 1.40881i 0.107184 + 0.469604i
\(10\) −0.192021 0.240787i −0.0607225 0.0761436i
\(11\) −1.09903 + 4.81517i −0.331370 + 1.45183i 0.485109 + 0.874454i \(0.338780\pi\)
−0.816479 + 0.577375i \(0.804077\pi\)
\(12\) 2.24698 0.648647
\(13\) 1.25786 5.51107i 0.348869 1.52849i −0.430884 0.902407i \(-0.641798\pi\)
0.779753 0.626087i \(-0.215345\pi\)
\(14\) 0.143104 0.0689153i 0.0382462 0.0184184i
\(15\) 0.777479 0.374414i 0.200744 0.0966733i
\(16\) −0.634375 + 2.77938i −0.158594 + 0.694845i
\(17\) 4.49396 1.08995 0.544973 0.838454i \(-0.316540\pi\)
0.544973 + 0.838454i \(0.316540\pi\)
\(18\) −0.143104 + 0.626980i −0.0337300 + 0.147781i
\(19\) −1.46950 1.84270i −0.337127 0.422743i 0.584153 0.811643i \(-0.301427\pi\)
−0.921280 + 0.388900i \(0.872855\pi\)
\(20\) 0.277479 + 1.21572i 0.0620462 + 0.271842i
\(21\) 0.0990311 + 0.433884i 0.0216104 + 0.0946812i
\(22\) −1.37047 + 1.71851i −0.292185 + 0.366388i
\(23\) −2.06853 + 0.996152i −0.431319 + 0.207712i −0.636930 0.770922i \(-0.719796\pi\)
0.205611 + 0.978634i \(0.434082\pi\)
\(24\) 1.90097 + 0.915458i 0.388034 + 0.186867i
\(25\) −2.81886 3.53474i −0.563773 0.706949i
\(26\) 1.56853 1.96688i 0.307614 0.385736i
\(27\) −4.99396 2.40496i −0.961088 0.462836i
\(28\) −0.643104 −0.121535
\(29\) −5.09783 1.73553i −0.946644 0.322281i
\(30\) 0.384043 0.0701163
\(31\) 6.02930 + 2.90356i 1.08289 + 0.521495i 0.888241 0.459377i \(-0.151927\pi\)
0.194654 + 0.980872i \(0.437642\pi\)
\(32\) −2.90097 + 3.63770i −0.512824 + 0.643061i
\(33\) −3.83997 4.81517i −0.668453 0.838214i
\(34\) 1.80194 + 0.867767i 0.309030 + 0.148821i
\(35\) −0.222521 + 0.107160i −0.0376129 + 0.0181134i
\(36\) 1.62349 2.03579i 0.270582 0.339299i
\(37\) 1.09903 + 4.81517i 0.180680 + 0.791609i 0.981307 + 0.192447i \(0.0616424\pi\)
−0.800628 + 0.599162i \(0.795501\pi\)
\(38\) −0.233406 1.02262i −0.0378635 0.165891i
\(39\) 4.39493 + 5.51107i 0.703752 + 0.882477i
\(40\) −0.260553 + 1.14156i −0.0411971 + 0.180496i
\(41\) 3.10992 0.485687 0.242844 0.970065i \(-0.421920\pi\)
0.242844 + 0.970065i \(0.421920\pi\)
\(42\) −0.0440730 + 0.193096i −0.00680061 + 0.0297954i
\(43\) 3.06853 1.47773i 0.467947 0.225351i −0.185025 0.982734i \(-0.559236\pi\)
0.652971 + 0.757383i \(0.273522\pi\)
\(44\) 8.01842 3.86147i 1.20882 0.582138i
\(45\) 0.222521 0.974928i 0.0331715 0.145334i
\(46\) −1.02177 −0.150652
\(47\) 1.43416 6.28345i 0.209193 0.916536i −0.755912 0.654673i \(-0.772806\pi\)
0.965105 0.261862i \(-0.0843366\pi\)
\(48\) −2.21648 2.77938i −0.319921 0.401169i
\(49\) 1.52930 + 6.70031i 0.218472 + 0.957188i
\(50\) −0.447730 1.96163i −0.0633186 0.277417i
\(51\) −3.49396 + 4.38129i −0.489252 + 0.613503i
\(52\) −9.17725 + 4.41953i −1.27266 + 0.612879i
\(53\) 4.22737 + 2.03579i 0.580673 + 0.279638i 0.701075 0.713088i \(-0.252704\pi\)
−0.120401 + 0.992725i \(0.538418\pi\)
\(54\) −1.53803 1.92863i −0.209300 0.262453i
\(55\) 2.13102 2.67222i 0.287347 0.360322i
\(56\) −0.544073 0.262012i −0.0727048 0.0350128i
\(57\) 2.93900 0.389280
\(58\) −1.70895 1.68027i −0.224396 0.220630i
\(59\) −12.4940 −1.62657 −0.813287 0.581862i \(-0.802324\pi\)
−0.813287 + 0.581862i \(0.802324\pi\)
\(60\) −1.40097 0.674671i −0.180864 0.0870997i
\(61\) −1.02446 + 1.28463i −0.131168 + 0.164480i −0.843078 0.537791i \(-0.819259\pi\)
0.711910 + 0.702271i \(0.247830\pi\)
\(62\) 1.85690 + 2.32847i 0.235826 + 0.295716i
\(63\) 0.464656 + 0.223767i 0.0585412 + 0.0281919i
\(64\) 3.27144 1.57544i 0.408930 0.196930i
\(65\) −2.43900 + 3.05841i −0.302521 + 0.379349i
\(66\) −0.609916 2.67222i −0.0750755 0.328927i
\(67\) 0.516926 + 2.26480i 0.0631526 + 0.276689i 0.996639 0.0819245i \(-0.0261066\pi\)
−0.933486 + 0.358614i \(0.883249\pi\)
\(68\) −5.04892 6.33114i −0.612271 0.767764i
\(69\) 0.637063 2.79116i 0.0766934 0.336016i
\(70\) −0.109916 −0.0131375
\(71\) 1.63222 7.15122i 0.193709 0.848694i −0.780878 0.624683i \(-0.785228\pi\)
0.974587 0.224010i \(-0.0719148\pi\)
\(72\) 2.20291 1.06086i 0.259615 0.125024i
\(73\) −5.06853 + 2.44088i −0.593227 + 0.285683i −0.706310 0.707903i \(-0.749642\pi\)
0.113083 + 0.993586i \(0.463927\pi\)
\(74\) −0.489115 + 2.14295i −0.0568584 + 0.249113i
\(75\) 5.63773 0.650989
\(76\) −0.945042 + 4.14050i −0.108404 + 0.474948i
\(77\) 1.09903 + 1.37814i 0.125246 + 0.157054i
\(78\) 0.698062 + 3.05841i 0.0790400 + 0.346297i
\(79\) 1.03803 + 4.54792i 0.116788 + 0.511681i 0.999154 + 0.0411178i \(0.0130919\pi\)
−0.882367 + 0.470563i \(0.844051\pi\)
\(80\) 1.23005 1.54244i 0.137524 0.172450i
\(81\) 2.32155 1.11800i 0.257950 0.124222i
\(82\) 1.24698 + 0.600514i 0.137706 + 0.0663156i
\(83\) 2.77748 + 3.48285i 0.304868 + 0.382292i 0.910539 0.413423i \(-0.135667\pi\)
−0.605671 + 0.795715i \(0.707095\pi\)
\(84\) 0.500000 0.626980i 0.0545545 0.0684091i
\(85\) −2.80194 1.34934i −0.303913 0.146357i
\(86\) 1.51573 0.163445
\(87\) 5.65548 3.62068i 0.606331 0.388178i
\(88\) 8.35690 0.890848
\(89\) 5.11745 + 2.46443i 0.542449 + 0.261229i 0.684981 0.728561i \(-0.259810\pi\)
−0.142533 + 0.989790i \(0.545525\pi\)
\(90\) 0.277479 0.347948i 0.0292489 0.0366769i
\(91\) −1.25786 1.57731i −0.131860 0.165347i
\(92\) 3.72737 + 1.79500i 0.388605 + 0.187142i
\(93\) −7.51842 + 3.62068i −0.779624 + 0.375447i
\(94\) 1.78836 2.24254i 0.184456 0.231300i
\(95\) 0.362937 + 1.59013i 0.0372365 + 0.163144i
\(96\) −1.29105 5.65647i −0.131768 0.577311i
\(97\) −0.112605 0.141202i −0.0114333 0.0143369i 0.776082 0.630632i \(-0.217204\pi\)
−0.787515 + 0.616295i \(0.788633\pi\)
\(98\) −0.680604 + 2.98192i −0.0687514 + 0.301219i
\(99\) −7.13706 −0.717302
\(100\) −1.81282 + 7.94250i −0.181282 + 0.794250i
