Properties

Label 25.9.c.a.7.2
Level $25$
Weight $9$
Character 25.7
Analytic conductor $10.184$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 25.c (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.1844652515\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{141})\)
Defining polynomial: \(x^{4} + 71 x^{2} + 1225\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 7.2
Root \(-5.43717i\) of defining polynomial
Character \(\chi\) \(=\) 25.7
Dual form 25.9.c.a.18.2

$q$-expansion

\(f(q)\) \(=\) \(q+(11.8743 + 11.8743i) q^{2} +(11.8743 - 11.8743i) q^{3} +26.0000i q^{4} +282.000 q^{6} +(2742.97 + 2742.97i) q^{7} +(2731.10 - 2731.10i) q^{8} +6279.00i q^{9} +O(q^{10})\) \(q+(11.8743 + 11.8743i) q^{2} +(11.8743 - 11.8743i) q^{3} +26.0000i q^{4} +282.000 q^{6} +(2742.97 + 2742.97i) q^{7} +(2731.10 - 2731.10i) q^{8} +6279.00i q^{9} +12132.0 q^{11} +(308.733 + 308.733i) q^{12} +(-2422.37 + 2422.37i) q^{13} +65142.0i q^{14} +71516.0 q^{16} +(-76993.2 - 76993.2i) q^{17} +(-74559.0 + 74559.0i) q^{18} +168380. i q^{19} +65142.0 q^{21} +(144060. + 144060. i) q^{22} +(221350. - 221350. i) q^{23} -64860.0i q^{24} -57528.0 q^{26} +(152467. + 152467. i) q^{27} +(-71317.3 + 71317.3i) q^{28} -666630. i q^{29} -1.04281e6 q^{31} +(150044. + 150044. i) q^{32} +(144060. - 144060. i) q^{33} -1.82849e6i q^{34} -163254. q^{36} +(-2.07639e6 - 2.07639e6i) q^{37} +(-1.99940e6 + 1.99940e6i) q^{38} +57528.0i q^{39} -1.32113e6 q^{41} +(773518. + 773518. i) q^{42} +(2.78134e6 - 2.78134e6i) q^{43} +315432. i q^{44} +5.25676e6 q^{46} +(3.63024e6 + 3.63024e6i) q^{47} +(849205. - 849205. i) q^{48} +9.28300e6i q^{49} -1.82849e6 q^{51} +(-62981.5 - 62981.5i) q^{52} +(-3.14105e6 + 3.14105e6i) q^{53} +3.62088e6i q^{54} +1.49827e7 q^{56} +(1.99940e6 + 1.99940e6i) q^{57} +(7.91579e6 - 7.91579e6i) q^{58} +6.49854e6i q^{59} -1.43940e7 q^{61} +(-1.23827e7 - 1.23827e7i) q^{62} +(-1.72231e7 + 1.72231e7i) q^{63} -1.47447e7i q^{64} +3.42122e6 q^{66} +(-1.14565e7 - 1.14565e7i) q^{67} +(2.00182e6 - 2.00182e6i) q^{68} -5.25676e6i q^{69} -2.30655e7 q^{71} +(1.71486e7 + 1.71486e7i) q^{72} +(1.74329e7 - 1.74329e7i) q^{73} -4.93116e7i q^{74} -4.37788e6 q^{76} +(3.32777e7 + 3.32777e7i) q^{77} +(-683107. + 683107. i) q^{78} -2.76068e6i q^{79} -3.75756e7 q^{81} +(-1.56875e7 - 1.56875e7i) q^{82} +(-1.15239e7 + 1.15239e7i) q^{83} +1.69369e6i q^{84} +6.60531e7 q^{86} +(-7.91579e6 - 7.91579e6i) q^{87} +(3.31337e7 - 3.31337e7i) q^{88} +2.61305e7i q^{89} -1.32890e7 q^{91} +(5.75509e6 + 5.75509e6i) q^{92} +(-1.23827e7 + 1.23827e7i) q^{93} +8.62133e7i q^{94} +3.56335e6 q^{96} +(-8.09308e7 - 8.09308e7i) q^{97} +(-1.10230e8 + 1.10230e8i) q^{98} +7.61768e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 1128q^{6} + O(q^{10}) \) \( 4q + 1128q^{6} + 48528q^{11} + 286064q^{16} + 260568q^{21} - 230112q^{26} - 4171232q^{31} - 653016q^{36} - 5284512q^{41} + 21027048q^{46} - 7313952q^{51} + 59930640q^{56} - 57575872q^{61} + 13684896q^{66} - 92261952q^{71} - 17511520q^{76} - 150302556q^{81} + 264212568q^{86} - 53155872q^{91} + 14253408q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/25\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 11.8743 + 11.8743i 0.742146 + 0.742146i 0.972991 0.230844i \(-0.0741488\pi\)
−0.230844 + 0.972991i \(0.574149\pi\)
\(3\) 11.8743 11.8743i 0.146597 0.146597i −0.629999 0.776596i \(-0.716945\pi\)
0.776596 + 0.629999i \(0.216945\pi\)
\(4\) 26.0000i 0.101562i
\(5\) 0 0
\(6\) 282.000 0.217593
\(7\) 2742.97 + 2742.97i 1.14243 + 1.14243i 0.988005 + 0.154425i \(0.0493525\pi\)
0.154425 + 0.988005i \(0.450648\pi\)
\(8\) 2731.10 2731.10i 0.666772 0.666772i
\(9\) 6279.00i 0.957019i
\(10\) 0 0
\(11\) 12132.0 0.828632 0.414316 0.910133i \(-0.364021\pi\)
0.414316 + 0.910133i \(0.364021\pi\)
\(12\) 308.733 + 308.733i 0.0148887 + 0.0148887i
\(13\) −2422.37 + 2422.37i −0.0848138 + 0.0848138i −0.748241 0.663427i \(-0.769101\pi\)
0.663427 + 0.748241i \(0.269101\pi\)
\(14\) 65142.0i 1.69570i
\(15\) 0 0
\(16\) 71516.0 1.09125
\(17\) −76993.2 76993.2i −0.921843 0.921843i 0.0753168 0.997160i \(-0.476003\pi\)
−0.997160 + 0.0753168i \(0.976003\pi\)
\(18\) −74559.0 + 74559.0i −0.710248 + 0.710248i
\(19\) 168380.i 1.29204i 0.763320 + 0.646020i \(0.223568\pi\)
−0.763320 + 0.646020i \(0.776432\pi\)
\(20\) 0 0
\(21\) 65142.0 0.334953
\(22\) 144060. + 144060.i 0.614966 + 0.614966i
\(23\) 221350. 221350.i 0.790983 0.790983i −0.190671 0.981654i \(-0.561066\pi\)
0.981654 + 0.190671i \(0.0610662\pi\)
\(24\) 64860.0i 0.195493i
\(25\) 0 0
\(26\) −57528.0 −0.125888
\(27\) 152467. + 152467.i 0.286893 + 0.286893i
\(28\) −71317.3 + 71317.3i −0.116028 + 0.116028i
\(29\) 666630.i 0.942525i −0.881993 0.471262i \(-0.843798\pi\)
0.881993 0.471262i \(-0.156202\pi\)
\(30\) 0 0
\(31\) −1.04281e6 −1.12917 −0.564583 0.825376i \(-0.690963\pi\)
−0.564583 + 0.825376i \(0.690963\pi\)
\(32\) 150044. + 150044.i 0.143093 + 0.143093i
\(33\) 144060. 144060.i 0.121475 0.121475i
\(34\) 1.82849e6i 1.36828i
\(35\) 0 0
\(36\) −163254. −0.0971972
\(37\) −2.07639e6 2.07639e6i −1.10791 1.10791i −0.993425 0.114481i \(-0.963480\pi\)
