Properties

Label 22.4.c.b.9.2
Level 22
Weight 4
Character 22.9
Analytic conductor 1.298
Analytic rank 0
Dimension 8
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 22 = 2 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 22.c (of order \(5\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(1.29804202013\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 9.2
Root \(2.22300 - 6.84169i\)
Character \(\chi\) = 22.9
Dual form 22.4.c.b.5.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.618034 + 1.90211i) q^{2}\) \(+(6.31989 - 4.59167i) q^{3}\) \(+(-3.23607 - 2.35114i) q^{4}\) \(+(4.60996 + 14.1880i) q^{5}\) \(+(4.82797 + 14.8590i) q^{6}\) \(+(-17.6106 - 12.7948i) q^{7}\) \(+(6.47214 - 4.70228i) q^{8}\) \(+(10.5141 - 32.3592i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.618034 + 1.90211i) q^{2}\) \(+(6.31989 - 4.59167i) q^{3}\) \(+(-3.23607 - 2.35114i) q^{4}\) \(+(4.60996 + 14.1880i) q^{5}\) \(+(4.82797 + 14.8590i) q^{6}\) \(+(-17.6106 - 12.7948i) q^{7}\) \(+(6.47214 - 4.70228i) q^{8}\) \(+(10.5141 - 32.3592i) q^{9}\) \(-29.8363 q^{10}\) \(+(-29.3767 - 21.6335i) q^{11}\) \(-31.2473 q^{12}\) \(+(-13.6056 + 41.8736i) q^{13}\) \(+(35.2211 - 25.5896i) q^{14}\) \(+(94.2810 + 68.4992i) q^{15}\) \(+(4.94427 + 15.2169i) q^{16}\) \(+(-7.69900 - 23.6951i) q^{17}\) \(+(55.0527 + 39.9982i) q^{18}\) \(+(-17.7638 + 12.9061i) q^{19}\) \(+(18.4398 - 56.7520i) q^{20}\) \(-170.046 q^{21}\) \(+(59.3052 - 42.5075i) q^{22}\) \(+177.749 q^{23}\) \(+(19.3119 - 59.4358i) q^{24}\) \(+(-78.9203 + 57.3389i) q^{25}\) \(+(-71.2397 - 51.7587i) q^{26}\) \(+(-16.9569 - 52.1881i) q^{27}\) \(+(26.9065 + 82.8098i) q^{28}\) \(+(120.864 + 87.8130i) q^{29}\) \(+(-188.562 + 136.998i) q^{30}\) \(+(23.2207 - 71.4658i) q^{31}\) \(-32.0000 q^{32}\) \(+(-284.992 - 1.83359i) q^{33}\) \(+49.8290 q^{34}\) \(+(100.349 - 308.842i) q^{35}\) \(+(-110.105 + 79.9963i) q^{36}\) \(+(-179.874 - 130.686i) q^{37}\) \(+(-13.5703 - 41.7652i) q^{38}\) \(+(106.284 + 327.109i) q^{39}\) \(+(96.5522 + 70.1493i) q^{40}\) \(+(204.779 - 148.781i) q^{41}\) \(+(105.094 - 323.448i) q^{42}\) \(+130.623 q^{43}\) \(+(44.2015 + 139.076i) q^{44}\) \(+507.582 q^{45}\) \(+(-109.855 + 338.099i) q^{46}\) \(+(-403.775 + 293.360i) q^{47}\) \(+(101.118 + 73.4667i) q^{48}\) \(+(40.4316 + 124.436i) q^{49}\) \(+(-60.2897 - 185.553i) q^{50}\) \(+(-157.457 - 114.399i) q^{51}\) \(+(142.479 - 103.517i) q^{52}\) \(+(3.99933 - 12.3087i) q^{53}\) \(+109.748 q^{54}\) \(+(171.511 - 516.526i) q^{55}\) \(-174.143 q^{56}\) \(+(-53.0044 + 163.131i) q^{57}\) \(+(-241.728 + 175.626i) q^{58}\) \(+(-28.7697 - 20.9024i) q^{59}\) \(+(-144.049 - 443.336i) q^{60}\) \(+(166.357 + 511.995i) q^{61}\) \(+(121.585 + 88.3366i) q^{62}\) \(+(-599.190 + 435.337i) q^{63}\) \(+(19.7771 - 60.8676i) q^{64}\) \(-656.824 q^{65}\) \(+(179.622 - 540.953i) q^{66}\) \(-519.621 q^{67}\) \(+(-30.7960 + 94.7804i) q^{68}\) \(+(1123.35 - 816.165i) q^{69}\) \(+(525.434 + 381.750i) q^{70}\) \(+(24.2420 + 74.6091i) q^{71}\) \(+(-84.1131 - 258.873i) q^{72}\) \(+(-925.571 - 672.467i) q^{73}\) \(+(359.748 - 261.372i) q^{74}\) \(+(-235.486 + 724.752i) q^{75}\) \(+87.8290 q^{76}\) \(+(240.543 + 756.848i) q^{77}\) \(-687.886 q^{78}\) \(+(238.730 - 734.735i) q^{79}\) \(+(-193.104 + 140.299i) q^{80}\) \(+(396.416 + 288.013i) q^{81}\) \(+(156.438 + 481.465i) q^{82}\) \(+(166.017 + 510.947i) q^{83}\) \(+(550.282 + 399.803i) q^{84}\) \(+(300.694 - 218.467i) q^{85}\) \(+(-80.7296 + 248.460i) q^{86}\) \(+1167.06 q^{87}\) \(+(-291.857 - 1.87776i) q^{88}\) \(+667.089 q^{89}\) \(+(-313.703 + 965.477i) q^{90}\) \(+(775.368 - 563.338i) q^{91}\) \(+(-575.208 - 417.913i) q^{92}\) \(+(-181.395 - 558.278i) q^{93}\) \(+(-308.457 - 949.332i) q^{94}\) \(+(-265.003 - 192.536i) q^{95}\) \(+(-202.237 + 146.933i) q^{96}\) \(+(-55.5161 + 170.861i) q^{97}\) \(-261.679 q^{98}\) \(+(-1008.91 + 723.148i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(8q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 16q^{8} \) \(\mathstrut -\mathstrut 21q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(8q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 16q^{8} \) \(\mathstrut -\mathstrut 21q^{9} \) \(\mathstrut -\mathstrut 100q^{10} \) \(\mathstrut -\mathstrut 155q^{11} \) \(\mathstrut +\mathstrut 32q^{12} \) \(\mathstrut +\mathstrut 7q^{13} \) \(\mathstrut +\mathstrut 2q^{14} \) \(\mathstrut +\mathstrut 211q^{15} \) \(\mathstrut -\mathstrut 32q^{16} \) \(\mathstrut +\mathstrut 161q^{17} \) \(\mathstrut +\mathstrut 162q^{18} \) \(\mathstrut -\mathstrut 272q^{19} \) \(\mathstrut +\mathstrut 20q^{20} \) \(\mathstrut -\mathstrut 50q^{21} \) \(\mathstrut +\mathstrut 628q^{23} \) \(\mathstrut +\mathstrut 56q^{24} \) \(\mathstrut -\mathstrut 17q^{25} \) \(\mathstrut +\mathstrut 96q^{26} \) \(\mathstrut -\mathstrut 528q^{27} \) \(\mathstrut +\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 33q^{29} \) \(\mathstrut -\mathstrut 422q^{30} \) \(\mathstrut +\mathstrut 323q^{31} \) \(\mathstrut -\mathstrut 256q^{32} \) \(\mathstrut -\mathstrut 1144q^{33} \) \(\mathstrut +\mathstrut 208q^{34} \) \(\mathstrut -\mathstrut 