\(101\) −2.90970 + 1.40124i −0.289526 + 0.139428i −0.573009 0.819549i \(-0.694224\pi\)
0.283484 + 0.958977i \(0.408510\pi\)
\(102\) −2.24698 + 1.08209i −0.222484 + 0.107143i
\(103\) 3.03803 13.3105i 0.299346 1.31152i −0.571758 0.820423i \(-0.693738\pi\)
0.871104 0.491099i \(-0.163405\pi\)
\(104\) −9.56465 −0.937891
\(105\) 0.0685317 0.300257i 0.00668801 0.0293021i
\(106\) 1.30194 + 1.63258i 0.126455 + 0.158570i
\(107\) −3.61476 15.8373i −0.349452 1.53105i −0.778428 0.627734i \(-0.783983\pi\)
0.428976 0.903316i \(-0.358874\pi\)
\(108\) 2.22252 + 9.73750i 0.213862 + 0.936991i
\(109\) 3.40850 4.27413i 0.326475 0.409387i −0.591323 0.806435i \(-0.701394\pi\)
0.917798 + 0.397048i \(0.129965\pi\)
\(110\) 1.37047 0.659983i 0.130669 0.0629269i
\(111\) −5.54892 2.67222i −0.526680 0.253636i
\(112\) 0.634375 + 0.795481i 0.0599428 + 0.0751659i
\(113\) −6.65548 + 8.34571i −0.626095 + 0.785098i −0.989188 0.146655i \(-0.953149\pi\)
0.363093 + 0.931753i \(0.381721\pi\)
\(114\) 1.17845 + 0.567511i 0.110372 + 0.0531522i
\(115\) 1.58881 0.148157
\(116\) 3.28232 + 9.13174i 0.304756 + 0.847861i
\(117\) 8.16852 0.755180
\(118\) −5.00969 2.41254i −0.461179 0.222092i
\(119\) 1.00000 1.25396i 0.0916698 0.114950i
\(120\) −0.910362 1.14156i −0.0831043 0.104210i
\(121\) −12.0673 5.81132i −1.09703 0.528302i
\(122\) −0.658834 + 0.317278i −0.0596480 + 0.0287250i
\(123\) −2.41789 + 3.03194i −0.218014 + 0.273381i
\(124\) −2.68329 11.7563i −0.240967 1.05574i
\(125\) 1.46615 + 6.42361i 0.131136 + 0.574546i
\(126\) 0.143104 + 0.179447i 0.0127487 + 0.0159864i
\(127\) 0.230718 1.01084i 0.0204729 0.0896976i −0.963659 0.267134i \(-0.913923\pi\)
0.984132 + 0.177437i \(0.0567805\pi\)
\(128\) 10.9215 0.965337
\(129\) −0.945042 + 4.14050i −0.0832063 + 0.364551i
\(130\) −1.56853 + 0.755365i −0.137569 + 0.0662499i
\(131\) −7.22737 + 3.48052i −0.631458 + 0.304094i −0.722099 0.691790i \(-0.756823\pi\)
0.0906414 + 0.995884i \(0.471108\pi\)
\(132\) −2.46950 + 10.8196i −0.214942 + 0.941724i
\(133\) −0.841166 −0.0729384
\(134\) −0.230054 + 1.00793i −0.0198736 + 0.0870720i
\(135\) 2.39158 + 2.99894i 0.205834 + 0.258108i
\(136\) −1.69202 7.41323i −0.145090 0.635679i
\(137\) −3.83459 16.8005i −0.327611 1.43536i −0.823670 0.567070i \(-0.808077\pi\)
0.496058 0.868289i \(-0.334780\pi\)
\(138\) 0.794405 0.996152i 0.0676242 0.0847981i
\(139\) 15.0172 7.23191i 1.27374 0.613403i 0.329969 0.943992i \(-0.392962\pi\)
0.943775 + 0.330589i \(0.107247\pi\)
\(140\) 0.400969 + 0.193096i 0.0338881 + 0.0163196i
\(141\) 5.01089 + 6.28345i 0.421993 + 0.529162i
\(142\) 2.03534 2.55224i 0.170802 0.214179i
\(143\) 25.1543 + 12.1137i 2.10351 + 1.01300i
\(144\) −4.11960 −0.343300
\(145\) 2.65734 + 2.61275i 0.220680 + 0.216977i
\(146\) −2.50365 −0.207203
\(147\) −7.72132 3.71839i −0.636844 0.306688i
\(148\) 5.54892 6.95812i 0.456118 0.571954i
\(149\) 11.6012 + 14.5474i 0.950406 + 1.19177i 0.981346 + 0.192251i \(0.0615786\pi\)
−0.0309396 + 0.999521i \(0.509850\pi\)
\(150\) 2.26055 + 1.08863i 0.184573 + 0.0888859i
\(151\) 6.78232 3.26619i 0.551938 0.265799i −0.137060 0.990563i \(-0.543765\pi\)
0.688998 + 0.724764i \(0.258051\pi\)
\(152\) −2.48643 + 3.11788i −0.201676 + 0.252893i
\(153\) 1.44504 + 6.33114i 0.116825 + 0.511843i
\(154\) 0.174563 + 0.764811i 0.0140667 + 0.0616302i
\(155\) −2.88740 3.62068i −0.231921 0.290820i
\(156\) 2.82640 12.3833i 0.226293 0.991454i
\(157\) −18.2392 −1.45565 −0.727824 0.685764i \(-0.759468\pi\)
−0.727824 + 0.685764i \(0.759468\pi\)
\(158\) −0.461968 + 2.02401i −0.0367522 + 0.161022i
\(159\) −5.27144 + 2.53859i −0.418052 + 0.201323i
\(160\) 2.90097 1.39703i 0.229342 0.110445i
\(161\) −0.182333 + 0.798852i −0.0143698 + 0.0629584i
\(162\) 1.14675 0.0900973
\(163\) −2.81282 + 12.3238i −0.220317 + 0.965273i 0.736922 + 0.675977i \(0.236278\pi\)
−0.957240 + 0.289296i \(0.906579\pi\)
\(164\) −3.49396 4.38129i −0.272832 0.342121i
\(165\) 0.948394 + 4.15519i 0.0738324 + 0.323481i
\(166\) 0.441157 + 1.93284i 0.0342404 + 0.150017i
\(167\) −0.496648 + 0.622776i −0.0384317 + 0.0481919i −0.800676 0.599098i \(-0.795526\pi\)
0.762244 + 0.647290i \(0.224098\pi\)
\(168\) 0.678448 0.326723i 0.0523434 0.0252073i
\(169\) −17.0770 8.22386i −1.31362 0.632605i
\(170\) −0.862937 1.08209i −0.0661842 0.0829924i
\(171\) 2.12349 2.66277i 0.162387 0.203627i
\(172\) −5.52930 2.66277i −0.421605 0.203034i
\(173\) −9.15346 −0.695924 −0.347962 0.937509i \(-0.613126\pi\)
−0.347962 + 0.937509i \(0.613126\pi\)
\(174\) 2.96681 0.359726i 0.224913 0.0272708i
\(175\) −1.61356 −0.121974
\(176\) −12.6860 6.10925i −0.956242 0.460502i
\(177\) 9.71379 12.1807i 0.730133 0.915558i
\(178\) 1.57606 + 1.97632i 0.118131 + 0.148132i
\(179\) −3.06853 1.47773i −0.229353 0.110450i 0.315678 0.948866i \(-0.397768\pi\)
−0.545031 + 0.838416i \(0.683482\pi\)
\(180\) −1.62349 + 0.781831i −0.121008 + 0.0582743i
\(181\) 7.90246 9.90937i 0.587385 0.736558i −0.395967 0.918265i \(-0.629591\pi\)
0.983353 + 0.181707i \(0.0581621\pi\)
\(182\) −0.199791 0.875342i −0.0148095 0.0648847i
\(183\) −0.455927 1.99755i −0.0337031 0.147663i
\(184\) 2.42208 + 3.03719i 0.178558 + 0.223904i
\(185\) 0.760553 3.33220i 0.0559170 0.244988i
\(186\) −3.71379 −0.272308
\(187\) −4.93900 + 21.6392i −0.361176 + 1.58241i
\(188\) −10.4635 + 5.03894i −0.763126 + 0.367502i
\(189\) −1.78232 + 0.858322i −0.129645 + 0.0624337i
\(190\) −0.161522 + 0.707674i −0.0117180 + 0.0513401i
\(191\) −10.6703 −0.772072 −0.386036 0.922484i \(-0.626156\pi\)
−0.386036 + 0.922484i \(0.626156\pi\)
\(192\) −1.00753 + 4.41429i −0.0727124 + 0.318574i