−0.114481 0.993425i \(-0.536520\pi\)
\(38\) −1.99940e6 + 1.99940e6i −0.958883 + 0.958883i
\(39\) 57528.0i 0.0248669i
\(40\) 0 0
\(41\) −1.32113e6 −0.467530 −0.233765 0.972293i \(-0.575105\pi\)
−0.233765 + 0.972293i \(0.575105\pi\)
\(42\) 773518. + 773518.i 0.248584 + 0.248584i
\(43\) 2.78134e6 2.78134e6i 0.813542 0.813542i −0.171621 0.985163i \(-0.554900\pi\)
0.985163 + 0.171621i \(0.0549004\pi\)
\(44\) 315432.i 0.0841579i
\(45\) 0 0
\(46\) 5.25676e6 1.17405
\(47\) 3.63024e6 + 3.63024e6i 0.743949 + 0.743949i 0.973336 0.229386i \(-0.0736718\pi\)
−0.229386 + 0.973336i \(0.573672\pi\)
\(48\) 849205. 849205.i 0.159973 0.159973i
\(49\) 9.28300e6i 1.61029i
\(50\) 0 0
\(51\) −1.82849e6 −0.270278
\(52\) −62981.5 62981.5i −0.00861390 0.00861390i
\(53\) −3.14105e6 + 3.14105e6i −0.398081 + 0.398081i −0.877556 0.479475i \(-0.840827\pi\)
0.479475 + 0.877556i \(0.340827\pi\)
\(54\) 3.62088e6i 0.425833i
\(55\) 0 0
\(56\) 1.49827e7 1.52348
\(57\) 1.99940e6 + 1.99940e6i 0.189409 + 0.189409i
\(58\) 7.91579e6 7.91579e6i 0.699491 0.699491i
\(59\) 6.49854e6i 0.536300i 0.963377 + 0.268150i \(0.0864123\pi\)
−0.963377 + 0.268150i \(0.913588\pi\)
\(60\) 0 0
\(61\) −1.43940e7 −1.03959 −0.519794 0.854292i \(-0.673991\pi\)
−0.519794 + 0.854292i \(0.673991\pi\)
\(62\) −1.23827e7 1.23827e7i −0.838006 0.838006i
\(63\) −1.72231e7 + 1.72231e7i −1.09333 + 1.09333i
\(64\) 1.47447e7i 0.878855i
\(65\) 0 0
\(66\) 3.42122e6 0.180304
\(67\) −1.14565e7 1.14565e7i −0.568528 0.568528i 0.363188 0.931716i \(-0.381688\pi\)
−0.931716 + 0.363188i \(0.881688\pi\)
\(68\) 2.00182e6 2.00182e6i 0.0936247 0.0936247i
\(69\) 5.25676e6i 0.231911i
\(70\) 0 0
\(71\) −2.30655e7 −0.907673 −0.453836 0.891085i \(-0.649945\pi\)
−0.453836 + 0.891085i \(0.649945\pi\)
\(72\) 1.71486e7 + 1.71486e7i 0.638113 + 0.638113i
\(73\) 1.74329e7 1.74329e7i 0.613873 0.613873i −0.330080 0.943953i \(-0.607076\pi\)
0.943953 + 0.330080i \(0.107076\pi\)
\(74\) 4.93116e7i 1.64446i
\(75\) 0 0
\(76\) −4.37788e6 −0.131223
\(77\) 3.32777e7 + 3.32777e7i 0.946653 + 0.946653i
\(78\) −683107. + 683107.i −0.0184548 + 0.0184548i
\(79\) 2.76068e6i 0.0708774i −0.999372 0.0354387i \(-0.988717\pi\)
0.999372 0.0354387i \(-0.0112828\pi\)
\(80\) 0 0
\(81\) −3.75756e7 −0.872904
\(82\) −1.56875e7 1.56875e7i −0.346976 0.346976i
\(83\) −1.15239e7 + 1.15239e7i −0.242822 + 0.242822i −0.818017 0.575195i \(-0.804926\pi\)
0.575195 + 0.818017i \(0.304926\pi\)
\(84\) 1.69369e6i 0.0340187i
\(85\) 0 0
\(86\) 6.60531e7 1.20753
\(87\) −7.91579e6 7.91579e6i −0.138171 0.138171i
\(88\) 3.31337e7 3.31337e7i 0.552509 0.552509i
\(89\) 2.61305e7i 0.416474i 0.978078 + 0.208237i \(0.0667725\pi\)
−0.978078 + 0.208237i \(0.933227\pi\)
\(90\) 0 0
\(91\) −1.32890e7 −0.193787
\(92\) 5.75509e6 + 5.75509e6i 0.0803343 + 0.0803343i
\(93\) −1.23827e7 + 1.23827e7i −0.165532 + 0.165532i
\(94\) 8.62133e7i 1.10424i
\(95\) 0 0
\(96\) 3.56335e6 0.0419540
\(97\) −8.09308e7 8.09308e7i −0.914170 0.914170i 0.0824271 0.996597i \(-0.473733\pi\)
−0.996597 + 0.0824271i \(0.973733\pi\)
\(98\) −1.10230e8 + 1.10230e8i −1.19507 + 1.19507i
\(99\) 7.61768e7i 0.793016i
\(100\) 0 0
\(101\) 1.80720e8 1.73668 0.868341 0.495968i \(-0.165187\pi\)
0.868341 + 0.495968i \(0.165187\pi\)
\(102\) −2.17121e7 2.17121e7i −0.200586 0.200586i
\(103\) 7.33591e7 7.33591e7i 0.651786 0.651786i −0.301637 0.953423i \(-0.597533\pi\)
0.953423 + 0.301637i \(0.0975330\pi\)
\(104\) 1.32314e7i 0.113103i
\(105\) 0 0
\(106\) −7.45958e7 −0.590868
\(107\) 5.06569e7 + 5.06569e7i 0.386459 + 0.386459i 0.873422 0.486963i \(-0.161895\pi\)
−0.486963 + 0.873422i \(0.661895\pi\)
\(108\) −3.96413e6 + 3.96413e6i −0.0291375 + 0.0291375i
\(109\) 3.65622e7i 0.259016i 0.991578 + 0.129508i \(0.0413398\pi\)
−0.991578 + 0.129508i \(0.958660\pi\)
\(110\) 0 0
\(111\) −4.93116e7 −0.324831
\(112\) 1.96166e8 + 1.96166e8i 1.24667 + 1.24667i
\(113\) 1.29733e8 1.29733e8i 0.795677 0.795677i −0.186733 0.982411i \(-0.559790\pi\)
0.982411 + 0.186733i \(0.0597900\pi\)
\(114\) 4.74832e7i 0.281138i
\(115\) 0 0
\(116\) 1.73324e7 0.0957252
\(117\) −1.52100e7 1.52100e7i −0.0811684 0.0811684i
\(118\) −7.71659e7 + 7.71659e7i −0.398013 + 0.398013i
\(119\) 4.22381e8i 2.10628i
\(120\) 0 0
\(121\) −6.71735e7 −0.313369
\(122\) −1.70919e8 1.70919e8i −0.771526 0.771526i
\(123\) −1.56875e7 + 1.56875e7i −0.0685384 + 0.0685384i
\(124\) 2.71130e7i 0.114681i
\(125\) 0 0
\(126\) −4.09027e8 −1.62282
\(127\) 5.09023e7 + 5.09023e7i 0.195669 + 0.195669i 0.798141 0.602471i \(-0.205817\pi\)
−0.602471 + 0.798141i \(0.705817\pi\)
\(128\) 2.13495e8 2.13495e8i 0.795333 0.795333i
\(129\) 6.60531e7i 0.238525i
\(130\) 0 0
\(131\) 3.84564e8 1.30582 0.652911 0.757435i \(-0.273548\pi\)
0.652911 + 0.757435i \(0.273548\pi\)
\(132\) 3.74555e6 + 3.74555e6i 0.0123373 + 0.0123373i
\(133\) −4.61862e8 + 4.61862e8i −1.47606 + 1.47606i
\(134\) 2.72076e8i 0.843862i
\(135\) 0 0
\(136\) −4.20552e8 −1.22932
\(137\) −1.62634e8 1.62634e8i −0.461668 0.461668i 0.437534 0.899202i \(-0.355852\pi\)
−0.899202 + 0.437534i \(0.855852\pi\)