697q^{35} \) \(\mathstrut -\mathstrut 324q^{36} \) \(\mathstrut +\mathstrut 49q^{37} \) \(\mathstrut -\mathstrut 576q^{38} \) \(\mathstrut +\mathstrut 391q^{39} \) \(\mathstrut +\mathstrut 240q^{40} \) \(\mathstrut +\mathstrut 361q^{41} \) \(\mathstrut +\mathstrut 1430q^{42} \) \(\mathstrut +\mathstrut 1442q^{43} \) \(\mathstrut +\mathstrut 620q^{44} \) \(\mathstrut +\mathstrut 2652q^{45} \) \(\mathstrut -\mathstrut 416q^{46} \) \(\mathstrut -\mathstrut 1069q^{47} \) \(\mathstrut +\mathstrut 48q^{48} \) \(\mathstrut -\mathstrut 709q^{49} \) \(\mathstrut -\mathstrut 76q^{50} \) \(\mathstrut -\mathstrut 1332q^{51} \) \(\mathstrut -\mathstrut 192q^{52} \) \(\mathstrut -\mathstrut 281q^{53} \) \(\mathstrut -\mathstrut 1144q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut +\mathstrut 48q^{56} \) \(\mathstrut -\mathstrut 438q^{57} \) \(\mathstrut -\mathstrut 66q^{58} \) \(\mathstrut -\mathstrut 128q^{59} \) \(\mathstrut -\mathstrut 1116q^{60} \) \(\mathstrut -\mathstrut 617q^{61} \) \(\mathstrut +\mathstrut 1044q^{62} \) \(\mathstrut +\mathstrut 694q^{63} \) \(\mathstrut -\mathstrut 128q^{64} \) \(\mathstrut -\mathstrut 138q^{65} \) \(\mathstrut +\mathstrut 1248q^{66} \) \(\mathstrut +\mathstrut 578q^{67} \) \(\mathstrut +\mathstrut 644q^{68} \) \(\mathstrut -\mathstrut 310q^{69} \) \(\mathstrut +\mathstrut 34q^{70} \) \(\mathstrut +\mathstrut 115q^{71} \) \(\mathstrut +\mathstrut 168q^{72} \) \(\mathstrut -\mathstrut 1487q^{73} \) \(\mathstrut -\mathstrut 98q^{74} \) \(\mathstrut -\mathstrut 1852q^{75} \) \(\mathstrut -\mathstrut 128q^{76} \) \(\mathstrut +\mathstrut 553q^{77} \) \(\mathstrut -\mathstrut 4152q^{78} \) \(\mathstrut +\mathstrut 71q^{79} \) \(\mathstrut -\mathstrut 480q^{80} \) \(\mathstrut +\mathstrut 1630q^{81} \) \(\mathstrut +\mathstrut 658q^{82} \) \(\mathstrut +\mathstrut 1942q^{83} \) \(\mathstrut +\mathstrut 2960q^{84} \) \(\mathstrut -\mathstrut 329q^{85} \) \(\mathstrut +\mathstrut 2426q^{86} \) \(\mathstrut +\mathstrut 2122q^{87} \) \(\mathstrut +\mathstrut 560q^{88} \) \(\mathstrut -\mathstrut 2202q^{89} \) \(\mathstrut +\mathstrut 1286q^{90} \) \(\mathstrut +\mathstrut 4523q^{91} \) \(\mathstrut -\mathstrut 2088q^{92} \) \(\mathstrut +\mathstrut 6019q^{93} \) \(\mathstrut -\mathstrut 1332q^{94} \) \(\mathstrut -\mathstrut 793q^{95} \) \(\mathstrut -\mathstrut 96q^{96} \) \(\mathstrut -\mathstrut 5128q^{97} \) \(\mathstrut -\mathstrut 3292q^{98} \) \(\mathstrut -\mathstrut 2213q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/22\mathbb{Z}\right)^\times\).