\(193\) 14.1712 + 17.7701i 1.02007 + 1.27912i 0.959724 + 0.280945i \(0.0906477\pi\)
0.0603421 + 0.998178i \(0.480781\pi\)
\(194\) −0.0178854 0.0783611i −0.00128410 0.00562600i
\(195\) −1.08546 4.75570i −0.0777312 0.340563i
\(196\) 7.72132 9.68223i 0.551523 0.691588i
\(197\) 17.6211 8.48587i 1.25545 0.604593i 0.316483 0.948598i \(-0.397498\pi\)
0.938968 + 0.344005i \(0.111784\pi\)
\(198\) −2.86174 1.37814i −0.203375 0.0979402i
\(199\) −0.545565 0.684117i −0.0386741 0.0484958i 0.762118 0.647438i \(-0.224159\pi\)
−0.800792 + 0.598942i \(0.795588\pi\)
\(200\) −4.76958 + 5.98086i −0.337260 + 0.422911i
\(201\) −2.60992 1.25687i −0.184089 0.0886527i
\(202\) −1.43727 −0.101126
\(203\) −1.61865 + 1.03627i −0.113607 + 0.0727318i
\(204\) 10.0978 0.706990
\(205\) −1.93900 0.933774i −0.135426 0.0652176i
\(206\) 3.78836 4.75046i 0.263948 0.330980i
\(207\) −2.06853 2.59386i −0.143773 0.180286i
\(208\) 14.5194 + 6.99216i 1.00674 + 0.484819i
\(209\) 10.4879 5.05072i 0.725464 0.349365i
\(210\) 0.0854576 0.107160i 0.00589713 0.00739477i
\(211\) 4.06518 + 17.8107i 0.279858 + 1.22614i 0.897972 + 0.440052i \(0.145040\pi\)
−0.618114 + 0.786088i \(0.712103\pi\)
\(212\) −1.88135 8.24275i −0.129212 0.566115i
\(213\) 5.70291 + 7.15122i 0.390757 + 0.489993i
\(214\) 1.60872 7.04826i 0.109970 0.481809i
\(215\) −2.35690 −0.160739
\(216\) −2.08695 + 9.14352i −0.141999 + 0.622138i
\(217\) 2.15183 1.03627i 0.146076 0.0703465i
\(218\) 2.19202 1.05562i 0.148462 0.0714957i
\(219\) 1.56100 6.83918i 0.105483 0.462149i
\(220\) −6.15883 −0.415228
\(221\) 5.65279 24.7665i 0.380248 1.66598i
\(222\) −1.70895 2.14295i −0.114697 0.143826i
\(223\) 0.404617 + 1.77274i 0.0270951 + 0.118712i 0.986667 0.162752i \(-0.0520372\pi\)
−0.959572 + 0.281464i \(0.909180\pi\)
\(224\) 0.369510 + 1.61893i 0.0246889 + 0.108169i
\(225\) 4.07338 5.10785i 0.271558 0.340523i
\(226\) −4.28017 + 2.06122i −0.284713 + 0.137110i
\(227\) 12.4840 + 6.01199i 0.828594 + 0.399030i 0.799588 0.600549i \(-0.205051\pi\)
0.0290066 + 0.999579i \(0.490766\pi\)
\(228\) −3.30194 4.14050i −0.218676 0.274211i
\(229\) −7.96346 + 9.98586i −0.526240 + 0.659884i −0.971921 0.235308i \(-0.924390\pi\)
0.445681 + 0.895192i \(0.352962\pi\)
\(230\) 0.637063 + 0.306794i 0.0420067 + 0.0202294i
\(231\) −2.19806 −0.144622
\(232\) −0.943550 + 9.06283i −0.0619471 + 0.595004i
\(233\) −8.86592 −0.580826 −0.290413 0.956901i \(-0.593793\pi\)
−0.290413 + 0.956901i \(0.593793\pi\)
\(234\) 3.27532 + 1.57731i 0.214115 + 0.103112i
\(235\) −2.78083 + 3.48705i −0.181401 + 0.227470i
\(236\) 14.0368 + 17.6016i 0.913720 + 1.14577i
\(237\) −5.24094 2.52390i −0.340436 0.163945i
\(238\) 0.643104 0.309703i 0.0416862 0.0200750i
\(239\) −15.9393 + 19.9872i −1.03103 + 1.29287i −0.0757593 + 0.997126i \(0.524138\pi\)
−0.955268 + 0.295741i \(0.904433\pi\)
\(240\) 0.547425 + 2.39843i 0.0353362 + 0.154818i
\(241\) −2.16541 9.48727i −0.139486 0.611129i −0.995548 0.0942554i \(-0.969953\pi\)
0.856062 0.516873i \(-0.172904\pi\)
\(242\) −3.71648 4.66032i −0.238904 0.299577i
\(243\) 2.98523 13.0791i 0.191503 0.839028i
\(244\) 2.96077 0.189544
\(245\) 1.05831 4.63676i 0.0676130 0.296232i
\(246\) −1.55496 + 0.748828i −0.0991405 + 0.0477436i
\(247\) −12.0036 + 5.78065i −0.763774 + 0.367814i
\(248\) 2.51961 11.0392i 0.159996 0.700987i
\(249\) −5.55496 −0.352031
\(250\) −0.652497 + 2.85878i −0.0412676 + 0.180805i
\(251\) −6.08546 7.63092i −0.384111 0.481660i 0.551760 0.834003i \(-0.313956\pi\)
−0.935871 + 0.352343i \(0.885385\pi\)
\(252\) −0.206791 0.906013i −0.0130266 0.0570734i
\(253\) −2.52326 11.0551i −0.158636 0.695030i
\(254\) 0.287700 0.360765i 0.0180519 0.0226364i
\(255\) 3.49396 1.68260i 0.218800 0.105369i
\(256\) −2.16368 1.04197i −0.135230 0.0651233i
\(257\) 10.1984 + 12.7883i 0.636156 + 0.797714i 0.990516 0.137394i \(-0.0438728\pi\)
−0.354360 + 0.935109i \(0.615301\pi\)
\(258\) −1.17845 + 1.47773i −0.0733670 + 0.0919993i
\(259\) 1.58815 + 0.764811i 0.0986826 + 0.0475230i
\(260\) 7.04892 0.437155
\(261\) 0.805823 7.73995i 0.0498792 0.479091i
\(262\) −3.57002 −0.220557
\(263\) −21.3741 10.2932i −1.31798 0.634708i −0.363118 0.931743i \(-0.618288\pi\)
−0.954867 + 0.297035i \(0.904002\pi\)
\(264\) −6.49731 + 8.14737i −0.399882 + 0.501436i
\(265\) −2.02446 2.53859i −0.124362 0.155944i
\(266\) −0.337282 0.162426i −0.0206801 0.00995899i
\(267\) −6.38135 + 3.07310i −0.390533 + 0.188071i
\(268\) 2.60992 3.27273i 0.159426 0.199914i
\(269\) −5.64191 24.7188i −0.343993 1.50713i −0.790561 0.612383i \(-0.790211\pi\)
0.446568 0.894750i \(-0.352646\pi\)
\(270\) 0.379863 + 1.66429i 0.0231177 + 0.101285i
\(271\) −0.750332 0.940887i −0.0455794 0.0571548i 0.758519 0.651651i \(-0.225923\pi\)
−0.804099 + 0.594496i \(0.797352\pi\)
\(272\) −2.85086 + 12.4904i −0.172858 + 0.757342i
\(273\) 2.51573 0.152259
\(274\) 1.70655 7.47690i 0.103097 0.451696i
\(275\) 20.1184 9.68851i 1.21319 0.584239i
\(276\) −4.64795 + 2.23833i −0.279774 + 0.134732i
\(277\) −2.37316 + 10.3975i −0.142589 + 0.624724i 0.852239 + 0.523153i \(0.175244\pi\)
−0.994828 + 0.101572i \(0.967613\pi\)
\(278\) 7.41789 0.444896
\(279\) −2.15183 + 9.42780i −0.128827 + 0.564427i
\(280\) 0.260553 + 0.326723i 0.0155710 + 0.0195255i
\(281\) 3.62253 + 15.8713i 0.216102 + 0.946805i 0.960327 + 0.278876i \(0.0899618\pi\)
−0.744225 + 0.667929i \(0.767181\pi\)
\(282\) 0.795897 + 3.48705i 0.0473950 + 0.207651i
\(283\) −3.27144 + 4.10225i −0.194467 + 0.243854i −0.869499 0.493935i \(-0.835558\pi\)
0.675032 + 0.737788i \(0.264130\pi\)
\(284\) −11.9085 + 5.73483i −0.706640 + 0.340300i