\(138\) 6.24206e7 6.24206e7i 0.172112 0.172112i
\(139\) 9.16665e7i 0.245557i −0.992434 0.122778i \(-0.960820\pi\)
0.992434 0.122778i \(-0.0391804\pi\)
\(140\) 0 0
\(141\) 8.62133e7 0.218121
\(142\) −2.73887e8 2.73887e8i −0.673626 0.673626i
\(143\) −2.93881e7 + 2.93881e7i −0.0702794 + 0.0702794i
\(144\) 4.49049e8i 1.04434i
\(145\) 0 0
\(146\) 4.14009e8 0.911167
\(147\) 1.10230e8 + 1.10230e8i 0.236063 + 0.236063i
\(148\) 5.39863e7 5.39863e7i 0.112522 0.112522i
\(149\) 1.45300e8i 0.294794i 0.989077 + 0.147397i \(0.0470896\pi\)
−0.989077 + 0.147397i \(0.952910\pi\)
\(150\) 0 0
\(151\) −2.35910e7 −0.0453774 −0.0226887 0.999743i \(-0.507223\pi\)
−0.0226887 + 0.999743i \(0.507223\pi\)
\(152\) 4.59862e8 + 4.59862e8i 0.861497 + 0.861497i
\(153\) 4.83441e8 4.83441e8i 0.882221 0.882221i
\(154\) 7.90303e8i 1.40511i
\(155\) 0 0
\(156\) −1.49573e6 −0.00252554
\(157\) 6.67495e8 + 6.67495e8i 1.09863 + 1.09863i 0.994572 + 0.104054i \(0.0331814\pi\)
0.104054 + 0.994572i \(0.466819\pi\)
\(158\) 3.27813e7 3.27813e7i 0.0526014 0.0526014i
\(159\) 7.45958e7i 0.116715i
\(160\) 0 0
\(161\) 1.21431e9 1.80729
\(162\) −4.46186e8 4.46186e8i −0.647822 0.647822i
\(163\) −2.57869e8 + 2.57869e8i −0.365300 + 0.365300i −0.865760 0.500460i \(-0.833164\pi\)
0.500460 + 0.865760i \(0.333164\pi\)
\(164\) 3.43493e7i 0.0474835i
\(165\) 0 0
\(166\) −2.73678e8 −0.360419
\(167\) −4.92455e8 4.92455e8i −0.633142 0.633142i 0.315713 0.948855i \(-0.397756\pi\)
−0.948855 + 0.315713i \(0.897756\pi\)
\(168\) 1.77909e8 1.77909e8i 0.223337 0.223337i
\(169\) 8.03995e8i 0.985613i
\(170\) 0 0
\(171\) −1.05726e9 −1.23651
\(172\) 7.23148e7 + 7.23148e7i 0.0826254 + 0.0826254i
\(173\) −3.51863e8 + 3.51863e8i −0.392816 + 0.392816i −0.875690 0.482874i \(-0.839593\pi\)
0.482874 + 0.875690i \(0.339593\pi\)
\(174\) 1.87990e8i 0.205086i
\(175\) 0 0
\(176\) 8.67632e8 0.904243
\(177\) 7.71659e7 + 7.71659e7i 0.0786199 + 0.0786199i
\(178\) −3.10283e8 + 3.10283e8i −0.309085 + 0.309085i
\(179\) 1.16205e9i 1.13191i −0.824436 0.565955i \(-0.808508\pi\)
0.824436 0.565955i \(-0.191492\pi\)
\(180\) 0 0
\(181\) −4.84017e8 −0.450968 −0.225484 0.974247i \(-0.572396\pi\)
−0.225484 + 0.974247i \(0.572396\pi\)
\(182\) −1.57798e8 1.57798e8i −0.143819 0.143819i
\(183\) −1.70919e8 + 1.70919e8i −0.152400 + 0.152400i
\(184\) 1.20906e9i 1.05481i
\(185\) 0 0
\(186\) −2.94072e8 −0.245698
\(187\) −9.34082e8 9.34082e8i −0.763868 0.763868i
\(188\) −9.43861e7 + 9.43861e7i −0.0755574 + 0.0755574i
\(189\) 8.36423e8i 0.655509i
\(190\) 0 0
\(191\) −1.49354e9 −1.12223 −0.561117 0.827736i \(-0.689628\pi\)
−0.561117 + 0.827736i \(0.689628\pi\)
\(192\) −1.75084e8 1.75084e8i −0.128837 0.128837i
\(193\) 8.77896e8 8.77896e8i 0.632723 0.632723i −0.316027 0.948750i \(-0.602349\pi\)
0.948750 + 0.316027i \(0.102349\pi\)
\(194\) 1.92200e9i 1.35690i
\(195\) 0 0
\(196\) −2.41358e8 −0.163545
\(197\) 2.10520e8 + 2.10520e8i 0.139775 + 0.139775i 0.773532 0.633757i \(-0.218488\pi\)
−0.633757 + 0.773532i \(0.718488\pi\)
\(198\) −9.04550e8 + 9.04550e8i −0.588534 + 0.588534i
\(199\) 1.44381e9i 0.920655i −0.887749 0.460327i \(-0.847732\pi\)
0.887749 0.460327i \(-0.152268\pi\)
\(200\) 0 0
\(201\) −2.72076e8 −0.166689
\(202\) 2.14593e9 + 2.14593e9i 1.28887 + 1.28887i
\(203\) 1.82855e9 1.82855e9i 1.07677 1.07677i
\(204\) 4.75407e7i 0.0274502i
\(205\) 0 0
\(206\) 1.74218e9 0.967441
\(207\) 1.38985e9 + 1.38985e9i 0.756986 + 0.756986i
\(208\) −1.73238e8 + 1.73238e8i −0.0925528 + 0.0925528i
\(209\) 2.04279e9i 1.07063i
\(210\) 0 0
\(211\) −1.57176e9 −0.792968 −0.396484 0.918042i \(-0.629770\pi\)
−0.396484 + 0.918042i \(0.629770\pi\)
\(212\) −8.16673e7 8.16673e7i −0.0404301 0.0404301i
\(213\) −2.73887e8 + 2.73887e8i −0.133062 + 0.133062i
\(214\) 1.20303e9i 0.573618i
\(215\) 0 0
\(216\) 8.32802e8 0.382584
\(217\) −2.86039e9 2.86039e9i −1.28999 1.28999i
\(218\) −4.34153e8 + 4.34153e8i −0.192228 + 0.192228i
\(219\) 4.14009e8i 0.179984i
\(220\) 0 0
\(221\) 3.73012e8 0.156370
\(222\) −5.85543e8 5.85543e8i −0.241072 0.241072i
\(223\) −4.52258e8 + 4.52258e8i −0.182880 + 0.182880i −0.792610 0.609729i \(-0.791278\pi\)
0.609729 + 0.792610i \(0.291278\pi\)
\(224\) 8.23134e8i 0.326948i
\(225\) 0 0
\(226\) 3.08099e9 1.18102
\(227\) 1.41755e9 + 1.41755e9i 0.533871 + 0.533871i 0.921722 0.387851i \(-0.126783\pi\)
−0.387851 + 0.921722i \(0.626783\pi\)
\(228\) −5.19844e7 + 5.19844e7i −0.0192369 + 0.0192369i
\(229\) 5.09083e9i 1.85117i 0.378536 + 0.925586i \(0.376428\pi\)
−0.378536 + 0.925586i \(0.623572\pi\)
\(230\) 0 0
\(231\) 7.90303e8 0.277553
\(232\) −1.82063e9 1.82063e9i −0.628449 0.628449i
\(233\) −3.23753e9 + 3.23753e9i −1.09848 + 1.09848i −0.103887 + 0.994589i \(0.533128\pi\)
−0.994589 + 0.103887i \(0.966872\pi\)
\(234\) 3.61218e8i 0.120478i
\(235\) 0 0
\(236\) −1.68962e8 −0.0544680
\(237\) −3.27813e7 3.27813e7i −0.0103904 0.0103904i
\(238\) 5.01549e9 5.01549e9i 1.56317 1.56317i
\(239\) 6.45678e8i 0.197890i 0.995093 + 0.0989452i \(0.0315468\pi\)
−0.995093 + 0.0989452i \(0.968453\pi\)
\(240\) 0 0
\(241\) 1.04063e9 0.308482 0.154241 0.988033i \(-0.450707\pi\)