\(n\) \(13\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 + 1.90211i −0.218508 + 0.672499i
\(3\) 6.31989 4.59167i 1.21626 0.883667i 0.220479 0.975392i \(-0.429238\pi\)
0.995784 + 0.0917244i \(0.0292379\pi\)
\(4\) −3.23607 2.35114i −0.404508 0.293893i
\(5\) 4.60996 + 14.1880i 0.412327 + 1.26901i 0.914620 + 0.404315i \(0.132490\pi\)
−0.502293 + 0.864698i \(0.667510\pi\)
\(6\) 4.82797 + 14.8590i 0.328502 + 1.01102i
\(7\) −17.6106 12.7948i −0.950881 0.690856i 0.000134039 1.00000i \(-0.499957\pi\)
−0.951015 + 0.309144i \(0.899957\pi\)
\(8\) 6.47214 4.70228i 0.286031 0.207813i
\(9\) 10.5141 32.3592i 0.389412 1.19849i
\(10\) −29.8363 −0.943506
\(11\) −29.3767 21.6335i −0.805219 0.592978i
\(12\) −31.2473 −0.751692
\(13\) −13.6056 + 41.8736i −0.290270 + 0.893358i 0.694500 + 0.719493i \(0.255626\pi\)
−0.984769 + 0.173865i \(0.944374\pi\)
\(14\) 35.2211 25.5896i 0.672374 0.488509i
\(15\) 94.2810 + 68.4992i 1.62288 + 1.17909i
\(16\) 4.94427 + 15.2169i 0.0772542 + 0.237764i
\(17\) −7.69900 23.6951i −0.109840 0.338053i 0.880996 0.473124i \(-0.156874\pi\)
−0.990836 + 0.135071i \(0.956874\pi\)
\(18\) 55.0527 + 39.9982i 0.720892 + 0.523759i
\(19\) −17.7638 + 12.9061i −0.214489 + 0.155835i −0.689842 0.723960i \(-0.742320\pi\)
0.475353 + 0.879795i \(0.342320\pi\)
\(20\) 18.4398 56.7520i 0.206164 0.634506i
\(21\) −170.046 −1.76701
\(22\) 59.3052 42.5075i 0.574724 0.411938i
\(23\) 177.749 1.61145 0.805723 0.592293i \(-0.201777\pi\)
0.805723 + 0.592293i \(0.201777\pi\)
\(24\) 19.3119 59.4358i 0.164251 0.505512i
\(25\) −78.9203 + 57.3389i −0.631362 + 0.458711i
\(26\) −71.2397 51.7587i −0.537356 0.390412i
\(27\) −16.9569 52.1881i −0.120865 0.371985i
\(28\) 26.9065 + 82.8098i 0.181602 + 0.558914i
\(29\) 120.864 + 87.8130i 0.773928 + 0.562292i 0.903151 0.429324i \(-0.141248\pi\)
−0.129223 + 0.991616i \(0.541248\pi\)
\(30\) −188.562 + 136.998i −1.14755 + 0.833745i
\(31\) 23.2207 71.4658i 0.134534 0.414053i −0.860983 0.508633i \(-0.830151\pi\)
0.995517 + 0.0945803i \(0.0301509\pi\)
\(32\) −32.0000 −0.176777
\(33\) −284.992 1.83359i −1.50335 0.00967232i
\(34\) 49.8290 0.251341
\(35\) 100.349 308.842i 0.484630 1.49154i
\(36\) −110.105 + 79.9963i −0.509748 + 0.370353i
\(37\) −179.874 130.686i −0.799219 0.580667i 0.111466 0.993768i \(-0.464445\pi\)
−0.910685 + 0.413102i \(0.864445\pi\)
\(38\) −13.5703 41.7652i −0.0579315 0.178295i
\(39\) 106.284 + 327.109i 0.436387 + 1.34306i
\(40\) 96.5522 + 70.1493i 0.381656 + 0.277289i
\(41\) 204.779 148.781i 0.780029 0.566724i −0.124959 0.992162i \(-0.539880\pi\)
0.904988 + 0.425438i \(0.139880\pi\)
\(42\) 105.094 323.448i 0.386106 1.18831i
\(43\) 130.623 0.463253 0.231626 0.972805i \(-0.425595\pi\)
0.231626 + 0.972805i \(0.425595\pi\)
\(44\) 44.2015 + 139.076i 0.151446 + 0.476512i
