Properties

Label 2880.2.a.a
Level $2880$
Weight $2$
Character orbit 2880.a
Self dual yes
Analytic conductor $22.997$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(22.9969157821\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{5} - 4q^{7} + O(q^{10}) \) \( q - q^{5} - 4q^{7} - 2q^{13} - 6q^{17} + 4q^{19} + q^{25} - 6q^{29} + 8q^{31} + 4q^{35} - 2q^{37} + 6q^{41} + 4q^{43} + 9q^{49} - 6q^{53} + 10q^{61} + 2q^{65} + 4q^{67} + 2q^{73} + 8q^{79} + 12q^{83} + 6q^{85} - 18q^{89} + 8q^{91} - 4q^{95} + 2q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −1.00000 0 −4.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.2.a.a 1
3.b odd 2 1 960.2.a.e 1
4.b odd 2 1 2880.2.a.q 1
8.b even 2 1 90.2.a.c 1
8.d odd 2 1 720.2.a.j 1
12.b even 2 1 960.2.a.p 1
15.d odd 2 1 4800.2.a.cq 1
15.e even 4 2 4800.2.f.p 2
24.f even 2 1 240.2.a.b 1
24.h odd 2 1 30.2.a.a 1
40.e odd 2 1 3600.2.a.f 1
40.f even 2 1 450.2.a.d 1
40.i odd 4 2 450.2.c.b 2
40.k even 4 2 3600.2.f.i 2
48.i odd 4 2 3840.2.k.y 2
48.k even 4 2 3840.2.k.f 2
56.h odd 2 1 4410.2.a.z 1
60.h even 2 1 4800.2.a.d 1
60.l odd 4 2 4800.2.f.w 2
72.j odd 6 2 810.2.e.l 2
72.n even 6 2 810.2.e.b 2
120.i odd 2 1 150.2.a.b 1
120.m even 2 1 1200.2.a.k 1
120.q odd 4 2 1200.2.f.e 2
120.w even 4 2 150.2.c.a 2
168.i even 2 1 1470.2.a.d 1
168.s odd 6 2 1470.2.i.o 2
168.ba even 6 2 1470.2.i.q 2
264.m even 2 1 3630.2.a.w 1
312.b odd 2 1 5070.2.a.w 1
312.y even 4 2 5070.2.b.k 2
408.b odd 2 1 8670.2.a.g 1
840.u even 2 1 7350.2.a.ct 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.2.a.a 1 24.h odd 2 1
90.2.a.c 1 8.b even 2 1
150.2.a.b 1 120.i odd 2 1
150.2.c.a 2 120.w even 4 2
240.2.a.b 1 24.f even 2 1
450.2.a.d 1 40.f even 2 1
450.2.c.b 2 40.i odd 4 2
720.2.a.j 1 8.d odd 2 1
810.2.e.b 2 72.n even 6 2
810.2.e.l 2 72.j odd 6 2
960.2.a.e 1 3.b odd 2 1
960.2.a.p 1 12.b even 2 1
1200.2.a.k 1 120.m even 2 1
1200.2.f.e 2 120.q odd 4 2
1470.2.a.d 1 168.i even 2 1
1470.2.i.o 2 168.s odd 6 2
1470.2.i.q 2 168.ba even 6 2
2880.2.a.a 1 1.a even 1 1 trivial
2880.2.a.q 1 4.b odd 2 1
3600.2.a.f 1 40.e odd 2 1
3600.2.f.i 2 40.k even 4 2
3630.2.a.w 1 264.m even 2 1
3840.2.k.f 2 48.k even 4 2
3840.2.k.y 2 48.i odd 4 2
4410.2.a.z 1 56.h odd 2 1
4800.2.a.d 1 60.h even 2 1
4800.2.a.cq 1 15.d odd 2 1
4800.2.f.p 2 15.e even 4 2
4800.2.f.w 2 60.l odd 4 2
5070.2.a.w 1 312.b odd 2 1
5070.2.b.k 2 312.y even 4 2
7350.2.a.ct 1 840.u even 2 1
8670.2.a.g 1 408.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2880))\):

\( T_{7} + 4 \)
\( T_{11} \)
\( T_{13} + 2 \)
\( T_{17} + 6 \)
\( T_{19} - 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( T \)
$5$ \( 1 + T \)
$7$ \( 4 + T \)
$11$ \( T \)
$13$ \( 2 + T \)
$17$ \( 6 + T \)
$19$ \( -4 + T \)
$23$ \( T \)
$29$ \( 6 + T \)
$31$ \( -8 + T \)
$37$ \( 2 + T \)
$41$ \( -6 + T \)
$43$ \( -4 + T \)
$47$ \( T \)
$53$ \( 6 + T \)
$59$ \( T \)
$61$ \( -10 + T \)
$67$ \( -4 + T \)
$71$ \( T \)
$73$ \( -2 + T \)
$79$ \( -8 + T \)
$83$ \( -12 + T \)
$89$ \( 18 + T \)
$97$ \( -2 + T \)
show more
show less