0.154241 + 0.988033i \(0.450707\pi\)
\(242\) −7.97641e8 7.97641e8i −0.232566 0.232566i
\(243\) −1.44652e9 + 1.44652e9i −0.414858 + 0.414858i
\(244\) 3.74243e8i 0.105583i
\(245\) 0 0
\(246\) −3.72558e8 −0.101731
\(247\) −4.07878e8 4.07878e8i −0.109583 0.109583i
\(248\) −2.84801e9 + 2.84801e9i −0.752896 + 0.752896i
\(249\) 2.73678e8i 0.0711938i
\(250\) 0 0
\(251\) −4.15092e9 −1.04580 −0.522901 0.852394i \(-0.675150\pi\)
−0.522901 + 0.852394i \(0.675150\pi\)
\(252\) −4.47801e8 4.47801e8i −0.111041 0.111041i
\(253\) 2.68541e9 2.68541e9i 0.655434 0.655434i
\(254\) 1.20886e9i 0.290431i
\(255\) 0 0
\(256\) 1.29558e9 0.301651
\(257\) 5.71495e9 + 5.71495e9i 1.31003 + 1.31003i 0.921392 + 0.388635i \(0.127053\pi\)
0.388635 + 0.921392i \(0.372947\pi\)
\(258\) 7.84338e8 7.84338e8i 0.177021 0.177021i
\(259\) 1.13910e10i 2.53141i
\(260\) 0 0
\(261\) 4.18577e9 0.902014
\(262\) 4.56645e9 + 4.56645e9i 0.969111 + 0.969111i
\(263\) 1.59379e9 1.59379e9i 0.333127 0.333127i −0.520646 0.853773i \(-0.674309\pi\)
0.853773 + 0.520646i \(0.174309\pi\)
\(264\) 7.86882e8i 0.161992i
\(265\) 0 0
\(266\) −1.09686e10 −2.19091
\(267\) 3.10283e8 + 3.10283e8i 0.0610538 + 0.0610538i
\(268\) 2.97868e8 2.97868e8i 0.0577411 0.0577411i
\(269\) 2.62849e9i 0.501992i 0.967988 + 0.250996i \(0.0807581\pi\)
−0.967988 + 0.250996i \(0.919242\pi\)
\(270\) 0 0
\(271\) −2.04396e9 −0.378961 −0.189481 0.981884i \(-0.560680\pi\)
−0.189481 + 0.981884i \(0.560680\pi\)
\(272\) −5.50625e9 5.50625e9i −1.00596 1.00596i
\(273\) −1.57798e8 + 1.57798e8i −0.0284086 + 0.0284086i
\(274\) 3.86235e9i 0.685250i
\(275\) 0 0
\(276\) 1.36676e8 0.0235535
\(277\) −4.31300e9 4.31300e9i −0.732589 0.732589i 0.238543 0.971132i \(-0.423330\pi\)
−0.971132 + 0.238543i \(0.923330\pi\)
\(278\) 1.08848e9 1.08848e9i 0.182239 0.182239i
\(279\) 6.54779e9i 1.08063i
\(280\) 0 0
\(281\) 5.50789e9 0.883405 0.441703 0.897162i \(-0.354375\pi\)
0.441703 + 0.897162i \(0.354375\pi\)
\(282\) 1.02373e9 + 1.02373e9i 0.161878 + 0.161878i
\(283\) −7.63368e9 + 7.63368e9i −1.19011 + 1.19011i −0.213078 + 0.977035i \(0.568349\pi\)
−0.977035 + 0.213078i \(0.931651\pi\)
\(284\) 5.99703e8i 0.0921855i
\(285\) 0 0
\(286\) −6.97930e8 −0.104315
\(287\) −3.62382e9 3.62382e9i −0.534120 0.534120i
\(288\) −9.42127e8 + 9.42127e8i −0.136943 + 0.136943i
\(289\) 4.88016e9i 0.699588i
\(290\) 0 0
\(291\) −1.92200e9 −0.268029
\(292\) 4.53256e8 + 4.53256e8i 0.0623465 + 0.0623465i
\(293\) 4.49841e9 4.49841e9i 0.610364 0.610364i −0.332677 0.943041i \(-0.607952\pi\)
0.943041 + 0.332677i \(0.107952\pi\)
\(294\) 2.61781e9i 0.350387i
\(295\) 0 0
\(296\) −1.13417e10 −1.47744
\(297\) 1.84972e9 + 1.84972e9i 0.237728 + 0.237728i
\(298\) −1.72534e9 + 1.72534e9i −0.218781 + 0.218781i
\(299\) 1.07238e9i 0.134173i
\(300\) 0 0
\(301\) 1.52583e10 1.85883
\(302\) −2.80128e8 2.80128e8i −0.0336767 0.0336767i
\(303\) 2.14593e9 2.14593e9i 0.254592 0.254592i
\(304\) 1.20419e10i 1.40994i
\(305\) 0 0
\(306\) 1.14811e10 1.30947
\(307\) −1.53928e9 1.53928e9i −0.173287 0.173287i 0.615135 0.788422i \(-0.289101\pi\)
−0.788422 + 0.615135i \(0.789101\pi\)
\(308\) −8.65221e8 + 8.65221e8i −0.0961445 + 0.0961445i
\(309\) 1.74218e9i 0.191100i
\(310\) 0 0
\(311\) −5.22581e8 −0.0558614 −0.0279307 0.999610i \(-0.508892\pi\)
−0.0279307 + 0.999610i \(0.508892\pi\)
\(312\) 1.57115e8 + 1.57115e8i 0.0165805 + 0.0165805i
\(313\) −3.27149e9 + 3.27149e9i −0.340854 + 0.340854i −0.856688 0.515834i \(-0.827482\pi\)
0.515834 + 0.856688i \(0.327482\pi\)
\(314\) 1.58521e10i 1.63068i
\(315\) 0 0
\(316\) 7.17777e7 0.00719848
\(317\) 3.24669e9 + 3.24669e9i 0.321517 + 0.321517i 0.849349 0.527832i \(-0.176995\pi\)
−0.527832 + 0.849349i \(0.676995\pi\)
\(318\) −8.85776e8 + 8.85776e8i −0.0866194 + 0.0866194i
\(319\) 8.08756e9i 0.781006i
\(320\) 0 0
\(321\) 1.20303e9 0.113307
\(322\) 1.44192e10 + 1.44192e10i 1.34127 + 1.34127i
\(323\) 1.29641e10 1.29641e10i 1.19106 1.19106i
\(324\) 9.76967e8i 0.0886543i
\(325\) 0 0
\(326\) −6.12406e9 −0.542212
\(327\) 4.34153e8 + 4.34153e8i 0.0379709 + 0.0379709i
\(328\) −3.60813e9 + 3.60813e9i −0.311736 + 0.311736i
\(329\) 1.99153e10i 1.69982i
\(330\) 0 0
\(331\) 8.55909e9 0.713043 0.356522 0.934287i \(-0.383963\pi\)
0.356522 + 0.934287i \(0.383963\pi\)
\(332\) −2.99622e8 2.99622e8i −0.0246616 0.0246616i
\(333\) 1.30377e10 1.30377e10i 1.06029 1.06029i
\(334\) 1.16952e10i 0.939767i
\(335\) 0 0
\(336\) 4.65870e9 0.365517
\(337\) −7.19609e9 7.19609e9i −0.557926 0.557926i 0.370790 0.928717i \(-0.379087\pi\)
−0.928717 + 0.370790i \(0.879087\pi\)
\(338\) −9.54691e9 + 9.54691e9i −0.731469 + 0.731469i
\(339\) 3.08099e9i 0.233288i
\(340\) 0 0
\(341\) −1.26513e10 −0.935663
\(342\) −1.25542e10 1.25542e10i −0.917669 0.917669i
\(343\) −9.65033e9 + 9.65033e9i −0.697213 + 0.697213i
\(344\) 1.51922e10i 1.08489i
\(345\) 0 0
\(346\) −8.35628e9 −0.583053
\(347\) −2.76044e9 2.76044e9i −0.190397 0.190397i 0.605471 0.795868i \(-0.292985\pi\)
−0.795868 + 0.605471i \(0.792985\pi\)
\(348\) 2.05811e8 2.05811e8i 0.0140330 0.0140330i
\(349\) 7.99627e9i 0.538996i −0.963001 0.269498i \(-0.913142\pi\)