\(45\) 507.582 1.68146
\(46\) −109.855 + 338.099i −0.352114 + 1.08369i
\(47\) −403.775 + 293.360i −1.25312 + 0.910445i −0.998399 0.0565693i \(-0.981984\pi\)
−0.254722 + 0.967014i \(0.581984\pi\)
\(48\) 101.118 + 73.4667i 0.304066 + 0.220917i
\(49\) 40.4316 + 124.436i 0.117876 + 0.362786i
\(50\) −60.2897 185.553i −0.170525 0.524822i
\(51\) −157.457 114.399i −0.432321 0.314100i
\(52\) 142.479 103.517i 0.379968 0.276063i
\(53\) 3.99933 12.3087i 0.0103651 0.0319005i −0.945740 0.324924i \(-0.894661\pi\)
0.956105 + 0.293023i \(0.0946613\pi\)
\(54\) 109.748 0.276569
\(55\) 171.511 516.526i 0.420483 1.26633i
\(56\) −174.143 −0.415550
\(57\) −53.0044 + 163.131i −0.123169 + 0.379074i
\(58\) −241.728 + 175.626i −0.547250 + 0.397600i
\(59\) −28.7697 20.9024i −0.0634831 0.0461232i 0.555591 0.831456i \(-0.312492\pi\)
−0.619074 + 0.785332i \(0.712492\pi\)
\(60\) −144.049 443.336i −0.309943 0.953907i
\(61\) 166.357 + 511.995i 0.349178 + 1.07466i 0.959309 + 0.282359i \(0.0911169\pi\)
−0.610131 + 0.792301i \(0.708883\pi\)
\(62\) 121.585 + 88.3366i 0.249053 + 0.180948i
\(63\) −599.190 + 435.337i −1.19827 + 0.870592i
\(64\) 19.7771 60.8676i 0.0386271 0.118882i
\(65\) −656.824 −1.25337
\(66\) 179.622 540.953i 0.334999 1.00889i
\(67\) −519.621 −0.947491 −0.473745 0.880662i \(-0.657098\pi\)
−0.473745 + 0.880662i \(0.657098\pi\)
\(68\) −30.7960 + 94.7804i −0.0549201 + 0.169027i
\(69\) 1123.35 816.165i 1.95994 1.42398i
\(70\) 525.434 + 381.750i 0.897162 + 0.651826i
\(71\) 24.2420 + 74.6091i 0.0405210 + 0.124711i 0.969271 0.245997i \(-0.0791152\pi\)
−0.928750 + 0.370708i \(0.879115\pi\)
\(72\) −84.1131 258.873i −0.137678 0.423730i
\(73\) −925.571 672.467i −1.48397 1.07817i −0.976250 0.216648i \(-0.930488\pi\)
−0.507722 0.861521i \(-0.669512\pi\)
\(74\) 359.748 261.372i 0.565133 0.410593i
\(75\) −235.486 + 724.752i −0.362555 + 1.11583i
\(76\) 87.8290 0.132562
\(77\) 240.543 + 756.848i 0.356005 + 1.12014i
\(78\) −687.886 −0.998561
\(79\) 238.730 734.735i 0.339990 1.04638i −0.624222 0.781247i \(-0.714584\pi\)
0.964212 0.265134i \(-0.0854161\pi\)
\(80\) −193.104 + 140.299i −0.269872 + 0.196073i
\(81\) 396.416 + 288.013i 0.543780 + 0.395079i
\(82\) 156.438 + 481.465i 0.210678 + 0.648402i
\(83\) 166.017 + 510.947i 0.219551 + 0.675708i 0.998799 + 0.0489926i \(0.0156011\pi\)
−0.779248 + 0.626715i \(0.784399\pi\)
\(84\) 550.282 + 399.803i 0.714770 + 0.519311i
\(85\) 300.694 218.467i 0.383704 0.278777i
\(86\) −80.7296 + 248.460i −0.101224 + 0.311537i
\(87\) 1167.06 1.43818
\(88\) −291.857 1.87776i −0.353546 0.00227466i
\(89\) 667.089 0.794509 0.397255 0.917708i \(-0.369963\pi\)
0.397255 + 0.917708i \(0.369963\pi\)
\(90\) −313.703 + 965.477i −0.367413 + 1.13078i
\(91\) 775.368 563.338i 0.893194 0.648943i
\(92\) −575.208 417.913i −0.651843 0.473592i