\(285\) −1.83244 0.882455i −0.108544 0.0522721i
\(286\) 7.74698 + 9.71441i 0.458089 + 0.574425i
\(287\) 0.692021 0.867767i 0.0408487 0.0512227i
\(288\) −6.05765 2.91721i −0.356950 0.171898i
\(289\) 3.19567 0.187981
\(290\) 0.560999 + 1.56075i 0.0329430 + 0.0916506i
\(291\) 0.225209 0.0132020
\(292\) 9.13318 + 4.39831i 0.534479 + 0.257391i
\(293\) 4.21714 5.28813i 0.246368 0.308936i −0.643236 0.765668i \(-0.722409\pi\)
0.889604 + 0.456732i \(0.150980\pi\)
\(294\) −2.37800 2.98192i −0.138688 0.173909i
\(295\) 7.78986 + 3.75140i 0.453543 + 0.218415i
\(296\) 7.52930 3.62592i 0.437632 0.210752i
\(297\) 17.0688 21.4036i 0.990434 1.24196i
\(298\) 1.84266 + 8.07321i 0.106742 + 0.467669i
\(299\) 2.88793 + 12.6528i 0.167013 + 0.731733i
\(300\) −6.33393 7.94250i −0.365690 0.458560i
\(301\) 0.270479 1.18505i 0.0155901 0.0683049i
\(302\) 3.35019 0.192782
\(303\) 0.896125 3.92618i 0.0514810 0.225553i
\(304\) 6.05376 2.91534i 0.347207 0.167206i
\(305\) 1.02446 0.493353i 0.0586603 0.0282493i
\(306\) −0.643104 + 2.81762i −0.0367638 + 0.161073i
\(307\) 4.51812 0.257863 0.128931 0.991654i \(-0.458845\pi\)
0.128931 + 0.991654i \(0.458845\pi\)
\(308\) 0.706791 3.09666i 0.0402732 0.176448i
\(309\) 10.6148 + 13.3105i 0.603853 + 0.757207i
\(310\) −0.458615 2.00933i −0.0260476 0.114122i
\(311\) 2.80745 + 12.3002i 0.159196 + 0.697482i 0.990018 + 0.140944i \(0.0450136\pi\)
−0.830822 + 0.556538i \(0.812129\pi\)
\(312\) 7.43631 9.32484i 0.420998 0.527915i
\(313\) −17.3349 + 8.34804i −0.979826 + 0.471859i −0.854045 0.520199i \(-0.825858\pi\)
−0.125781 + 0.992058i \(0.540144\pi\)
\(314\) −7.31336 3.52193i −0.412717 0.198754i
\(315\) −0.222521 0.279032i −0.0125376 0.0157217i
\(316\) 5.24094 6.57193i 0.294826 0.369700i
\(317\) −2.58426 1.24451i −0.145147 0.0698989i 0.359901 0.932991i \(-0.382811\pi\)
−0.505047 + 0.863092i \(0.668525\pi\)
\(318\) −2.60388 −0.146018
\(319\) 13.9596 22.6395i 0.781586 1.26757i
\(320\) −2.51275 −0.140467
\(321\) 18.2506 + 8.78904i 1.01865 + 0.490556i
\(322\) −0.227365 + 0.285107i −0.0126706 + 0.0158884i
\(323\) −6.60388 8.28100i −0.367449 0.460767i
\(324\) −4.18329 2.01457i −0.232405 0.111920i
\(325\) −23.0260 + 11.0887i −1.27725 + 0.615091i
\(326\) −3.50753 + 4.39831i −0.194264 + 0.243600i
\(327\) 1.51693 + 6.64609i 0.0838862 + 0.367529i
\(328\) −1.17092 5.13011i −0.0646530 0.283263i
\(329\) −1.43416 1.79838i −0.0790676 0.0991477i
\(330\) −0.422075 + 1.84923i −0.0232345 + 0.101797i
\(331\) 3.13408 0.172265 0.0861323 0.996284i \(-0.472549\pi\)
0.0861323 + 0.996284i \(0.472549\pi\)
\(332\) 1.78621 7.82589i 0.0980309 0.429501i
\(333\) −6.43027 + 3.09666i −0.352377 + 0.169696i
\(334\) −0.319396 + 0.153813i −0.0174766 + 0.00841628i
\(335\) 0.357724 1.56729i 0.0195445 0.0856302i
\(336\) −1.26875 −0.0692160
\(337\) −1.10872 + 4.85762i −0.0603958 + 0.264611i −0.996107 0.0881567i \(-0.971902\pi\)
0.935711 + 0.352768i \(0.114760\pi\)
\(338\) −5.25936 6.59502i −0.286071 0.358722i
\(339\) −2.96197 12.9772i −0.160872 0.704826i
\(340\) 1.24698 + 5.46337i 0.0676270 + 0.296293i
\(341\) −20.6075 + 25.8410i −1.11596 + 1.39937i
\(342\) 1.36563 0.657650i 0.0738445 0.0355617i
\(343\) 4.46077 + 2.14819i 0.240859 + 0.115992i
\(344\) −3.59299 4.50547i −0.193721 0.242919i
\(345\) −1.23527 + 1.54898i −0.0665045 + 0.0833940i
\(346\) −3.67025 1.76750i −0.197314 0.0950214i
\(347\) 20.1172 1.07995 0.539974 0.841682i \(-0.318434\pi\)
0.539974 + 0.841682i \(0.318434\pi\)
\(348\) −11.4547 3.89971i −0.614038 0.209046i
\(349\) 20.4892 1.09676 0.548380 0.836229i \(-0.315245\pi\)
0.548380 + 0.836229i \(0.315245\pi\)
\(350\) −0.646989 0.311573i −0.0345830 0.0166543i
\(351\) −19.5356 + 24.4969i −1.04274 + 1.30755i
\(352\) −14.3279 17.9666i −0.763679 0.957623i
\(353\) −16.2153 7.80887i −0.863052 0.415624i −0.0506467 0.998717i \(-0.516128\pi\)
−0.812406 + 0.583092i \(0.801843\pi\)
\(354\) 6.24698 3.00839i 0.332023 0.159894i
\(355\) −3.16487 + 3.96863i −0.167974 + 0.210633i
\(356\) −2.27748 9.97829i −0.120706 0.528848i
\(357\) 0.445042 + 1.94986i 0.0235541 + 0.103197i
\(358\) −0.945042 1.18505i −0.0499470 0.0626316i
\(359\) −5.25786 + 23.0362i −0.277499 + 1.21580i 0.623444 + 0.781868i \(0.285733\pi\)
−0.900943 + 0.433937i \(0.857124\pi\)
\(360\) −1.69202 −0.0891774
\(361\) 2.99180 13.1079i 0.157463 0.689892i
\(362\) 5.08211 2.44741i 0.267110 0.128633i
\(363\) 15.0477 7.24660i 0.789801 0.380348i
\(364\) −0.808938 + 3.54419i −0.0423999 + 0.185766i
\(365\) 3.89307 0.203772
\(366\) 0.202907 0.888992i 0.0106061 0.0464684i
\(367\) −18.4822 23.1759i −0.964762 1.20977i −0.977732 0.209857i \(-0.932700\pi\)
0.0129705 0.999916i \(-0.495871\pi\)
\(368\) −1.45646 6.38117i −0.0759232 0.332641i
\(369\) 1.00000 + 4.38129i 0.0520579 + 0.228081i
\(370\) 0.948394 1.18925i 0.0493047 0.0618261i
\(371\) 1.50873 0.726566i 0.0783293 0.0377214i
\(372\) 13.5477 + 6.52424i 0.702417 + 0.338266i
\(373\) −15.7044 19.6927i −0.813143 1.01965i −0.999310 0.0371310i \(-0.988178\pi\)
0.186167 0.982518i \(-0.440393\pi\)
\(374\) −6.15883 + 7.72293i −0.318466 + 0.399343i
\(375\) −7.40246 3.56484i −0.382261 0.184087i
\(376\) −10.9051 −0.562390
\(377\) −15.9770 + 25.9114i −0.822859 + 1.33451i
\(378\) −0.880395 −0.0452826
\(379\) 24.2424 + 11.6745i 1.24525 + 0.599681i 0.936234 0.351376i \(-0.114286\pi\)
0.309016 + 0.951057i \(0.400000\pi\)
\(380\) 1.83244 2.29780i 0.0940020 0.117875i
\(381\) 0.806118 + 1.01084i 0.0412987 + 0.0517869i
\(382\) −4.27844 2.06039i −0.218904 0.105419i
\(383\) 17.7213 8.53414i 0.905517 0.436074i 0.0776388 0.996982i \(-0.475262\pi\)
