Properties

Label 25.8.a.a
Level 25
Weight 8
Character orbit 25.a
Self dual yes
Analytic conductor 7.810
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 25.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(7.80962563710\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 14q^{2} + 48q^{3} + 68q^{4} + 672q^{6} + 1644q^{7} - 840q^{8} + 117q^{9} + O(q^{10}) \) \( q + 14q^{2} + 48q^{3} + 68q^{4} + 672q^{6} + 1644q^{7} - 840q^{8} + 117q^{9} + 172q^{11} + 3264q^{12} - 3862q^{13} + 23016q^{14} - 20464q^{16} + 12254q^{17} + 1638q^{18} - 25940q^{19} + 78912q^{21} + 2408q^{22} - 12972q^{23} - 40320q^{24} - 54068q^{26} - 99360q^{27} + 111792q^{28} - 81610q^{29} - 156888q^{31} - 178976q^{32} + 8256q^{33} + 171556q^{34} + 7956q^{36} - 110126q^{37} - 363160q^{38} - 185376q^{39} + 467882q^{41} + 1104768q^{42} + 499208q^{43} + 11696q^{44} - 181608q^{46} + 396884q^{47} - 982272q^{48} + 1879193q^{49} + 588192q^{51} - 262616q^{52} + 1280498q^{53} - 1391040q^{54} - 1380960q^{56} - 1245120q^{57} - 1142540q^{58} - 1337420q^{59} - 923978q^{61} - 2196432q^{62} + 192348q^{63} + 113728q^{64} + 115584q^{66} + 797304q^{67} + 833272q^{68} - 622656q^{69} + 5103392q^{71} - 98280q^{72} + 4267478q^{73} - 1541764q^{74} - 1763920q^{76} + 282768q^{77} - 2595264q^{78} - 960q^{79} - 5025159q^{81} + 6550348q^{82} - 6140832q^{83} + 5366016q^{84} + 6988912q^{86} - 3917280q^{87} - 144480q^{88} + 2010570q^{89} - 6349128q^{91} - 882096q^{92} - 7530624q^{93} + 5556376q^{94} - 8590848q^{96} + 4881934q^{97} + 26308702q^{98} + 20124q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
14.0000 48.0000 68.0000 0 672.000 1644.00 −840.000 117.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 25.8.a.a 1
3.b odd 2 1 225.8.a.b 1
4.b odd 2 1 400.8.a.e 1
5.b even 2 1 5.8.a.a 1
5.c odd 4 2 25.8.b.a 2
15.d odd 2 1 45.8.a.f 1
15.e even 4 2 225.8.b.b 2
20.d odd 2 1 80.8.a.d 1
20.e even 4 2 400.8.c.e 2
35.c odd 2 1 245.8.a.a 1
40.e odd 2 1 320.8.a.a 1
40.f even 2 1 320.8.a.h 1
55.d odd 2 1 605.8.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.8.a.a 1 5.b even 2 1
25.8.a.a 1 1.a even 1 1 trivial
25.8.b.a 2 5.c odd 4 2
45.8.a.f 1 15.d odd 2 1
80.8.a.d 1 20.d odd 2 1
225.8.a.b 1 3.b odd 2 1
225.8.b.b 2 15.e even 4 2
245.8.a.a 1 35.c odd 2 1
320.8.a.a 1 40.e odd 2 1
320.8.a.h 1 40.f even 2 1
400.8.a.e 1 4.b odd 2 1
400.8.c.e 2 20.e even 4 2
605.8.a.c 1 55.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 14 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(25))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - 14 T + 128 T^{2} \)
$3$ \( 1 - 48 T + 2187 T^{2} \)
$5$ 1
$7$ \( 1 - 1644 T + 823543 T^{2} \)
$11$ \( 1 - 172 T + 19487171 T^{2} \)
$13$ \( 1 + 3862 T + 62748517 T^{2} \)
$17$ \( 1 - 12254 T + 410338673 T^{2} \)
$19$ \( 1 + 25940 T + 893871739 T^{2} \)
$23$ \( 1 + 12972 T + 3404825447 T^{2} \)
$29$ \( 1 + 81610 T + 17249876309 T^{2} \)
$31$ \( 1 + 156888 T + 27512614111 T^{2} \)
$37$ \( 1 + 110126 T + 94931877133 T^{2} \)
$41$ \( 1 - 467882 T + 194754273881 T^{2} \)
$43$ \( 1 - 499208 T + 271818611107 T^{2} \)
$47$ \( 1 - 396884 T + 506623120463 T^{2} \)
$53$ \( 1 - 1280498 T + 1174711139837 T^{2} \)
$59$ \( 1 + 1337420 T + 2488651484819 T^{2} \)
$61$ \( 1 + 923978 T + 3142742836021 T^{2} \)
$67$ \( 1 - 797304 T + 6060711605323 T^{2} \)
$71$ \( 1 - 5103392 T + 9095120158391 T^{2} \)
$73$ \( 1 - 4267478 T + 11047398519097 T^{2} \)
$79$ \( 1 + 960 T + 19203908986159 T^{2} \)
$83$ \( 1 + 6140832 T + 27136050989627 T^{2} \)
$89$ \( 1 - 2010570 T + 44231334895529 T^{2} \)
$97$ \( 1 - 4881934 T + 80798284478113 T^{2} \)
show more
show less