\(93\) −181.395 558.278i −0.202256 0.622481i
\(94\) −308.457 949.332i −0.338456 1.04166i
\(95\) −265.003 192.536i −0.286197 0.207934i
\(96\) −202.237 + 146.933i −0.215007 + 0.156212i
\(97\) −55.5161 + 170.861i −0.0581114 + 0.178848i −0.975899 0.218224i \(-0.929974\pi\)
0.917787 + 0.397072i \(0.129974\pi\)
\(98\) −261.679 −0.269730
\(99\) −1008.91 + 723.148i −1.02424 + 0.734132i
\(100\) 390.203 0.390203
\(101\) −126.924 + 390.633i −0.125044 + 0.384846i −0.993909 0.110203i \(-0.964850\pi\)
0.868865 + 0.495049i \(0.164850\pi\)
\(102\) 314.914 228.798i 0.305697 0.222102i
\(103\) −1106.46 803.890i −1.05847 0.769026i −0.0846679 0.996409i \(-0.526983\pi\)
−0.973805 + 0.227383i \(0.926983\pi\)
\(104\) 108.845 + 334.989i 0.102626 + 0.315850i
\(105\) −783.907 2412.62i −0.728586 2.24236i
\(106\) 20.9408 + 15.2144i 0.0191882 + 0.0139410i
\(107\) 319.756 232.317i 0.288897 0.209896i −0.433892 0.900965i \(-0.642860\pi\)
0.722789 + 0.691069i \(0.242860\pi\)
\(108\) −67.8277 + 208.752i −0.0604326 + 0.185993i
\(109\) 505.826 0.444490 0.222245 0.974991i \(-0.428662\pi\)
0.222245 + 0.974991i \(0.428662\pi\)
\(110\) 876.491 + 645.464i 0.759728 + 0.559478i
\(111\) −1736.85 −1.48518
\(112\) 107.626 331.239i 0.0908011 0.279457i
\(113\) −1243.96 + 903.793i −1.03560 + 0.752404i −0.969421 0.245404i \(-0.921079\pi\)
−0.0661744 + 0.997808i \(0.521079\pi\)
\(114\) −277.535 201.641i −0.228013 0.165661i
\(115\) 819.416 + 2521.90i 0.664443 + 2.04494i
\(116\) −184.664 568.337i −0.147807 0.454903i
\(117\) 1211.95 + 880.530i 0.957645 + 0.695770i
\(118\) 57.5395 41.8049i 0.0448893 0.0326140i
\(119\) −167.591 + 515.791i −0.129101 + 0.397332i
\(120\) 932.302 0.709226
\(121\) 394.980 + 1271.04i 0.296754 + 0.954954i
\(122\) −1076.69 −0.799005
\(123\) 611.031 1880.56i 0.447925 1.37857i
\(124\) −243.170 + 176.673i −0.176107 + 0.127949i
\(125\) 331.285 + 240.693i 0.237048 + 0.172226i
\(126\) −457.740 1408.78i −0.323641 0.996064i
\(127\) −215.487 663.202i −0.150562 0.463383i 0.847122 0.531399i \(-0.178333\pi\)
−0.997684 + 0.0680154i \(0.978333\pi\)
\(128\) 103.554 + 75.2365i 0.0715077 + 0.0519534i
\(129\) 825.525 599.779i 0.563437 0.409361i
\(130\) 405.940 1249.35i 0.273871 0.842889i
\(131\) −259.910 −0.173347 −0.0866735 0.996237i \(-0.527624\pi\)
−0.0866735 + 0.996237i \(0.527624\pi\)
\(132\) 917.941 + 675.989i 0.605277 + 0.445737i
\(133\) 477.962 0.311613
\(134\) 321.144 988.379i 0.207034 0.637186i
\(135\) 662.273 481.170i 0.422218 0.306759i
\(136\) −161.250 117.155i −0.101670 0.0738673i
\(137\) −643.856 1981.58i −0.401520 1.23575i −0.923766 0.382958i \(-0.874906\pi\)
0.522245 0.852795i \(-0.325094\pi\)
\(138\) 858.167 + 2641.17i 0.529362 + 1.62921i
\(139\) −140.307 101.939i −0.0856163 0.0622039i 0.544154 0.838986i \(-0.316851\pi\)