0.827879 + 0.560907i \(0.189548\pi\)
\(384\) −8.49127 + 10.6477i −0.433318 + 0.543364i
\(385\) −0.271438 1.18925i −0.0138338 0.0606097i
\(386\) 2.25086 + 9.86168i 0.114566 + 0.501946i
\(387\) 3.06853 + 3.84782i 0.155982 + 0.195596i
\(388\) −0.0724165 + 0.317278i −0.00367639 + 0.0161073i
\(389\) 24.8552 1.26021 0.630103 0.776511i \(-0.283012\pi\)
0.630103 + 0.776511i \(0.283012\pi\)
\(390\) 0.483074 2.11649i 0.0244614 0.107172i
\(391\) −9.29590 + 4.47667i −0.470114 + 0.226395i
\(392\) 10.4770 5.04547i 0.529170 0.254835i
\(393\) 2.22587 9.75219i 0.112280 0.491933i
\(394\) 8.70410 0.438506
\(395\) 0.718341 3.14726i 0.0361436 0.158356i
\(396\) 8.01842 + 10.0548i 0.402941 + 0.505272i
\(397\) 0.888887 + 3.89447i 0.0446120 + 0.195458i 0.992323 0.123671i \(-0.0394668\pi\)
−0.947711 + 0.319129i \(0.896610\pi\)
\(398\) −0.0866540 0.379656i −0.00434357 0.0190304i
\(399\) 0.653989 0.820077i 0.0327404 0.0410552i
\(400\) 11.6126 5.59234i 0.580630 0.279617i
\(401\) 22.4405 + 10.8068i 1.12062 + 0.539664i 0.900085 0.435714i \(-0.143504\pi\)
0.220539 + 0.975378i \(0.429218\pi\)
\(402\) −0.803798 1.00793i −0.0400898 0.0502710i
\(403\) 23.5858 29.5756i 1.17489 1.47327i
\(404\) 5.24309 + 2.52494i 0.260854 + 0.125621i
\(405\) −1.78315 −0.0886055
\(406\) −0.849126 + 0.102957i −0.0421414 + 0.00510965i
\(407\) −24.3937 −1.20915
\(408\) 8.54288 + 4.11403i 0.422935 + 0.203675i
\(409\) 0.176587 0.221434i 0.00873169 0.0109492i −0.777446 0.628949i \(-0.783485\pi\)
0.786178 + 0.618000i \(0.212057\pi\)
\(410\) −0.597171 0.748828i −0.0294922 0.0369820i
\(411\) 19.3605 + 9.32355i 0.954985 + 0.459897i
\(412\) −22.1652 + 10.6742i −1.09200 + 0.525879i
\(413\) −2.78017 + 3.48622i −0.136803 + 0.171546i
\(414\) −0.328552 1.43948i −0.0161475 0.0707467i
\(415\) −0.685981 3.00548i −0.0336735 0.147533i
\(416\) 16.3986 + 20.5632i 0.804006 + 1.00819i
\(417\) −4.62498 + 20.2634i −0.226486 + 0.992301i
\(418\) 5.18060 0.253392
\(419\) 5.89426 25.8245i 0.287954 1.26161i −0.599374 0.800469i \(-0.704584\pi\)
0.887328 0.461139i \(-0.152559\pi\)
\(420\) −0.500000 + 0.240787i −0.0243975 + 0.0117492i
\(421\) 15.8409 7.62859i 0.772040 0.371795i −0.00602261 0.999982i \(-0.501917\pi\)
0.778062 + 0.628187i \(0.216203\pi\)
\(422\) −1.80917 + 7.92651i −0.0880693 + 0.385857i
\(423\) 9.31336 0.452831
\(424\) 1.76659 7.73995i 0.0857934 0.375885i
\(425\) −12.6679 15.8850i −0.614481 0.770535i
\(426\) 0.905813 + 3.96863i 0.0438868 + 0.192281i
\(427\) 0.130490 + 0.571714i 0.00631486 + 0.0276672i
\(428\) −18.2506 + 22.8856i −0.882177 + 1.10622i
\(429\) −31.3669 + 15.1055i −1.51441 + 0.729300i
\(430\) −0.945042 0.455108i −0.0455740 0.0219473i
\(431\) −17.3300 21.7312i −0.834759 1.04675i −0.998186 0.0601992i \(-0.980826\pi\)
0.163428 0.986555i \(-0.447745\pi\)
\(432\) 9.85235 12.3545i 0.474021 0.594404i
\(433\) −5.29374 2.54933i −0.254401 0.122513i 0.302337 0.953201i \(-0.402233\pi\)
−0.556738 + 0.830688i \(0.687947\pi\)
\(434\) 1.06292 0.0510217
\(435\) −4.61327 + 0.559360i −0.221189 + 0.0268192i
\(436\) −9.85086 −0.471770
\(437\) 4.87531 + 2.34783i 0.233218 + 0.112312i
\(438\) 1.94653 2.44088i 0.0930090 0.116630i
\(439\) −9.81431 12.3068i −0.468412 0.587370i 0.490370 0.871515i \(-0.336862\pi\)
−0.958781 + 0.284145i \(0.908290\pi\)
\(440\) −5.21044 2.50922i −0.248398 0.119622i
\(441\) −8.94773 + 4.30900i −0.426082 + 0.205190i
\(442\) 7.04892 8.83906i 0.335283 0.420431i
\(443\) −1.49947 6.56960i −0.0712419 0.312131i 0.926735 0.375717i \(-0.122603\pi\)
−0.997976 + 0.0635859i \(0.979746\pi\)
\(444\) 2.46950 + 10.8196i 0.117197 + 0.513475i
\(445\) −2.45071 3.07310i −0.116175 0.145679i
\(446\) −0.180071 + 0.788944i −0.00852663 + 0.0373576i
\(447\) −23.2024 −1.09743
\(448\) 0.288364 1.26341i 0.0136239 0.0596903i
\(449\) −11.1000 + 5.34547i −0.523841 + 0.252269i −0.677065 0.735923i \(-0.736749\pi\)
0.153224 + 0.988191i \(0.451034\pi\)
\(450\) 2.61960 1.26154i 0.123489 0.0594693i
\(451\) −3.41789 + 14.9748i −0.160942 + 0.705135i
\(452\) 19.2349 0.904733
\(453\) −2.08881 + 9.15167i −0.0981409 + 0.429983i
\(454\) 3.84481 + 4.82124i 0.180446 + 0.226272i
\(455\) 0.310667 + 1.36112i 0.0145643 + 0.0638103i
\(456\) −1.10656 4.84817i −0.0518196 0.227037i
\(457\) 8.51842 10.6818i 0.398475 0.499672i −0.541602 0.840635i \(-0.682182\pi\)
0.940076 + 0.340964i \(0.110753\pi\)
\(458\) −5.12133 + 2.46630i −0.239304 + 0.115243i
\(459\) −22.4426 10.8078i −1.04753 0.504465i
\(460\) −1.78501 2.23833i −0.0832266 0.104363i
\(461\) 7.23759 9.07565i 0.337088 0.422695i −0.584180 0.811624i \(-0.698584\pi\)
0.921268 + 0.388929i \(0.127155\pi\)
\(462\) −0.881355 0.424438i −0.0410043 0.0197466i
\(463\) −7.24267 −0.336595 −0.168298 0.985736i \(-0.553827\pi\)
−0.168298 + 0.985736i \(0.553827\pi\)
\(464\) 8.05765 13.0678i 0.374067 0.606659i
\(465\) 5.77479 0.267800
\(466\) −3.55496 1.71198i −0.164680 0.0793058i
\(467\) −1.28650 + 1.61322i −0.0595323 + 0.0746511i −0.810706 0.585453i \(-0.800917\pi\)
0.751174 + 0.660104i \(0.229488\pi\)
\(468\) −9.17725 11.5079i −0.424219 0.531953i
\(469\) 0.746980 + 0.359726i 0.0344923 + 0.0166106i
\(470\) −1.78836 + 0.861231i −0.0824911 + 0.0397256i
\(471\) 14.1806 17.7819i 0.653408 0.819347i
\(472\) 4.70410 + 20.6100i 0.216524 + 0.948653i
\(473\) 3.74309 + 16.3996i 0.172108 + 0.754053i
\(474\) −1.61410 2.02401i −0.0741379 0.0929660i
\(475\) −2.37113 + 10.3886i −0.108795 + 0.476662i
\(476\) −2.89008 −0.132467
\(477\) −1.50873 + 6.61017i −0.0690800 + 0.302659i
\(478\) −10.2506 + 4.93644i −0.468853 + 0.225788i
\(479\) 3.50388 1.68738i 0.160097 0.0770985i −0.352120 0.935955i \(-0.614539\pi\)
