# Properties

 Level 24 Weight 12 Character $\chi_{24}(1, \cdot)$ Label 24.12.1.d Dimension of Galois orbit 2 Twist info not available CM No Atkin-Lehner eigenvalues $\omega_{ 2 }$ : -1 $\omega_{ 3 }$ : -1

# Related objects

Show commands for: SageMath
magma: S := CuspForms(24,12);
magma: N := Newforms(S);
sage: N = Newforms(24,12,names="a")
sage: f = N[3]

## q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field
$q$ $\mathstrut+$ $243q^{3}$ $\mathstrut+$ $\bigl(\frac{1}{2} \alpha$ $\mathstrut+ 243\bigr)q^{5}$ $\mathstrut+$ $\bigl(- \frac{1}{2} \alpha$ $\mathstrut+ 19427\bigr)q^{7}$ $\mathstrut+$ $59049q^{9}$ $\mathstrut+O(q^{10})$
where
$\alpha ^{2}$ $\mathstrut -\mathstrut 2156 \alpha$ $\mathstrut -\mathstrut 450200732$$\mathstrut=0$.

### Coefficient field

sage: K = f.hecke_eigenvalue_field() # note that sage often uses an isomorphic number field
The coefficient field is $\Q(\alpha)\cong\,$ $\Q(\sqrt{3061})$ where $\alpha$ has minimal polynomial
$x ^{2}$ $\mathstrut -\mathstrut 2156 x$ $\mathstrut -\mathstrut 450200732$
over $\Q$.
sage: K.absolute_polynomial()

### Embeddings

It is possible to embed the Fourier coefficients in the $q$-expansion above in the field of complex numbers. The different embeddings of the first few Fourier coefficients are shown in the table below. Note that these include embeddings that do not preserve the character.
$n$ 2 3 4 5
$v_{ 0 }(a(n))$ 0.000000000000000 243.000000000000 0.000000000000000 -9840.65051670250
$v_{ 1 }(a(n))$ 0.000000000000000 243.000000000000 0.000000000000000 11404.6505167025

## Further Properties

The database contains the coefficients of $q^n$ for $0 \le n\le 314$.
 Choose format to download: .sage file (contains more information) .sobj file for sage (only coefficients) text file of the algebraic coefficients in a table text file of the complex coefficients in double precision text file of the q-expansion Download coefficients of $q^n$ for $0\le n\le$ (maximum 314)