−0.629770 + 0.776782i \(0.716851\pi\)
\(140\) −1050.87 + 763.500i −0.634389 + 0.460911i
\(141\) −1204.80 + 3708.00i −0.719594 + 2.21468i
\(142\) −156.897 −0.0927220
\(143\) 1305.56 935.772i 0.763473 0.547225i
\(144\) 544.391 0.315041
\(145\) −688.711 + 2119.63i −0.394444 + 1.21397i
\(146\) 1851.14 1344.93i 1.04933 0.762380i
\(147\) 826.891 + 600.772i 0.463951 + 0.337080i
\(148\) 274.823 + 845.818i 0.152637 + 0.469769i
\(149\) −138.766 427.077i −0.0762961 0.234815i 0.905634 0.424061i \(-0.139396\pi\)
−0.981930 + 0.189246i \(0.939396\pi\)
\(150\) −1233.02 895.842i −0.671172 0.487635i
\(151\) −23.0859 + 16.7729i −0.0124418 + 0.00903947i −0.593989 0.804473i \(-0.702448\pi\)
0.581547 + 0.813513i \(0.302448\pi\)
\(152\) −54.2813 + 167.061i −0.0289658 + 0.0891474i
\(153\) −847.702 −0.447926
\(154\) −1588.27 10.2187i −0.831083 0.00534705i
\(155\) 1121.00 0.580910
\(156\) 425.137 1308.44i 0.218194 0.671531i
\(157\) −1394.63 + 1013.26i −0.708941 + 0.515076i −0.882832 0.469689i \(-0.844366\pi\)
0.173891 + 0.984765i \(0.444366\pi\)
\(158\) 1250.01 + 908.182i 0.629399 + 0.457285i
\(159\) −31.2420 96.1531i −0.0155827 0.0479587i
\(160\) −147.519 454.016i −0.0728898 0.224332i
\(161\) −3130.26 2274.27i −1.53229 1.11328i
\(162\) −792.831 + 576.026i −0.384510 + 0.279363i
\(163\) 1025.39 3155.82i 0.492727 1.51646i −0.327743 0.944767i \(-0.606288\pi\)
0.820470 0.571690i \(-0.193712\pi\)
\(164\) −1012.49 −0.482084
\(165\) −1287.78 4051.91i −0.607599 1.91176i
\(166\) −1074.48 −0.502386
\(167\) −931.871 + 2868.00i −0.431799 + 1.32894i 0.464533 + 0.885556i \(0.346222\pi\)
−0.896332 + 0.443384i \(0.853778\pi\)
\(168\) −1100.56 + 799.606i −0.505419 + 0.367208i
\(169\) 209.120 + 151.934i 0.0951842 + 0.0691554i
\(170\) 229.710 + 706.973i 0.103635 + 0.318955i
\(171\) 230.862 + 710.519i 0.103242 + 0.317747i
\(172\) −422.706 307.114i −0.187390 0.136147i
\(173\) 1787.45 1298.66i 0.785534 0.570724i −0.121101 0.992640i \(-0.538643\pi\)
0.906635 + 0.421917i \(0.138643\pi\)
\(174\) −721.281 + 2219.87i −0.314254 + 0.967173i
\(175\) 2123.47 0.917254
\(176\) 183.949 553.984i 0.0787824 0.237262i
\(177\) −277.799 −0.117970
\(178\) −412.284 + 1268.88i −0.173607 + 0.534306i
\(179\) 1837.95 1335.35i 0.767457 0.557590i −0.133731 0.991018i \(-0.542696\pi\)
0.901189 + 0.433427i \(0.142696\pi\)
\(180\) −1642.57 1193.40i −0.680166 0.494169i
\(181\) −192.961 593.873i −0.0792413 0.243880i 0.903586 0.428406i \(-0.140925\pi\)
−0.982828 + 0.184527i \(0.940925\pi\)
\(182\) 592.328 + 1823.00i 0.241243 + 0.742471i
\(183\) 3402.27 + 2471.89i 1.37433 + 0.998512i
\(184\) 1150.42 835.826i 0.460923 0.334880i
\(185\) 1024.96 3154.51i 0.407333 1.25364i
\(186\) 1174.02 0.462812
\(187\) −286.438 + 862.640i −0.112013 + 0.337340i
\(188\) 1996.37 0.774471