0.512216 + 0.858857i \(0.328825\pi\)
\(480\) −0.893436 + 3.91440i −0.0407796 + 0.178667i
\(481\) 27.9191 1.27300
\(482\) 0.963697 4.22223i 0.0438952 0.192317i
\(483\) −0.637063 0.798852i −0.0289874 0.0363490i
\(484\) 5.37047 + 23.5296i 0.244112 + 1.06953i
\(485\) 0.0278111 + 0.121848i 0.00126284 + 0.00553284i
\(486\) 3.72252 4.66789i 0.168857 0.211740i
\(487\) −8.87047 + 4.27179i −0.401959 + 0.193573i −0.623931 0.781480i \(-0.714465\pi\)
0.221971 + 0.975053i \(0.428751\pi\)
\(488\) 2.50484 + 1.20627i 0.113389 + 0.0546053i
\(489\) −9.82789 12.3238i −0.444432 0.557301i
\(490\) 1.31969 1.65484i 0.0596176 0.0747581i
\(491\) −7.01961 3.38047i −0.316791 0.152558i 0.268731 0.963215i \(-0.413396\pi\)
−0.585521 + 0.810657i \(0.699110\pi\)
\(492\) 6.98792 0.315040
\(493\) −22.9095 7.79942i −1.03179 0.351268i
\(494\) −5.92931 −0.266772
\(495\) 4.44989 + 2.14295i 0.200008 + 0.0963185i
\(496\) −11.8949 + 14.9158i −0.534098 + 0.669738i
\(497\) −1.63222 2.04674i −0.0732150 0.0918087i
\(498\) −2.22737 1.07264i −0.0998106 0.0480663i
\(499\) 18.5286 8.92292i 0.829456 0.399445i 0.0295448 0.999563i \(-0.490594\pi\)
0.799911 + 0.600119i \(0.204880\pi\)
\(500\) 7.40246 9.28239i 0.331048 0.415121i
\(501\) −0.221029 0.968391i −0.00987485 0.0432645i
\(502\) −0.966575 4.23484i −0.0431404 0.189010i
\(503\) 5.13437 + 6.43830i 0.228930 + 0.287070i 0.883008 0.469358i \(-0.155514\pi\)
−0.654078 + 0.756427i \(0.726943\pi\)
\(504\) 0.194177 0.850747i 0.00864935 0.0378953i
\(505\) 2.23490 0.0994517
\(506\) 1.12296 4.92000i 0.0499215 0.218721i
\(507\) 21.2947 10.2550i 0.945731 0.455440i
\(508\) −1.68329 + 0.810631i −0.0746840 + 0.0359659i
\(509\) −1.76151 + 7.71769i −0.0780777 + 0.342081i −0.998846 0.0480294i \(-0.984706\pi\)
0.920768 + 0.390110i \(0.127563\pi\)
\(510\) 1.72587 0.0764230
\(511\) −0.446771 + 1.95743i −0.0197640 + 0.0865916i
\(512\) −14.2853 17.9132i −0.631327 0.791659i
\(513\) 2.90701 + 12.7364i 0.128348 + 0.562328i
\(514\) 1.61984 + 7.09699i 0.0714482 + 0.313035i
\(515\) −5.89075 + 7.38676i −0.259577 + 0.325500i
\(516\) 6.89493 3.32042i 0.303532 0.146173i
\(517\) 28.6797 + 13.8114i 1.26133 + 0.607425i
\(518\) 0.489115 + 0.613331i 0.0214905 + 0.0269482i
\(519\) 7.11662 8.92396i 0.312385 0.391718i
\(520\) 5.96346 + 2.87185i 0.261515 + 0.125939i
\(521\) −3.52542 −0.154451 −0.0772257 0.997014i \(-0.524606\pi\)
−0.0772257 + 0.997014i \(0.524606\pi\)
\(522\) 1.81767 2.94788i 0.0795571 0.129025i
\(523\) 10.0301 0.438587 0.219294 0.975659i \(-0.429625\pi\)
0.219294 + 0.975659i \(0.429625\pi\)
\(524\) 13.0233 + 6.27167i 0.568924 + 0.273979i
\(525\) 1.25451 1.57311i 0.0547514 0.0686561i
\(526\) −6.58277 8.25453i −0.287022 0.359915i
\(527\) 27.0954 + 13.0485i 1.18030 + 0.568401i
\(528\) 15.8192 7.61811i 0.688441 0.331535i
\(529\) −11.0538 + 13.8610i −0.480598 + 0.602651i
\(530\) −0.321552 1.40881i −0.0139673 0.0611949i
\(531\) −4.01746 17.6016i −0.174343 0.763846i
\(532\) 0.945042 + 1.18505i 0.0409728 + 0.0513782i
\(533\) 3.91185 17.1390i 0.169441 0.742370i
\(534\) −3.15213 −0.136406
\(535\) −2.50149 + 10.9598i −0.108149 + 0.473831i
\(536\) 3.54138 1.70544i 0.152965 0.0736638i
\(537\) 3.82640 1.84270i 0.165121 0.0795182i
\(538\) 2.51089 11.0009i 0.108252 0.474283i
\(539\) −33.9439 −1.46207
\(540\) 1.53803 6.73856i 0.0661864 0.289981i
\(541\) 5.12767 + 6.42990i 0.220456 + 0.276443i 0.879744 0.475447i \(-0.157714\pi\)
−0.659288 + 0.751890i \(0.729142\pi\)
\(542\) −0.119178 0.522153i −0.00511913 0.0224284i
\(543\) 3.51693 + 15.4087i 0.150926 + 0.661249i
\(544\) −13.0368 + 16.3477i −0.558950 + 0.700901i
\(545\) −3.40850 + 1.64145i −0.146004 + 0.0703119i
\(546\) 1.00873 + 0.485778i 0.0431696 + 0.0207894i
\(547\) 16.1253 + 20.2205i 0.689467 + 0.864564i 0.996188 0.0872352i \(-0.0278032\pi\)
−0.306721 + 0.951800i \(0.599232\pi\)
\(548\) −19.3605 + 24.2774i −0.827041 + 1.03708i
\(549\) −2.13922 1.03019i −0.0912997 0.0439676i
\(550\) 9.93767 0.423744
\(551\) 4.29321 + 11.9441i 0.182897 + 0.508837i
\(552\) −4.84415 −0.206181
\(553\) 1.50000 + 0.722362i 0.0637865 + 0.0307180i
\(554\) −2.95928 + 3.71082i −0.125728 + 0.157658i
\(555\) 2.65734 + 3.33220i 0.112798 + 0.141444i
\(556\) −27.0601 13.0315i −1.14760 0.552657i
\(557\) −20.7310 + 9.98353i −0.878401 + 0.423016i −0.818040 0.575161i \(-0.804939\pi\)
−0.0603609 + 0.998177i \(0.519225\pi\)
\(558\) −2.68329 + 3.36474i −0.113593 + 0.142441i
\(559\) −4.28405 18.7697i −0.181196 0.793872i
\(560\) −0.156678 0.686450i −0.00662084 0.0290078i
\(561\) −17.2567 21.6392i −0.728577 0.913607i
\(562\) −1.61218 + 7.06341i −0.0680056 + 0.297952i
\(563\) 43.1159 1.81712 0.908559 0.417757i \(-0.137184\pi\)
0.908559 + 0.417757i \(0.137184\pi\)
\(564\) 3.22252 14.1188i 0.135693 0.594508i
\(565\) 6.65548 3.20511i 0.279998 0.134840i
\(566\) −2.10388 + 1.01317i −0.0884325 + 0.0425868i
\(567\) 0.204636 0.896567i 0.00859388 0.0376523i
\(568\) −12.4112 −0.520762
\(569\) 5.40999 23.7027i 0.226799 0.993670i −0.725433 0.688293i \(-0.758360\pi\)
0.952231 0.305377i \(-0.0987825\pi\)
\(570\) −0.564351 0.707674i −0.0236381 0.0296412i
\(571\) −4.11410 18.0250i −0.172170 0.754324i −0.985103 0.171967i \(-0.944988\pi\)
0.812933 0.582357i \(-0.197869\pi\)
\(572\) −11.1947 49.0472i −0.468074 2.05077i
\(573\) 8.29590 10.4027i 0.346566 0.434580i
\(574\) 0.445042 0.214321i 0.0185757 0.00894558i
\(575\) 9.35205 + 4.50371i 0.390008 + 0.187818i
\(576\) 3.27144 + 4.10225i 0.136310 + 0.170927i
\(577\) −23.6042 + 29.5987i −0.982654 + 1.23221i −0.0100007 + 0.999950i \(0.503183\pi\)
−0.972654 + 0.232260i \(0.925388\pi\)
