Properties

 Label 25.10.a.e Level $25$ Weight $10$ Character orbit 25.a Self dual yes Analytic conductor $12.876$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$25 = 5^{2}$$ Weight: $$k$$ $$=$$ $$10$$ Character orbit: $$[\chi]$$ $$=$$ 25.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$12.8758959041$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: 4.4.49740556.1 Defining polynomial: $$x^{4} - 45 x^{2} + 304$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2^{5}\cdot 3^{2}\cdot 5^{2}$$ Twist minimal: no (minimal twist has level 5) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\beta_{1} q^{2} + ( -\beta_{1} + \beta_{2} ) q^{3} + ( 342 - \beta_{3} ) q^{4} + ( 702 - \beta_{3} ) q^{6} + ( -133 \beta_{1} + 49 \beta_{2} ) q^{7} + ( -684 \beta_{1} + 8 \beta_{2} ) q^{8} + ( -2907 + 18 \beta_{3} ) q^{9} +O(q^{10})$$ $$q -\beta_{1} q^{2} + ( -\beta_{1} + \beta_{2} ) q^{3} + ( 342 - \beta_{3} ) q^{4} + ( 702 - \beta_{3} ) q^{6} + ( -133 \beta_{1} + 49 \beta_{2} ) q^{7} + ( -684 \beta_{1} + 8 \beta_{2} ) q^{8} + ( -2907 + 18 \beta_{3} ) q^{9} + ( 27492 + 20 \beta_{3} ) q^{11} + ( -1044 \beta_{1} - 504 \beta_{2} ) q^{12} + ( -1918 \beta_{1} - 110 \beta_{2} ) q^{13} + ( 106134 - 133 \beta_{3} ) q^{14} + ( 407816 - 172 \beta_{3} ) q^{16} + ( 7448 \beta_{1} + 1632 \beta_{2} ) q^{17} + ( 18279 \beta_{1} - 144 \beta_{2} ) q^{18} + ( 159220 + 476 \beta_{3} ) q^{19} + ( 880992 + 798 \beta_{3} ) q^{21} + ( -10412 \beta_{1} - 160 \beta_{2} ) q^{22} + ( 17005 \beta_{1} + 5199 \beta_{2} ) q^{23} + ( 608760 - 532 \beta_{3} ) q^{24} + ( 1654692 - 1918 \beta_{3} ) q^{26} + ( 35226 \beta_{1} - 7362 \beta_{2} ) q^{27} + ( -151620 \beta_{1} - 24024 \beta_{2} ) q^{28} + ( 882930 - 1976 \beta_{3} ) q^{29} + ( -2646928 + 760 \beta_{3} ) q^{31} + ( -204496 \beta_{1} - 2720 \beta_{2} ) q^{32} + ( -13452 \beta_{1} + 44412 \beta_{2} ) q^{33} + ( -6608656 + 7448 \beta_{3} ) q^{34} + ( -14099994 + 9063 \beta_{3} ) q^{36} + ( 335370 \beta_{1} + 51378 \beta_{2} ) q^{37} + ( 247284 \beta_{1} - 3808 \beta_{2} ) q^{38} + ( -421704 - 4008 \beta_{3} ) q^{39} + ( -4197138 - 24890 \beta_{3} ) q^{41} + ( -199500 \beta_{1} - 6384 \beta_{2} ) q^{42} + ( 719131 \beta_{1} - 132643 \beta_{2} ) q^{43} + ( -5159736 - 20652 \beta_{3} ) q^{44} + ( -15312518 + 17005 \beta_{3} ) q^{46} + ( 1012111 \beta_{1} - 214259 \beta_{2} ) q^{47} + ( -528560 \beta_{1} + 262304 \beta_{2} ) q^{48} + ( 11730257 + 27930 \beta_{3} ) q^{49} + ( 21004272 + 38456 \beta_{3} ) q^{51} + ( -2310648 \beta_{1} + 71664 \beta_{2} ) q^{52} + ( -1349666 \beta_{1} - 259794 \beta_{2} ) q^{53} + ( -28963980 + 35226 \beta_{3} ) q^{54} + ( 78794520 - 83524 \beta_{3} ) q^{56} + ( 174932 \beta_{1} + 561916 \beta_{2} ) q^{57} + ( -2570434 \beta_{1} + 15808 \beta_{2} ) q^{58} + ( 115207260 - 52972 \beta_{3} ) q^{59} + ( 90122642 + 43150 \beta_{3} ) q^{61} + ( 3295968 \beta_{1} - 6080 \beta_{2} ) q^{62} + ( 2297043 \beta_{1} + 591633 \beta_{2} ) q^{63} + ( -33748768 - 116432 \beta_{3} ) q^{64} + ( 4737384 - 13452 \beta_{3} ) q^{66} + ( -6669647 \beta_{1} - 1448953 \beta_{2} ) q^{67} + ( 9155872 \beta_{1} - 895168 \beta_{2} ) q^{68} + ( 71631216 + 115786 \beta_{3} ) q^{69} + ( -11902968 + 91200 \beta_{3} ) q^{71} + ( 12480948 \beta_{1} + 1224 \beta_{2} ) q^{72} + ( -1847940 \beta_{1} + 90564 \beta_{2} ) q^{73} + ( -294215436 + 335370 \beta_{3} ) q^{74} + ( -292122360 + 3572 \beta_{3} ) q^{76} + ( -1533756 \beta_{1} + 2162748 \beta_{2} ) q^{77} + ( -3001128 \beta_{1} + 32064 \beta_{2} ) q^{78} + ( 182010880 - 267976 \beta_{3} ) q^{79} + ( -85846959 - 458946 \beta_{3} ) q^{81} + ( -17058922 \beta_{1} + 199120 \beta_{2} ) q^{82} + ( -12737657 \beta_{1} + 1180353 \beta_{2} ) q^{83} + ( -279724536 - 608076 \beta_{3} ) q^{84} + ( -593976138 + 719131 \beta_{3} ) q^{86} + ( -2270082 \beta_{1} - 788766 \beta_{2} ) q^{87} + ( -7146128 \beta_{1} + 247136 \beta_{2} ) q^{88} + ( 395675190 + 185592 \beta_{3} ) q^{89} + ( 118330632 - 357504 \beta_{3} ) q^{91} + ( 21128228 \beta_{1} - 2797928 \beta_{2} ) q^{92} + ( 3180448 \beta_{1} - 2003968 \beta_{2} ) q^{93} + ( -831775426 + 1012111 \beta_{3} ) q^{94} + ( 99834912 - 256176 \beta_{3} ) q^{96} + ( -14786464 \beta_{1} + 1954216 \beta_{2} ) q^{97} + ( 12121963 \beta_{1} - 223440 \beta_{2} ) q^{98} + ( 182196756 + 436716 \beta_{3} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 1368q^{4} + 2808q^{6} - 11628q^{9} + O(q^{10})$$ $$4q + 1368q^{4} + 2808q^{6} - 11628q^{9} + 109968q^{11} + 424536q^{14} + 1631264q^{16} + 636880q^{19} + 3523968q^{21} + 2435040q^{24} + 6618768q^{26} + 3531720q^{29} - 10587712q^{31} - 26434624q^{34} - 56399976q^{36} - 1686816q^{39} - 16788552q^{41} - 20638944q^{44} - 61250072q^{46} + 46921028q^{49} + 84017088q^{51} - 115855920q^{54} + 315178080q^{56} + 460829040q^{59} + 360490568q^{61} - 134995072q^{64} + 18949536q^{66} + 286524864q^{69} - 47611872q^{71} - 1176861744q^{74} - 1168489440q^{76} + 728043520q^{79} - 343387836q^{81} - 1118898144q^{84} - 2375904552q^{86} + 1582700760q^{89} + 473322528q^{91} - 3327101704q^{94} + 399339648q^{96} + 728787024q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - 45 x^{2} + 304$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$-\nu^{3} + 37 \nu$$$$)/2$$ $$\beta_{2}$$ $$=$$ $$\nu^{3} - 7 \nu$$ $$\beta_{3}$$ $$=$$ $$60 \nu^{2} - 1350$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{2} + 2 \beta_{1}$$$$)/30$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{3} + 1350$$$$)/60$$ $$\nu^{3}$$ $$=$$ $$($$$$37 \beta_{2} + 14 \beta_{1}$$$$)/30$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 2.87724 6.05982 −6.05982 −2.87724
−41.3193 −37.6407 1195.29 0 1555.29 −5315.22 −28233.0 −18266.2 0
1.2 −0.843944 179.263 −511.288 0 −151.288 8712.99 863.597 12452.2 0
1.3 0.843944 −179.263 −511.288 0 −151.288 −8712.99 −863.597 12452.2 0
1.4 41.3193 37.6407 1195.29 0 1555.29 5315.22 28233.0 −18266.2 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$5$$ $$-1$$

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 25.10.a.e 4
3.b odd 2 1 225.10.a.s 4
4.b odd 2 1 400.10.a.ba 4
5.b even 2 1 inner 25.10.a.e 4
5.c odd 4 2 5.10.b.a 4
15.d odd 2 1 225.10.a.s 4
15.e even 4 2 45.10.b.b 4
20.d odd 2 1 400.10.a.ba 4
20.e even 4 2 80.10.c.c 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.10.b.a 4 5.c odd 4 2
25.10.a.e 4 1.a even 1 1 trivial
25.10.a.e 4 5.b even 2 1 inner