0.963001 0.269498i \(-0.0868578\pi\)
\(350\) 0 0
\(351\) −7.38660e8 −0.0486649
\(352\) 1.82034e9 + 1.82034e9i 0.118572 + 0.118572i
\(353\) −1.99730e10 + 1.99730e10i −1.28630 + 1.28630i −0.349290 + 0.937015i \(0.613577\pi\)
−0.937015 + 0.349290i \(0.886423\pi\)
\(354\) 1.83259e9i 0.116695i
\(355\) 0 0
\(356\) −6.79393e8 −0.0422981
\(357\) −5.01549e9 5.01549e9i −0.308774 0.308774i
\(358\) 1.37986e10 1.37986e10i 0.840043 0.840043i
\(359\) 1.92076e10i 1.15637i −0.815906 0.578184i \(-0.803762\pi\)
0.815906 0.578184i \(-0.196238\pi\)
\(360\) 0 0
\(361\) −1.13683e10 −0.669368
\(362\) −5.74738e9 5.74738e9i −0.334685 0.334685i
\(363\) −7.97641e8 + 7.97641e8i −0.0459389 + 0.0459389i
\(364\) 3.45513e8i 0.0196815i
\(365\) 0 0
\(366\) −4.05910e9 −0.226207
\(367\) 1.85651e10 + 1.85651e10i 1.02337 + 1.02337i 0.999720 + 0.0236511i \(0.00752907\pi\)
0.0236511 + 0.999720i \(0.492471\pi\)
\(368\) 1.58300e10 1.58300e10i 0.863159 0.863159i
\(369\) 8.29536e9i 0.447435i
\(370\) 0 0
\(371\) −1.72316e10 −0.909558
\(372\) −3.21949e8 3.21949e8i −0.0168118 0.0168118i
\(373\) −7.55571e9 + 7.55571e9i −0.390337 + 0.390337i −0.874808 0.484470i \(-0.839012\pi\)
0.484470 + 0.874808i \(0.339012\pi\)
\(374\) 2.21832e10i 1.13380i
\(375\) 0 0
\(376\) 1.98291e10 0.992089
\(377\) 1.61482e9 + 1.61482e9i 0.0799391 + 0.0799391i
\(378\) −9.93198e9 + 9.93198e9i −0.486484 + 0.486484i
\(379\) 1.95966e10i 0.949783i 0.880044 + 0.474892i \(0.157513\pi\)
−0.880044 + 0.474892i \(0.842487\pi\)
\(380\) 0 0
\(381\) 1.20886e9 0.0573690
\(382\) −1.77348e10 1.77348e10i −0.832862 0.832862i
\(383\) 1.07480e10 1.07480e10i 0.499497 0.499497i −0.411784 0.911281i \(-0.635094\pi\)
0.911281 + 0.411784i \(0.135094\pi\)
\(384\) 5.07024e9i 0.233186i
\(385\) 0 0
\(386\) 2.08489e10 0.939146
\(387\) 1.74640e10 + 1.74640e10i 0.778575 + 0.778575i
\(388\) 2.10420e9 2.10420e9i 0.0928454 0.0928454i
\(389\) 3.58035e10i 1.56361i 0.623526 + 0.781803i \(0.285700\pi\)
−0.623526 + 0.781803i \(0.714300\pi\)
\(390\) 0 0
\(391\) −3.40848e10 −1.45832
\(392\) 2.53528e10 + 2.53528e10i 1.07370 + 1.07370i
\(393\) 4.56645e9 4.56645e9i 0.191429 0.191429i
\(394\) 4.99958e9i 0.207467i
\(395\) 0 0
\(396\) −1.98060e9 −0.0805407
\(397\) 3.85643e9 + 3.85643e9i 0.155247 + 0.155247i 0.780457 0.625210i \(-0.214987\pi\)
−0.625210 + 0.780457i \(0.714987\pi\)
\(398\) 1.71443e10 1.71443e10i 0.683261 0.683261i
\(399\) 1.09686e10i 0.432773i
\(400\) 0 0
\(401\) 3.39784e10 1.31409 0.657046 0.753851i \(-0.271806\pi\)
0.657046 + 0.753851i \(0.271806\pi\)
\(402\) −3.23073e9 3.23073e9i −0.123707 0.123707i
\(403\) 2.52606e9 2.52606e9i 0.0957688 0.0957688i
\(404\) 4.69871e9i 0.176382i
\(405\) 0 0
\(406\) 4.34256e10 1.59824
\(407\) −2.51908e10 2.51908e10i −0.918047 0.918047i
\(408\) −4.99378e9 + 4.99378e9i −0.180214 + 0.180214i
\(409\) 1.10826e10i 0.396048i −0.980197 0.198024i \(-0.936548\pi\)
0.980197 0.198024i \(-0.0634523\pi\)
\(410\) 0 0
\(411\) −3.86235e9 −0.135358
\(412\) 1.90734e9 + 1.90734e9i 0.0661970 + 0.0661970i
\(413\) −1.78253e10 + 1.78253e10i −0.612685 + 0.612685i
\(414\) 3.30072e10i 1.12359i
\(415\) 0 0
\(416\) −7.26924e8 −0.0242726
\(417\) −1.08848e9 1.08848e9i −0.0359978 0.0359978i
\(418\) −2.42567e10 + 2.42567e10i −0.794561 + 0.794561i
\(419\) 3.54167e10i 1.14909i 0.818474 + 0.574543i \(0.194820\pi\)
−0.818474 + 0.574543i \(0.805180\pi\)
\(420\) 0 0
\(421\) −2.98731e10 −0.950938 −0.475469 0.879733i \(-0.657722\pi\)
−0.475469 + 0.879733i \(0.657722\pi\)
\(422\) −1.86636e10 1.86636e10i −0.588498 0.588498i
\(423\) −2.27943e10 + 2.27943e10i −0.711974 + 0.711974i
\(424\) 1.71570e10i 0.530858i
\(425\) 0 0
\(426\) −6.50447e9 −0.197503
\(427\) −3.94823e10 3.94823e10i −1.18766 1.18766i
\(428\) −1.31708e9 + 1.31708e9i −0.0392498 + 0.0392498i
\(429\) 6.97930e8i 0.0206055i
\(430\) 0 0
\(431\) 6.06834e10 1.75857 0.879287 0.476293i \(-0.158020\pi\)
0.879287 + 0.476293i \(0.158020\pi\)
\(432\) 1.09038e10 + 1.09038e10i 0.313071 + 0.313071i
\(433\) 4.29956e10 4.29956e10i 1.22313 1.22313i 0.256617 0.966513i \(-0.417392\pi\)
0.966513 0.256617i \(-0.0826079\pi\)
\(434\) 6.79306e10i 1.91473i
\(435\) 0 0
\(436\) −9.50618e8 −0.0263063
\(437\) 3.72708e10 + 3.72708e10i 1.02198 + 1.02198i
\(438\) 4.91608e9 4.91608e9i 0.133574 0.133574i
\(439\) 8.86294e9i 0.238627i 0.992857 + 0.119314i \(0.0380694\pi\)
−0.992857 + 0.119314i \(0.961931\pi\)
\(440\) 0 0
\(441\) −5.82880e10 −1.54108
\(442\) 4.42927e9 + 4.42927e9i 0.116049 + 0.116049i
\(443\) −1.68455e10 + 1.68455e10i −0.437390 + 0.437390i −0.891133 0.453743i \(-0.850088\pi\)
0.453743 + 0.891133i \(0.350088\pi\)
\(444\) 1.28210e9i 0.0329907i
\(445\) 0 0
\(446\) −1.07405e10 −0.271448
\(447\) 1.72534e9 + 1.72534e9i 0.0432159 + 0.0432159i
\(448\) 4.04444e10 4.04444e10i 1.00403 1.00403i
\(449\) 5.95055e10i 1.46410i −0.681250 0.732051i \(-0.738563\pi\)
0.681250 0.732051i \(-0.261437\pi\)
\(450\) 0 0
\(451\) −1.60279e10 −0.387410
\(452\) 3.37306e9 + 3.37306e9i 0.0808110 + 0.0808110i
\(453\) −2.80128e8 + 2.80128e8i −0.00665218 + 0.00665218i
\(454\) 3.36650e10i 0.792421i
\(455\) 0 0
