Properties

Label 2695.2.a.c
Level 2695
Weight 2
Character orbit 2695.a
Self dual Yes
Analytic conductor 21.520
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2695.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(21.5196833447\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \(q \) \(\mathstrut +\mathstrut q^{2} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut -\mathstrut q^{5} \) \(\mathstrut -\mathstrut 3q^{8} \) \(\mathstrut -\mathstrut 3q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(q \) \(\mathstrut +\mathstrut q^{2} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut -\mathstrut q^{5} \) \(\mathstrut -\mathstrut 3q^{8} \) \(\mathstrut -\mathstrut 3q^{9} \) \(\mathstrut -\mathstrut q^{10} \) \(\mathstrut -\mathstrut q^{11} \) \(\mathstrut -\mathstrut 2q^{13} \) \(\mathstrut -\mathstrut q^{16} \) \(\mathstrut -\mathstrut 6q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut +\mathstrut 4q^{19} \) \(\mathstrut +\mathstrut q^{20} \) \(\mathstrut -\mathstrut q^{22} \) \(\mathstrut +\mathstrut 4q^{23} \) \(\mathstrut +\mathstrut q^{25} \) \(\mathstrut -\mathstrut 2q^{26} \) \(\mathstrut +\mathstrut 6q^{29} \) \(\mathstrut +\mathstrut 8q^{31} \) \(\mathstrut +\mathstrut 5q^{32} \) \(\mathstrut -\mathstrut 6q^{34} \) \(\mathstrut +\mathstrut 3q^{36} \) \(\mathstrut -\mathstrut 2q^{37} \) \(\mathstrut +\mathstrut 4q^{38} \) \(\mathstrut +\mathstrut 3q^{40} \) \(\mathstrut -\mathstrut 2q^{41} \) \(\mathstrut +\mathstrut 4q^{43} \) \(\mathstrut +\mathstrut q^{44} \) \(\mathstrut +\mathstrut 3q^{45} \) \(\mathstrut +\mathstrut 4q^{46} \) \(\mathstrut +\mathstrut 12q^{47} \) \(\mathstrut +\mathstrut q^{50} \) \(\mathstrut +\mathstrut 2q^{52} \) \(\mathstrut -\mathstrut 2q^{53} \) \(\mathstrut +\mathstrut q^{55} \) \(\mathstrut +\mathstrut 6q^{58} \) \(\mathstrut -\mathstrut 4q^{59} \) \(\mathstrut +\mathstrut 10q^{61} \) \(\mathstrut +\mathstrut 8q^{62} \) \(\mathstrut +\mathstrut 7q^{64} \) \(\mathstrut +\mathstrut 2q^{65} \) \(\mathstrut -\mathstrut 16q^{67} \) \(\mathstrut +\mathstrut 6q^{68} \) \(\mathstrut +\mathstrut 8q^{71} \) \(\mathstrut +\mathstrut 9q^{72} \) \(\mathstrut -\mathstrut 14q^{73} \) \(\mathstrut -\mathstrut 2q^{74} \) \(\mathstrut -\mathstrut 4q^{76} \) \(\mathstrut +\mathstrut 8q^{79} \) \(\mathstrut +\mathstrut q^{80} \) \(\mathstrut +\mathstrut 9q^{81} \) \(\mathstrut -\mathstrut 2q^{82} \) \(\mathstrut +\mathstrut 4q^{83} \) \(\mathstrut +\mathstrut 6q^{85} \) \(\mathstrut +\mathstrut 4q^{86} \) \(\mathstrut +\mathstrut 3q^{88} \) \(\mathstrut -\mathstrut 10q^{89} \) \(\mathstrut +\mathstrut 3q^{90} \) \(\mathstrut -\mathstrut 4q^{92} \) \(\mathstrut +\mathstrut 12q^{94} \) \(\mathstrut -\mathstrut 4q^{95} \) \(\mathstrut -\mathstrut 10q^{97} \) \(\mathstrut +\mathstrut 3q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 −1.00000 −1.00000 0 0 −3.00000 −3.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(5\) \(1\)
\(7\) \(-1\)
\(11\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2695))\):

\(T_{2} \) \(\mathstrut -\mathstrut 1 \)
\(T_{3} \)