\(578\) 1.28136 + 0.617072i 0.0532977 + 0.0256668i
\(579\) −28.3424 −1.17787
\(580\) 0.695374 6.67909i 0.0288738 0.277334i
\(581\) 1.58987 0.0659591
\(582\) 0.0903019 + 0.0434871i 0.00374314 + 0.00180260i
\(583\) −14.4487 + 18.1181i −0.598404 + 0.750374i
\(584\) 5.93482 + 7.44203i 0.245585 + 0.307953i
\(585\) −5.09299 2.45265i −0.210569 0.101405i
\(586\) 2.71206 1.30606i 0.112034 0.0539529i
\(587\) −9.00030 + 11.2860i −0.371482 + 0.465824i −0.932074 0.362269i \(-0.882002\pi\)
0.560592 + 0.828092i \(0.310574\pi\)
\(588\) 3.43631 + 15.0555i 0.141711 + 0.620877i
\(589\) −3.50969 15.3770i −0.144614 0.633596i
\(590\) 2.39911 + 3.00839i 0.0987697 + 0.123853i
\(591\) −5.42692 + 23.7769i −0.223234 + 0.978050i
\(592\) −14.0804 −0.578700
\(593\) 2.89320 12.6759i 0.118809 0.520538i −0.880140 0.474714i \(-0.842551\pi\)
0.998950 0.0458241i \(-0.0145914\pi\)
\(594\) 10.9770 5.28626i 0.450393 0.216898i
\(595\) −1.00000 + 0.481575i −0.0409960 + 0.0197426i
\(596\) 7.46077 32.6878i 0.305605 1.33894i
\(597\) 1.09113 0.0446570
\(598\) −1.28525 + 5.63104i −0.0525577 + 0.230270i
\(599\) 7.54019 + 9.45510i 0.308084 + 0.386325i 0.911636 0.410999i \(-0.134820\pi\)
−0.603552 + 0.797323i \(0.706249\pi\)
\(600\) −2.12266 9.29999i −0.0866573 0.379670i
\(601\) 4.97272 + 21.7869i 0.202842 + 0.888707i 0.969196 + 0.246289i \(0.0792113\pi\)
−0.766355 + 0.642418i \(0.777932\pi\)
\(602\) 0.337282 0.422938i 0.0137466 0.0172377i
\(603\) −3.02446 + 1.45650i −0.123165 + 0.0593134i
\(604\) −12.2213 5.88548i −0.497279 0.239477i
\(605\) 5.77897 + 7.24660i 0.234949 + 0.294616i
\(606\) 1.11745 1.40124i 0.0453933 0.0569214i
\(607\) −37.3620 17.9926i −1.51648 0.730297i −0.523886 0.851789i \(-0.675518\pi\)
−0.992593 + 0.121491i \(0.961232\pi\)
\(608\) 10.9661 0.444736
\(609\) 0.248176 2.38374i 0.0100566 0.0965940i
\(610\) 0.506041 0.0204890
\(611\) −32.8245 15.8075i −1.32794 0.639502i
\(612\) 7.29590 9.14877i 0.294919 0.369817i
\(613\) 16.0764 + 20.1591i 0.649318 + 0.814219i 0.992134 0.125184i \(-0.0399520\pi\)
−0.342816 + 0.939403i \(0.611381\pi\)
\(614\) 1.81163 + 0.872433i 0.0731113 + 0.0352085i
\(615\) 2.41789 1.16440i 0.0974989 0.0469530i
\(616\) 1.85958 2.33184i 0.0749248 0.0939527i
\(617\) −1.97272 8.64306i −0.0794188 0.347956i 0.919570 0.392927i \(-0.128538\pi\)
−0.998988 + 0.0449710i \(0.985680\pi\)
\(618\) 1.68598 + 7.38676i 0.0678201 + 0.297139i
\(619\) 18.3626 + 23.0259i 0.738054 + 0.925490i 0.999207 0.0398069i \(-0.0126743\pi\)
−0.261153 + 0.965297i \(0.584103\pi\)
\(620\) −1.85690 + 8.13559i −0.0745747 + 0.326733i
\(621\) 12.7259 0.510672
\(622\) −1.24943 + 5.47412i −0.0500976 + 0.219492i
\(623\) 1.82640 0.879546i 0.0731730 0.0352383i
\(624\) −18.1054 + 8.71909i −0.724795 + 0.349043i
\(625\) −4.01560 + 17.5935i −0.160624 + 0.703739i
\(626\) −8.56273 −0.342235
\(627\) −3.23005 + 14.1518i −0.128996 + 0.565168i
\(628\) 20.4916 + 25.6956i 0.817703 + 1.02537i
\(629\) 4.93900 + 21.6392i 0.196931 + 0.862811i
\(630\) −0.0353438 0.154851i −0.00140813 0.00616942i
\(631\) 14.8210 18.5850i 0.590015 0.739856i −0.393769 0.919209i \(-0.628829\pi\)
0.983785 + 0.179353i \(0.0574005\pi\)
\(632\) 7.11141 3.42467i 0.282877 0.136226i
\(633\) −20.5248 9.88420i −0.815786 0.392862i
\(634\) −0.795897 0.998023i −0.0316091 0.0396366i
\(635\) −0.447362 + 0.560974i −0.0177530 + 0.0222616i
\(636\) 9.49880 + 4.57438i 0.376652 + 0.181386i
\(637\) 38.8495 1.53927
\(638\) 9.96897 6.38220i 0.394675 0.252674i
\(639\) 10.5996 0.419312
\(640\) −6.80947 3.27927i −0.269168 0.129624i
\(641\) 17.7479 22.2552i 0.701001 0.879028i −0.296096 0.955158i \(-0.595685\pi\)
0.997098 + 0.0761300i \(0.0242564\pi\)
\(642\) 5.62080 + 7.04826i 0.221835 + 0.278173i
\(643\) 17.4308 + 8.39423i 0.687404 + 0.331036i 0.744774 0.667317i \(-0.232557\pi\)
−0.0573702 + 0.998353i \(0.518272\pi\)
\(644\) 1.33028 0.640630i 0.0524204 0.0252443i
\(645\) 1.83244 2.29780i 0.0721521 0.0904759i
\(646\) −1.04892 4.59561i −0.0412691 0.180812i
\(647\) −5.05443 22.1449i −0.198710 0.870605i −0.971706 0.236194i \(-0.924100\pi\)
0.772996 0.634411i \(-0.218757\pi\)
\(648\) −2.71834 3.40869i −0.106787 0.133906i
\(649\) 13.7313 60.1605i 0.538999 2.36151i
\(650\) −11.3739 −0.446120
\(651\) −0.662718 + 2.90356i −0.0259740 + 0.113799i
\(652\) 20.5221 9.88291i 0.803706 0.387044i
\(653\) −20.6603 + 9.94949i −0.808501 + 0.389354i −0.792008 0.610510i \(-0.790964\pi\)
−0.0164928 + 0.999864i \(0.505250\pi\)
\(654\) −0.675096 + 2.95779i −0.0263983 + 0.115659i
\(655\) 5.55124 0.216905
\(656\) −1.97285 + 8.64363i −0.0770270 + 0.337477i
\(657\) −5.06853 6.35574i −0.197742 0.247961i
\(658\) −0.227792 0.998023i −0.00888027 0.0389070i
\(659\) 4.26755 + 18.6974i 0.166240 + 0.728346i 0.987478 + 0.157759i \(0.0504271\pi\)
−0.821237 + 0.570587i \(0.806716\pi\)
\(660\) 4.78836 6.00442i 0.186387 0.233722i
\(661\) 3.05107 1.46932i 0.118673 0.0571499i −0.373605 0.927588i \(-0.621879\pi\)
0.492278 + 0.870438i \(0.336164\pi\)
\(662\) 1.25667 + 0.605180i 0.0488418 + 0.0235210i
\(663\) 19.7506 + 24.7665i 0.767051 + 0.961851i
\(664\) 4.69955 5.89305i 0.182378 0.228695i
\(665\) 0.524459 + 0.252566i 0.0203376 + 0.00979409i
\(666\) −3.17629 −0.123079
\(667\) 12.2739 1.48821i 0.475247 0.0576238i
\(668\) 1.43535 0.0555355
\(669\) −2.04288 0.983797i −0.0789822 0.0380358i
\(670\) 0.446074 0.559360i 0.0172334 0.0216099i
\(671\) −5.05980 6.34479i −0.195332 0.244938i
\(672\) −1.86563 0.898438i −0.0719680 0.0346580i
\(673\) −4.29805 + 2.06983i −0.165678 + 0.0797862i −0.514885 0.857259i \(-0.672165\pi\)
0.349207 + 0.937046i \(0.386451\pi\)