45.10.b.b 4 15.e even 4 2
80.10.c.c 4 20.e even 4 2
225.10.a.s 4 3.b odd 2 1
225.10.a.s 4 15.d odd 2 1
400.10.a.ba 4 4.b odd 2 1
400.10.a.ba 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{4} - 1708 T_{2}^{2} + 1216$$ acting on $$S_{10}^{\mathrm{new}}(\Gamma_0(25))$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + 340 T^{2} - 174912 T^{4} + 89128960 T^{6} + 68719476736 T^{8}$$
$3$ $$1 + 45180 T^{2} + 1049244678 T^{4} + 17503657693020 T^{6} + 150094635296999121 T^{8}$$
$5$ 1
$7$ $$1 + 57246700 T^{2} + 3508143545353398 T^{4} +$$$$93\!\cdots\!00$$$$T^{6} +$$$$26\!\cdots\!01$$$$T^{8}$$
$11$ $$( 1 - 54984 T + 5180465446 T^{2} - 129649395841944 T^{3} + 5559917313492231481 T^{4} )^{2}$$
$13$ $$1 + 35613791860 T^{2} +$$$$53\!\cdots\!58$$$$T^{4} +$$$$40\!\cdots\!40$$$$T^{6} +$$$$12\!\cdots\!41$$$$T^{8}$$
$17$ $$1 + 285780369220 T^{2} +$$$$48\!\cdots\!18$$$$T^{4} +$$$$40\!\cdots\!80$$$$T^{6} +$$$$19\!\cdots\!81$$$$T^{8}$$
$19$ $$( 1 - 318440 T + 505756418358 T^{2} - 102756670480744760 T^{3} +$$$$10\!\cdots\!41$$$$T^{4} )^{2}$$
$23$ $$1 + 5779790962540 T^{2} +$$$$14\!\cdots\!38$$$$T^{4} +$$$$18\!\cdots\!60$$$$T^{6} +$$$$10\!\cdots\!61$$$$T^{8}$$
$29$ $$( 1 - 1765860 T + 26950935551038 T^{2} - 25617588792948032340 T^{3} +$$$$21\!\cdots\!61$$$$T^{4} )^{2}$$
$31$ $$( 1 + 5293856 T + 59464921598526 T^{2} +$$$$13\!\cdots\!76$$$$T^{3} +$$$$69\!\cdots\!41$$$$T^{4} )^{2}$$
$37$ $$1 + 231603274936660 T^{2} +$$$$44\!\cdots\!58$$$$T^{4} +$$$$39\!\cdots\!40$$$$T^{6} +$$$$28\!\cdots\!41$$$$T^{8}$$
$41$ $$( 1 + 8394276 T + 221313076168966 T^{2} +$$$$27\!\cdots\!36$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4} )^{2}$$
$43$ $$1 + 614109141147100 T^{2} +$$$$57\!\cdots\!98$$$$T^{4} +$$$$15\!\cdots\!00$$$$T^{6} +$$$$63\!\cdots\!01$$$$T^{8}$$
$47$ $$1 + 1368976020813580 T^{2} +$$$$29\!\cdots\!78$$$$T^{4} +$$$$17\!\cdots\!20$$$$T^{6} +$$$$15\!\cdots\!21$$$$T^{8}$$
$53$ $$1 + 7684297973864980 T^{2} +$$$$36\!\cdots\!78$$$$T^{4} +$$$$83\!\cdots\!20$$$$T^{6} +$$$$11\!\cdots\!21$$$$T^{8}$$
$59$ $$( 1 - 230414520 T + 28555631923987078 T^{2} -$$$$19\!\cdots\!80$$$$T^{3} +$$$$75\!\cdots\!21$$$$T^{4} )^{2}$$
$61$ $$( 1 - 180245284 T + 30154717014478446 T^{2} -$$$$21\!\cdots\!44$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4} )^{2}$$
$67$ $$1 - 41160407446058180 T^{2} +$$$$18\!\cdots\!18$$$$T^{4} -$$$$30\!\cdots\!20$$$$T^{6} +$$$$54\!\cdots\!81$$$$T^{8}$$
$71$ $$( 1 + 23805936 T + 85782754020107086 T^{2} +$$$$10\!\cdots\!16$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4} )^{2}$$
$73$ $$1 + 229489314868712740 T^{2} +$$$$20\!\cdots\!38$$$$T^{4} +$$$$79\!\cdots\!60$$$$T^{6} +$$$$12\!\cdots\!61$$$$T^{8}$$
$79$ $$( 1 - 364021760 T + 220545463862625438 T^{2} -$$$$43\!\cdots\!40$$$$T^{3} +$$$$14\!\cdots\!61$$$$T^{4} )^{2}$$
$83$ $$1 + 434569632367965820 T^{2} +$$$$10\!\cdots\!18$$$$T^{4} +$$$$15\!\cdots\!80$$$$T^{6} +$$$$12\!\cdots\!81$$$$T^{8}$$
$89$ $$( 1 - 791350380 T + 832192702699668118 T^{2} -$$$$27\!\cdots\!20$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4} )^{2}$$
$97$ $$1 + 2561123777205326980 T^{2} +$$$$27\!\cdots\!78$$$$T^{4} +$$$$14\!\cdots\!20$$$$T^{6} +$$$$33\!\cdots\!21$$$$T^{8}$$