Properties

Level 24
Weight 12
Character $\chi_{24}(1, \cdot)$
Label 24.12.1.b
Dimension of Galois orbit 1
Twist info not available
CM No
Atkin-Lehner eigenvalues \( \omega_{ 2 } \) : -1
\( \omega_{ 3 } \) : 1

Related objects

Learn more about

Show commands for: SageMath

magma: S := CuspForms(24,12);
magma: N := Newforms(S);
sage: N = Newforms(24,12,names="a")
sage: f = N[1]

q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field
\(q \) \(\mathstrut-\) \(243q^{3} \) \(\mathstrut+\) \(1190q^{5} \) \(\mathstrut+\) \(18480q^{7} \) \(\mathstrut+\) \(59049q^{9} \) \(\mathstrut+O(q^{10}) \)

(To download coefficients, see below.)

Coefficient field

sage: K = f.hecke_eigenvalue_field() # note that sage often uses an isomorphic number field
The coefficient field is \(\Q\)

Detailed data

The first few Satake parameters \(\alpha_p\) and angles \(\theta_p = \textrm{Arg}(\alpha_p) \) are

\( p \) 5 7
\(\alpha_{p}\) \( 0.0851494685831920 + 0.996368188974337i \) \( 0.207793879372003 + 0.978172634914478i \)
\(\theta_{p}\) \( 1.48554362596852 \) \( 1.36147725843771 \)

Further Properties

Download this Newform

The database contains the coefficients of \(q^n\) for \(0 \le n\le 314 \).
Choose format to download:
Download coefficients of \(q^n\) for \(0\le n\le \) (maximum 314)