\(674\) −1.38255 + 1.73366i −0.0532539 + 0.0667782i
\(675\) 5.57636 + 24.4316i 0.214634 + 0.940374i
\(676\) 7.59999 + 33.2977i 0.292307 + 1.28068i
\(677\) −26.8662 33.6892i −1.03255 1.29478i −0.954622 0.297821i \(-0.903740\pi\)
−0.0779309 0.996959i \(-0.524831\pi\)
\(678\) 1.31820 5.77541i 0.0506252 0.221803i
\(679\) −0.0644568 −0.00247362
\(680\) −1.17092 + 5.13011i −0.0449025 + 0.196731i
\(681\) −15.5673 + 7.49683i −0.596542 + 0.287279i
\(682\) −13.2528 + 6.38220i −0.507475 + 0.244387i
\(683\) −5.21432 + 22.8454i −0.199521 + 0.874157i 0.771702 + 0.635984i \(0.219406\pi\)
−0.971223 + 0.238173i \(0.923452\pi\)
\(684\) −6.13706 −0.234656
\(685\) −2.65362 + 11.6263i −0.101390 + 0.444217i
\(686\) 1.37382 + 1.72272i 0.0524528 + 0.0657737i
\(687\) −3.54407 15.5276i −0.135215 0.592415i
\(688\) 2.16056 + 9.46604i 0.0823707 + 0.360890i
\(689\) 16.5368 20.7365i 0.630003 0.789999i
\(690\) −0.794405 + 0.382565i −0.0302425 + 0.0145640i
\(691\) −38.8657 18.7167i −1.47852 0.712018i −0.491243 0.871023i \(-0.663457\pi\)
−0.987278 + 0.159005i \(0.949171\pi\)
\(692\) 10.2838 + 12.8955i 0.390932 + 0.490213i
\(693\) −1.58815 + 1.99147i −0.0603287 + 0.0756498i
\(694\) 8.06638 + 3.88456i 0.306195 + 0.147456i
\(695\) −11.5345 −0.437529
\(696\) −8.10202 7.96605i −0.307106 0.301952i
\(697\) 13.9758 0.529373
\(698\) 8.21552 + 3.95639i 0.310962 + 0.149751i
\(699\) 6.89307 8.64363i 0.260720 0.326932i
\(700\) 1.81282 + 2.27321i 0.0685183 + 0.0859192i
\(701\) −3.81186 1.83570i −0.143972 0.0693333i 0.360511 0.932755i \(-0.382602\pi\)
−0.504483 + 0.863422i \(0.668317\pi\)
\(702\) −12.5635 + 6.05024i −0.474177 + 0.228352i
\(703\) 7.25786 9.10107i 0.273736 0.343254i
\(704\) 3.99061 + 17.4840i 0.150402 + 0.658953i
\(705\) −1.23759 5.42222i −0.0466102 0.204213i
\(706\) −4.99396 6.26223i −0.187950 0.235682i
\(707\) −0.256478 + 1.12370i −0.00964586 + 0.0422613i
\(708\) −28.0737 −1.05507
\(709\) −3.18287 + 13.9450i −0.119535 + 0.523717i 0.879336 + 0.476203i \(0.157987\pi\)
−0.998871 + 0.0475144i \(0.984870\pi\)
\(710\) −2.03534 + 0.980170i −0.0763851 + 0.0367851i
\(711\) −6.07338 + 2.92478i −0.227769 + 0.109688i
\(712\) 2.13856 9.36962i 0.0801457 0.351141i
\(713\) −15.3642 −0.575393
\(714\) −0.198062 + 0.867767i −0.00741229 + 0.0324754i
\(715\) −12.0462 15.1055i −0.450503 0.564913i
\(716\) 1.36563 + 5.98319i 0.0510358 + 0.223602i
\(717\) −7.09365 31.0793i −0.264917 1.16068i
\(718\) −6.55645 + 8.22153i −0.244685 + 0.306825i
\(719\) 21.1194 10.1706i 0.787620 0.379298i 0.00356825 0.999994i \(-0.498864\pi\)
0.784051 + 0.620696i \(0.213150\pi\)
\(720\) 2.56853 + 1.23694i 0.0957235 + 0.0460980i
\(721\) −3.03803 3.80957i −0.113142 0.141876i
\(722\) 3.73072 4.67817i 0.138843 0.174104i
\(723\) 10.9330 + 5.26504i 0.406601 + 0.195809i
\(724\) −22.8388 −0.848796
\(725\) 8.23543 + 22.9118i 0.305856 + 0.850922i
\(726\) 7.43296 0.275863
\(727\) −46.8482 22.5609i −1.73750 0.836738i −0.983741 0.179592i \(-0.942522\pi\)
−0.753763 0.657146i \(-0.771763\pi\)
\(728\) −2.12833 + 2.66885i −0.0788813 + 0.0989140i
\(729\) 15.2500 + 19.1228i 0.564813 + 0.708254i
\(730\) 1.56100 + 0.751737i 0.0577752 + 0.0278231i
\(731\) 13.7899 6.64084i 0.510036 0.245621i
\(732\) −2.30194 + 2.88654i −0.0850821 + 0.106690i
\(733\) −7.60806 33.3331i −0.281010 1.23119i −0.896501 0.443041i \(-0.853899\pi\)
0.615491 0.788144i \(-0.288958\pi\)
\(734\) −2.93559 12.8617i −0.108355 0.474733i
\(735\) 3.69769 + 4.63676i 0.136391 + 0.171030i
\(736\) 2.37704 10.4145i 0.0876190 0.383884i
\(737\) −11.4735 −0.422632
\(738\) −0.445042 + 1.94986i −0.0163822 + 0.0717752i
\(739\) −35.8342 + 17.2569i −1.31818 + 0.634804i −0.954915 0.296881i \(-0.904054\pi\)
−0.363269 + 0.931684i \(0.618339\pi\)
\(740\) −5.54892 + 2.67222i −0.203982 + 0.0982327i
\(741\) 3.69687 16.1970i 0.135808 0.595013i
\(742\) 0.745251 0.0273590
\(743\) −1.59730 + 6.99824i −0.0585993 + 0.256740i −0.995739 0.0922133i \(-0.970606\pi\)
0.937140 + 0.348954i \(0.113463\pi\)
\(744\) 8.80343 + 11.0392i 0.322749 + 0.404715i
\(745\) −2.86526 12.5535i −0.104975 0.459925i
\(746\) −2.49439 10.9286i −0.0913260 0.400125i
\(747\) −4.01357 + 5.03286i −0.146849 + 0.184143i
\(748\) 36.0344 17.3533i 1.31755 0.634499i
\(749\) −5.22348 2.51550i −0.190862 0.0919142i
\(750\) −2.27980 2.85878i −0.0832465 0.104388i
\(751\) −16.9393 + 21.2412i −0.618124 + 0.775103i −0.988079 0.153947i \(-0.950802\pi\)
0.369955 + 0.929050i \(0.379373\pi\)
\(752\) 16.5543 + 7.97213i 0.603673 + 0.290714i
\(753\) 12.1709 0.443533
\(754\) −11.4097 + 7.30457i −0.415517 + 0.266017i
\(755\) −5.20941 −0.189590
\(756\) 3.21164 + 1.54664i 0.116806 + 0.0562508i
\(757\) 14.7721 18.5236i 0.536901 0.673253i −0.437200 0.899364i \(-0.644030\pi\)
0.974101 + 0.226111i \(0.0726013\pi\)
\(758\) 7.46615 + 9.36225i 0.271183 + 0.340052i
\(759\) 12.7397 + 6.13514i 0.462423 + 0.222691i
\(760\) 2.48643 1.19740i 0.0901922 0.0434343i
\(761\) −8.88740 + 11.1444i −0.322168 + 0.403986i −0.916372 0.400329i \(-0.868896\pi\)
0.594204 + 0.804315i \(0.297467\pi\)
\(762\) 0.128039 + 0.560974i 0.00463835 + 0.0203219i
\(763\) −0.434157 1.90216i −0.0157175 0.0688630i
\(764\) 11.9879 + 15.0324i 0.433708 + 0.543852i
\(765\) 1.00000 4.38129i 0.0361551 0.158406i
\(766\) 8.75361 0.316281
\(767\) −15.7157 + 68.8550i −0.567461 + 2.48621i
\(768\) 2.69806 1.29932i 0.0973579 0.0468851i
\(769\) 40.2793 19.3975i 1.45251 0.699491i 0.469479 0.882944i \(-0.344442\pi\)
0.983029 + 0.183453i \(0.0587275\pi\)
\(770\) 0.120801 0.529265i 0.00435338 0.0190734i
\(771\) −20.3967 −0.734570
\(772\) 9.11356 39.9291i 0.328004 1.43708i