\(456\) 1.09211e10 0.252585
\(457\) −2.91131e9 2.91131e9i −0.0667459 0.0667459i 0.672946 0.739692i \(-0.265029\pi\)
−0.739692 + 0.672946i \(0.765029\pi\)
\(458\) −6.04503e10 + 6.04503e10i −1.37384 + 1.37384i
\(459\) 2.34778e10i 0.528940i
\(460\) 0 0
\(461\) 4.79933e9 0.106262 0.0531309 0.998588i \(-0.483080\pi\)
0.0531309 + 0.998588i \(0.483080\pi\)
\(462\) 9.38433e9 + 9.38433e9i 0.205985 + 0.205985i
\(463\) 4.23409e10 4.23409e10i 0.921375 0.921375i −0.0757516 0.997127i \(-0.524136\pi\)
0.997127 + 0.0757516i \(0.0241356\pi\)
\(464\) 4.76747e10i 1.02853i
\(465\) 0 0
\(466\) −7.68872e10 −1.63046
\(467\) 2.55795e10 + 2.55795e10i 0.537805 + 0.537805i 0.922884 0.385079i \(-0.125826\pi\)
−0.385079 + 0.922884i \(0.625826\pi\)
\(468\) 3.95461e8 3.95461e8i 0.00824366 0.00824366i
\(469\) 6.28496e10i 1.29901i
\(470\) 0 0
\(471\) 1.58521e10 0.322110
\(472\) 1.77482e10 + 1.77482e10i 0.357590 + 0.357590i
\(473\) 3.37432e10 3.37432e10i 0.674127 0.674127i
\(474\) 7.78512e8i 0.0154224i
\(475\) 0 0
\(476\) 1.09819e10 0.213919
\(477\) −1.97226e10 1.97226e10i −0.380971 0.380971i
\(478\) −7.66701e9 + 7.66701e9i −0.146864 + 0.146864i
\(479\) 4.66044e10i 0.885288i 0.896697 + 0.442644i \(0.145959\pi\)
−0.896697 + 0.442644i \(0.854041\pi\)
\(480\) 0 0
\(481\) 1.00596e10 0.187931
\(482\) 1.23568e10 + 1.23568e10i 0.228938 + 0.228938i
\(483\) 1.44192e10 1.44192e10i 0.264942 0.264942i
\(484\) 1.74651e9i 0.0318266i
\(485\) 0 0
\(486\) −3.43529e10 −0.615770
\(487\) −1.63896e10 1.63896e10i −0.291375 0.291375i 0.546248 0.837623i \(-0.316055\pi\)
−0.837623 + 0.546248i \(0.816055\pi\)
\(488\) −3.93113e10 + 3.93113e10i −0.693168 + 0.693168i
\(489\) 6.12406e9i 0.107104i
\(490\) 0 0
\(491\) 7.94765e10 1.36745 0.683727 0.729738i \(-0.260358\pi\)
0.683727 + 0.729738i \(0.260358\pi\)
\(492\) −4.07876e8 4.07876e8i −0.00696093 0.00696093i
\(493\) −5.13260e10 + 5.13260e10i −0.868860 + 0.868860i
\(494\) 9.68656e9i 0.162653i
\(495\) 0 0
\(496\) −7.45775e10 −1.23220
\(497\) −6.32680e10 6.32680e10i −1.03695 1.03695i
\(498\) −3.24974e9 + 3.24974e9i −0.0528362 + 0.0528362i
\(499\) 1.83615e10i 0.296146i 0.988976 + 0.148073i \(0.0473070\pi\)
−0.988976 + 0.148073i \(0.952693\pi\)
\(500\) 0 0
\(501\) −1.16952e10 −0.185633
\(502\) −4.92894e10 4.92894e10i −0.776138 0.776138i
\(503\) −6.21239e9 + 6.21239e9i −0.0970480 + 0.0970480i −0.753964 0.656916i \(-0.771861\pi\)
0.656916 + 0.753964i \(0.271861\pi\)
\(504\) 9.40761e10i 1.45800i
\(505\) 0 0
\(506\) 6.37750e10 0.972856
\(507\) 9.54691e9 + 9.54691e9i 0.144488 + 0.144488i
\(508\) −1.32346e9 + 1.32346e9i −0.0198727 + 0.0198727i
\(509\) 4.31615e10i 0.643021i −0.946906 0.321511i \(-0.895809\pi\)
0.946906 0.321511i \(-0.104191\pi\)
\(510\) 0 0
\(511\) 9.56360e10 1.40261
\(512\) −3.92707e10 3.92707e10i −0.571463 0.571463i
\(513\) −2.56723e10 + 2.56723e10i −0.370677 + 0.370677i
\(514\) 1.35723e11i 1.94446i
\(515\) 0 0
\(516\) 1.71738e9 0.0242252
\(517\) 4.40420e10 + 4.40420e10i 0.616460 + 0.616460i
\(518\) 1.35261e11 1.35261e11i 1.87868 1.87868i
\(519\) 8.35628e9i 0.115171i
\(520\) 0 0
\(521\) 2.90244e10 0.393923 0.196962 0.980411i \(-0.436893\pi\)
0.196962 + 0.980411i \(0.436893\pi\)
\(522\) 4.97033e10 + 4.97033e10i 0.669426 + 0.669426i
\(523\) −4.27429e10 + 4.27429e10i −0.571291 + 0.571291i −0.932489 0.361198i \(-0.882368\pi\)
0.361198 + 0.932489i \(0.382368\pi\)
\(524\) 9.99868e9i 0.132623i
\(525\) 0 0
\(526\) 3.78505e10 0.494457
\(527\) 8.02892e10 + 8.02892e10i 1.04091 + 1.04091i
\(528\) 1.03026e10 1.03026e10i 0.132559 0.132559i
\(529\) 1.96803e10i 0.251310i
\(530\) 0 0
\(531\) −4.08043e10 −0.513249
\(532\) −1.20084e10 1.20084e10i −0.149913 0.149913i
\(533\) 3.20026e9 3.20026e9i 0.0396530 0.0396530i
\(534\) 7.36880e9i 0.0906217i
\(535\) 0 0
\(536\) −6.25775e10 −0.758157
\(537\) −1.37986e10 1.37986e10i −0.165934 0.165934i
\(538\) −3.12116e10 + 3.12116e10i −0.372552 + 0.372552i
\(539\) 1.12621e11i 1.33434i
\(540\) 0 0
\(541\) −6.67715e9 −0.0779475 −0.0389738 0.999240i \(-0.512409\pi\)
−0.0389738 + 0.999240i \(0.512409\pi\)
\(542\) −2.42707e10 2.42707e10i −0.281245 0.281245i
\(543\) −5.74738e9 + 5.74738e9i −0.0661105 + 0.0661105i
\(544\) 2.31048e10i 0.263819i
\(545\) 0 0
\(546\) −3.74749e9 −0.0421667
\(547\) 7.25792e10 + 7.25792e10i 0.810705 + 0.810705i 0.984740 0.174035i \(-0.0556805\pi\)
−0.174035 + 0.984740i \(0.555681\pi\)
\(548\) 4.22849e9 4.22849e9i 0.0468881 0.0468881i
\(549\) 9.03797e10i 0.994905i
\(550\) 0 0
\(551\) 1.12247e11 1.21778
\(552\) −1.43567e10 1.43567e10i −0.154632 0.154632i
\(553\) 7.57247e9 7.57247e9i 0.0809724 0.0809724i
\(554\) 1.02428e11i 1.08738i
\(555\) 0 0
\(556\) 2.38333e9 0.0249393
\(557\) −2.52569e10 2.52569e10i −0.262397 0.262397i 0.563630 0.826027i \(-0.309404\pi\)
−0.826027 + 0.563630i \(0.809404\pi\)
\(558\) 7.77507e10 7.77507e10i 0.801987 0.801987i
\(559\) 1.34748e10i 0.137999i
\(560\) 0 0
\(561\) −2.21832e10 −0.223961
\(562\) 6.54026e10 + 6.54026e10i 0.655616 + 0.655616i
\(563\) 1.77029e10 1.77029e10i 0.176202 0.176202i −0.613496 0.789698i \(-0.710237\pi\)
0.789698 + 0.613496i \(0.210237\pi\)
