Properties

Label 23.1
Level 23
Weight 1
Dimension 1
Nonzero newspaces 1
Newforms 1
Sturm bound 44
Trace bound 0

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 23 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newforms: \( 1 \)
Sturm bound: \(44\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(23))\).

Total New Old
Modular forms 12 12 0
Cusp forms 1 1 0
Eisenstein series 11 11 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 1 0 0 0

Trace form

\(q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut -\mathstrut q^{3} \) \(\mathstrut +\mathstrut q^{6} \) \(\mathstrut +\mathstrut q^{8} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut -\mathstrut q^{3} \) \(\mathstrut +\mathstrut q^{6} \) \(\mathstrut +\mathstrut q^{8} \) \(\mathstrut -\mathstrut q^{13} \) \(\mathstrut -\mathstrut q^{16} \) \(\mathstrut +\mathstrut q^{23} \) \(\mathstrut -\mathstrut q^{24} \) \(\mathstrut +\mathstrut q^{25} \) \(\mathstrut +\mathstrut q^{26} \) \(\mathstrut +\mathstrut q^{27} \) \(\mathstrut -\mathstrut q^{29} \) \(\mathstrut -\mathstrut q^{31} \) \(\mathstrut +\mathstrut q^{39} \) \(\mathstrut -\mathstrut q^{41} \) \(\mathstrut -\mathstrut q^{46} \) \(\mathstrut -\mathstrut q^{47} \) \(\mathstrut +\mathstrut q^{48} \) \(\mathstrut +\mathstrut q^{49} \) \(\mathstrut -\mathstrut q^{50} \) \(\mathstrut -\mathstrut q^{54} \) \(\mathstrut +\mathstrut q^{58} \) \(\mathstrut +\mathstrut 2q^{59} \) \(\mathstrut +\mathstrut q^{62} \) \(\mathstrut +\mathstrut q^{64} \) \(\mathstrut -\mathstrut q^{69} \) \(\mathstrut -\mathstrut q^{71} \) \(\mathstrut -\mathstrut q^{73} \) \(\mathstrut -\mathstrut q^{75} \) \(\mathstrut -\mathstrut q^{78} \) \(\mathstrut -\mathstrut q^{81} \) \(\mathstrut +\mathstrut q^{82} \) \(\mathstrut +\mathstrut q^{87} \) \(\mathstrut +\mathstrut q^{93} \) \(\mathstrut +\mathstrut q^{94} \) \(\mathstrut -\mathstrut q^{98} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(23))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
23.1.b \(\chi_{23}(22, \cdot)\) 23.1.b.a 1 1
23.1.d \(\chi_{23}(5, \cdot)\) None 0 10