Properties

Level 24
Weight 4
Character $\chi_{24}(1, \cdot)$
Label 24.4.1.a
Dimension of Galois orbit 1
Twist info not available
CM No
Atkin-Lehner eigenvalues \( \omega_{ 2 } \) : -1
\( \omega_{ 3 } \) : -1

Related objects

Learn more about

Show commands for: SageMath

magma: S := CuspForms(24,4);
magma: N := Newforms(S);
sage: N = Newforms(24,4,names="a")
sage: f = N[0]

q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field
\(q \) \(\mathstrut+\) \(3q^{3} \) \(\mathstrut+\) \(14q^{5} \) \(\mathstrut-\) \(24q^{7} \) \(\mathstrut+\) \(9q^{9} \) \(\mathstrut+O(q^{10}) \)

(To download coefficients, see below.)

Coefficient field

sage: K = f.hecke_eigenvalue_field() # note that sage often uses an isomorphic number field
The coefficient field is \(\Q\)

Detailed data

The first few Satake parameters \(\alpha_p\) and angles \(\theta_p = \textrm{Arg}(\alpha_p) \) are

\( p \) 5 7
\(\alpha_{p}\) \( 0.626099033699941 + 0.779743547584717i \) \( -0.647939096587247 + 0.761692147204960i \)
\(\theta_{p}\) \( 0.894256109100503 \) \( 2.27567194851327 \)

Further Properties

Download this Newform

The database contains the coefficients of \(q^n\) for \(0 \le n\le 119 \).
Choose format to download:
Download coefficients of \(q^n\) for \(0\le n\le \) (maximum 119)