\(564\) 2.24155e9i 0.0221529i
\(565\) 0 0
\(566\) −1.81290e11 −1.76648
\(567\) −1.03069e11 1.03069e11i −0.997231 0.997231i
\(568\) −6.29941e10 + 6.29941e10i −0.605211 + 0.605211i
\(569\) 5.69768e10i 0.543562i −0.962359 0.271781i \(-0.912387\pi\)
0.962359 0.271781i \(-0.0876126\pi\)
\(570\) 0 0
\(571\) −1.40041e11 −1.31738 −0.658690 0.752415i \(-0.728889\pi\)
−0.658690 + 0.752415i \(0.728889\pi\)
\(572\) −7.64092e8 7.64092e8i −0.00713775 0.00713775i
\(573\) −1.77348e10 + 1.77348e10i −0.164516 + 0.164516i
\(574\) 8.60609e10i 0.792790i
\(575\) 0 0
\(576\) 9.25822e10 0.841081
\(577\) 4.33597e10 + 4.33597e10i 0.391186 + 0.391186i 0.875110 0.483924i \(-0.160789\pi\)
−0.483924 + 0.875110i \(0.660789\pi\)
\(578\) −5.79487e10 + 5.79487e10i −0.519197 + 0.519197i
\(579\) 2.08489e10i 0.185510i
\(580\) 0 0
\(581\) −6.32196e10 −0.554814
\(582\) −2.28225e10 2.28225e10i −0.198917 0.198917i
\(583\) −3.81072e10 + 3.81072e10i −0.329862 + 0.329862i
\(584\) 9.52220e10i 0.818627i
\(585\) 0 0
\(586\) 1.06831e11 0.905959
\(587\) −1.52268e11 1.52268e11i −1.28250 1.28250i −0.939241 0.343258i \(-0.888470\pi\)
−0.343258 0.939241i \(-0.611530\pi\)
\(588\) −2.86597e9 + 2.86597e9i −0.0239752 + 0.0239752i
\(589\) 1.75588e11i 1.45893i
\(590\) 0 0
\(591\) 4.99958e9 0.0409811
\(592\) −1.48495e11 1.48495e11i −1.20900 1.20900i
\(593\) 5.29744e8 5.29744e8i 0.00428397 0.00428397i −0.704962 0.709246i \(-0.749036\pi\)
0.709246 + 0.704962i \(0.249036\pi\)
\(594\) 4.39285e10i 0.352859i
\(595\) 0 0
\(596\) −3.77779e9 −0.0299401
\(597\) −1.71443e10 1.71443e10i −0.134965 0.134965i
\(598\) −1.27338e10 + 1.27338e10i −0.0995757 + 0.0995757i
\(599\) 1.98446e11i 1.54147i 0.637157 + 0.770734i \(0.280110\pi\)
−0.637157 + 0.770734i \(0.719890\pi\)
\(600\) 0 0
\(601\) −2.01430e11 −1.54393 −0.771964 0.635666i \(-0.780726\pi\)
−0.771964 + 0.635666i \(0.780726\pi\)
\(602\) 1.81182e11 + 1.81182e11i 1.37952 + 1.37952i
\(603\) 7.19352e10 7.19352e10i 0.544092 0.544092i
\(604\) 6.13367e8i 0.00460864i
\(605\) 0 0
\(606\) 5.09630e10 0.377889
\(607\) 1.38674e11 + 1.38674e11i 1.02150 + 1.02150i 0.999764 + 0.0217387i \(0.00692018\pi\)
0.0217387 + 0.999764i \(0.493080\pi\)
\(608\) −2.52644e10 + 2.52644e10i −0.184882 + 0.184882i
\(609\) 4.34256e10i 0.315702i
\(610\) 0 0
\(611\) −1.75875e10 −0.126194
\(612\) 1.25695e10 + 1.25695e10i 0.0896006 + 0.0896006i
\(613\) 1.07154e11 1.07154e11i 0.758871 0.758871i −0.217246 0.976117i \(-0.569707\pi\)
0.976117 + 0.217246i \(0.0697074\pi\)
\(614\) 3.65559e10i 0.257208i
\(615\) 0 0
\(616\) 1.81770e11 1.26240
\(617\) 8.73671e10 + 8.73671e10i 0.602847 + 0.602847i 0.941067 0.338220i \(-0.109825\pi\)
−0.338220 + 0.941067i \(0.609825\pi\)
\(618\) 2.06873e10 2.06873e10i 0.141824 0.141824i
\(619\) 1.24104e11i 0.845325i 0.906287 + 0.422663i \(0.138904\pi\)
−0.906287 + 0.422663i \(0.861096\pi\)
\(620\) 0 0
\(621\) 6.74968e10 0.453855
\(622\) −6.20531e9 6.20531e9i −0.0414574 0.0414574i
\(623\) −7.16753e10 + 7.16753e10i −0.475792 + 0.475792i
\(624\) 4.11417e9i 0.0271359i
\(625\) 0 0
\(626\) −7.76936e10 −0.505927
\(627\) 2.42567e10 + 2.42567e10i 0.156950 + 0.156950i
\(628\) −1.73549e10 + 1.73549e10i −0.111579 + 0.111579i
\(629\) 3.19737e11i 2.04263i
\(630\) 0 0
\(631\) 2.11881e11 1.33652 0.668258 0.743929i \(-0.267040\pi\)
0.668258 + 0.743929i \(0.267040\pi\)
\(632\) −7.53969e9 7.53969e9i −0.0472591 0.0472591i
\(633\) −1.86636e10 + 1.86636e10i −0.116247 + 0.116247i
\(634\) 7.71045e10i 0.477225i
\(635\) 0 0
\(636\) −1.93949e9 −0.0118538
\(637\) −2.24868e10 2.24868e10i −0.136575 0.136575i
\(638\) 9.60344e10 9.60344e10i 0.579621 0.579621i
\(639\) 1.44828e11i 0.868660i
\(640\) 0 0
\(641\) −1.20192e11 −0.711940 −0.355970 0.934497i \(-0.615849\pi\)
−0.355970 + 0.934497i \(0.615849\pi\)
\(642\) 1.42852e10 + 1.42852e10i 0.0840906 + 0.0840906i
\(643\) 8.34104e10 8.34104e10i 0.487951 0.487951i −0.419708 0.907659i \(-0.637868\pi\)
0.907659 + 0.419708i \(0.137868\pi\)
\(644\) 3.15721e10i 0.183552i
\(645\) 0 0
\(646\) 3.07881e11 1.76788
\(647\) −1.74293e11 1.74293e11i −0.994635 0.994635i 0.00535087 0.999986i \(-0.498297\pi\)
−0.999986 + 0.00535087i \(0.998297\pi\)
\(648\) −1.02623e11 + 1.02623e11i −0.582028 + 0.582028i
\(649\) 7.88403e10i 0.444395i
\(650\) 0 0
\(651\) −6.79306e10 −0.378217
\(652\) −6.70461e9 6.70461e9i −0.0371008 0.0371008i
\(653\) 1.69727e11 1.69727e11i 0.933465 0.933465i −0.0644553 0.997921i \(-0.520531\pi\)
0.997921 + 0.0644553i \(0.0205310\pi\)
\(654\) 1.03106e10i 0.0563600i
\(655\) 0 0
\(656\) −9.44818e10 −0.510191
\(657\) 1.09461e11 + 1.09461e11i 0.587488 + 0.587488i
\(658\) −2.36481e11 + 2.36481e11i −1.26151 + 1.26151i
\(659\) 2.61429e11i 1.38616i 0.720862 + 0.693078i \(0.243746\pi\)
−0.720862 + 0.693078i \(0.756254\pi\)
\(660\) 0 0
\(661\) −9.90557e10 −0.518888 −0.259444 0.965758i \(-0.583539\pi\)
−0.259444 + 0.965758i \(0.583539\pi\)
\(662\) 1.01634e11 + 1.01634e11i 0.529182 + 0.529182i
\(663\) 4.42927e9 4.42927e9i 0.0229233 0.0229233i
\(664\) 6.29459e10i 0.323814i
\(665\) 0 0
\(666\) 3.09628e11 1.57378
\(667\) −1.47558e11 1.47558e11i −0.745522 0.745522i
\(668\) 1.28038e10 1.28038e10i 0.0643034 0.0643034i
\(669\) 1.07405e10i 0.0536193i
\(670\) 0 0
\(671\) −1.74628e11 −0.861436
\(672\) 9.77418e9 + 9.77418e9i 0.0479295 + 0.0479295i
\(673\) −1.05855e11 + 1.05855e11i −0.516003 + 0.516003i −0.916359 0.400357i \(-0.868886\pi\)
0.400357 + 0.916359i \(0.368886\pi\)
\(674\) 1.70898e11i 0.828126i
\(675\) 0 0
\(676\) −2.09039e10 −0.100101
\(677\) −2.34302e11 2.34302e11i −1.11538 1.11538i −0.992411 0.122965i \(-0.960760\pi\)
−0.122965 0.992411i \(-0.539240\pi\)
\(678\) 3.65847e10 3.65847e10i 0.173133 0.173133i
\(679\) 4.43982e11i 2.08875i
\(680\) 0 0
\(681\) 3.36650e10 0.156528
\(682\) −1.50226e11 1.50226e11i −0.694399 0.694399i
\(683\) −2.10586e11 + 2.10586e11i −0.967715 + 0.967715i −0.999495 0.0317802i \(-0.989882\pi\)
0.0317802 + 0.999495i \(0.489882\pi\)
\(684\) 2.74887e10i 0.125583i
\(685\) 0 0
\(686\) −2.29183e11 −1.03487
\(687\) 6.04503e10 + 6.04503e10i 0.271376 + 0.271376i
\(688\) 1.98910e11 1.98910e11i 0.887776 0.887776i
\(689\) 1.52175e10i 0.0675254i
\(690\) 0 0
\(691\) −4.57396e10 −0.200623 −0.100311 0.994956i \(-0.531984\pi\)
−0.100311 + 0.994956i \(0.531984\pi\)
\(692\) −9.14843e9 9.14843e9i −0.0398953 0.0398953i
\(693\) −2.08951e11 + 2.08951e11i −0.905965 + 0.905965i
\(694\) 6.55567e10i 0.282605i
\(695\) 0 0
\(696\) −4.32376e10 −0.184257
\(697\) 1.01718e11 + 1.01718e11i 0.430989 + 0.430989i
\(698\) 9.49504e10 9.49504e10i 0.400014 0.400014i
\(699\) 7.68872e10i 0.322066i
\(700\) 0 0
\(701\) 9.83586e10 0.407324 0.203662 0.979041i \(-0.434716\pi\)
0.203662 + 0.979041i \(0.434716\pi\)
\(702\) −8.77110e9 8.77110e9i −0.0361165 0.0361165i
\(703\) 3.49623e11 3.49623e11i 1.43146 1.43146i
\(704\) 1.78883e11i 0.728247i
\(705\) 0 0
\(706\) −4.74332e11 −1.90925
\(707\) 4.95710e11 + 4.95710e11i 1.98404 + 1.98404i
\(708\) −2.00631e9 + 2.00631e9i −0.00798483 + 0.00798483i
\(709\) 1.32351e11i 0.523771i −0.965099 0.261885i \(-0.915656\pi\)
0.965099 0.261885i \(-0.0843443\pi\)
\(710\) 0 0
\(711\) 1.73343e10 0.0678310
\(712\) 7.13650e10 + 7.13650e10i 0.277693 + 0.277693i
\(713\) −2.30825e11 + 2.30825e11i −0.893151 + 0.893151i
\(714\) 1.19111e11i 0.458311i
\(715\) 0 0
\(716\) 3.02132e10 0.114960
\(717\) 7.66701e9 + 7.66701e9i 0.0290101 + 0.0290101i
\(718\) 2.28078e11 2.28078e11i 0.858194 0.858194i
\(719\) 2.14771e11i 0.803636i −0.915720 0.401818i \(-0.868378\pi\)
0.915720 0.401818i \(-0.131622\pi\)
\(720\) 0 0
\(721\) 4.02444e11 1.48924
\(722\) −1.34991e11 1.34991e11i −0.496769 0.496769i
\(723\) 1.23568e10 1.23568e10i 0.0452224 0.0452224i
\(724\) 1.25844e10i 0.0458015i
\(725\) 0 0
\(726\) −1.89429e10 −0.0681868
\(727\) 3.41170e10 + 3.41170e10i 0.122133 + 0.122133i 0.765531 0.643398i \(-0.222476\pi\)
−0.643398 + 0.765531i \(0.722476\pi\)
\(728\) −3.62935e10 + 3.62935e10i −0.129212 + 0.129212i
\(729\) 2.12181e11i 0.751270i
\(730\) 0 0
\(731\) −4.28289e11 −1.49992
\(732\) −4.44389e9 4.44389e9i −0.0154782 0.0154782i
\(733\) 6.69873e10 6.69873e10i 0.232047 0.232047i −0.581499 0.813547i \(-0.697534\pi\)
0.813547 + 0.581499i \(0.197534\pi\)
\(734\) 4.40897e11i 1.51898i
\(735\) 0 0
\(736\) 6.64244e10 0.226369
\(737\) −1.38990e11 1.38990e11i −0.471100 0.471100i
\(738\) 9.85020e10 9.85020e10i 0.332062 0.332062i
\(739\) 6.08310e10i 0.203961i 0.994786 + 0.101981i \(0.0325180\pi\)
−0.994786 + 0.101981i \(0.967482\pi\)
\(740\) 0 0
\(741\) −9.68656e9 −0.0321290
\(742\) −2.04614e11 2.04614e11i −0.675025 0.675025i
\(743\) −1.90364e11 + 1.90364e11i −0.624639 + 0.624639i −0.946714 0.322075i \(-0.895620\pi\)
0.322075 + 0.946714i \(0.395620\pi\)
\(744\) 6.76365e10i 0.220744i
\(745\) 0 0
\(746\) −1.79438e11 −0.579375
\(747\) −7.23587e10 7.23587e10i −0.232385 0.232385i
\(748\) 2.42861e10 2.42861e10i 0.0775804 0.0775804i
\(749\) 2.77901e11i 0.883004i
\(750\) 0 0
\(751\) 3.43050e11 1.07844 0.539222 0.842164i \(-0.318718\pi\)
0.539222 + 0.842164i \(0.318718\pi\)
\(752\) 2.59620e11 + 2.59620e11i 0.811833 + 0.811833i
\(753\) −4.92894e10 + 4.92894e10i −0.153311 + 0.153311i
\(754\) 3.83499e10i 0.118653i
\(755\) 0 0
\(756\) −2.17470e10 −0.0665752
\(757\) −7.34063e10 7.34063e10i −0.223537 0.223537i 0.586449 0.809986i \(-0.300525\pi\)
−0.809986 + 0.586449i \(0.800525\pi\)
\(758\) −2.32697e11 + 2.32697e11i −0.704878 + 0.704878i
\(759\) 6.37750e10i 0.192169i
\(760\) 0 0
\(761\) 5.88790e11 1.75558 0.877792 0.479042i \(-0.159016\pi\)
0.877792 + 0.479042i \(0.159016\pi\)
\(762\) 1.43545e10 + 1.43545e10i 0.0425762 + 0.0425762i
\(763\) −1.00289e11 + 1.00289e11i −0.295908 + 0.295908i
\(764\) 3.88321e10i 0.113977i
\(765\) 0 0
\(766\) 2.55251e11 0.741400
\(767\) −1.57418e10 1.57418e10i −0.0454856 0.0454856i
\(768\) 1.53842e10 1.53842e10i 0.0442211 0.0442211i
\(769\) 3.95721e11i 1.13158i 0.824550 + 0.565789i \(0.191428\pi\)
−0.824550 + 0.565789i \(0.808572\pi\)
\(770\) 0 0
\(771\) 1.35723e11 0.384091
\(772\) 2.28253e10 + 2.28253e10i 0.0642609 + 0.0642609i
\(773\) 3.23931e11 3.23931e11i 0.907265 0.907265i −0.0887861 0.996051i \(-0.528299\pi\)
0.996051 + 0.0887861i \(0.0282988\pi\)
\(774\) 4.14748e11i 1.15563i
\(775\) 0