\(189\) −369.116 + 1136.02i −0.142059 + 0.437214i
\(190\) 530.005 385.071i 0.202372 0.147032i
\(191\) 1087.48 + 790.100i 0.411975 + 0.299317i 0.774401 0.632695i \(-0.218051\pi\)
−0.362426 + 0.932013i \(0.618051\pi\)
\(192\) −154.495 475.487i −0.0580714 0.178725i
\(193\) 1428.82 + 4397.46i 0.532895 + 1.64008i 0.748154 + 0.663526i \(0.230941\pi\)
−0.215258 + 0.976557i \(0.569059\pi\)
\(194\) −290.686 211.196i −0.107578 0.0781597i
\(195\) −4151.06 + 3015.92i −1.52443 + 1.10756i
\(196\) 161.726 497.743i 0.0589382 0.181393i
\(197\) 664.691 0.240392 0.120196 0.992750i \(-0.461648\pi\)
0.120196 + 0.992750i \(0.461648\pi\)
\(198\) −751.965 2366.00i −0.269898 0.849213i
\(199\) −3042.82 −1.08392 −0.541959 0.840405i \(-0.682317\pi\)
−0.541959 + 0.840405i \(0.682317\pi\)
\(200\) −241.159 + 742.211i −0.0852625 + 0.262411i
\(201\) −3283.95 + 2385.93i −1.15240 + 0.837266i
\(202\) −664.584 482.849i −0.231485 0.168184i
\(203\) −1004.93 3092.87i −0.347451 1.06934i
\(204\) 240.573 + 740.407i 0.0825660 + 0.254112i
\(205\) 3054.93 + 2219.53i 1.04081 + 0.756190i
\(206\) 2212.92 1607.78i 0.748454 0.543783i
\(207\) 1868.88 5751.81i 0.627517 1.93130i
\(208\) −704.457 −0.234833
\(209\) 801.047 + 5.15380i 0.265118 + 0.00170572i
\(210\) 5073.55 1.66718
\(211\) 800.851 2464.77i 0.261293 0.804178i −0.731231 0.682130i \(-0.761054\pi\)
0.992524 0.122048i \(-0.0389462\pi\)
\(212\) −41.8815 + 30.4287i −0.0135681 + 0.00985779i
\(213\) 495.787 + 360.210i 0.159487 + 0.115874i
\(214\) 244.272 + 751.792i 0.0780285 + 0.240147i
\(215\) 602.168 + 1853.28i 0.191012 + 0.587873i
\(216\) −355.151 258.032i −0.111875 0.0812817i
\(217\) −1323.32 + 961.449i −0.413977 + 0.300772i
\(218\) −312.618 + 962.139i −0.0971245 + 0.298919i
\(219\) −8937.26 −2.75764
\(220\) −1769.45 + 1268.27i −0.542255 + 0.388666i
\(221\) 1096.95 0.333886
\(222\) 1073.43 3303.69i 0.324523 0.998779i
\(223\) −2133.54 + 1550.11i −0.640684 + 0.465484i −0.860085 0.510150i \(-0.829590\pi\)
0.219401 + 0.975635i \(0.429590\pi\)
\(224\) 563.538 + 409.434i 0.168094 + 0.122127i
\(225\) 1025.66 + 3156.66i 0.303900 + 0.935308i
\(226\) −950.304 2924.73i −0.279705 0.860843i
\(227\) −202.796 147.340i −0.0592954 0.0430806i 0.557743 0.830014i \(-0.311668\pi\)
−0.617038 + 0.786933i \(0.711668\pi\)
\(228\) 555.070 403.282i 0.161230 0.117140i
\(229\) 556.018 1711.25i 0.160449 0.493810i −0.838224 0.545327i \(-0.816406\pi\)
0.998672 + 0.0515169i \(0.0164056\pi\)
\(230\) −5303.37 −1.52041
\(231\) 4995.40 + 3678.71i 1.42283 + 1.04780i
\(232\) 1195.17 0.338219
\(233\) 982.821 3024.81i 0.276338 0.850481i −0.712524 0.701647i \(-0.752448\pi\)
0.988862 0.148833i \(-0.0475518\pi\)
\(234\) −2423.89 + 1761.06i −0.677157 + 0.491984i
\(235\) −6023.57 4376.38i −1.67206 1.21482i
\(236\) 43.9563 + 135.283i 0.0121242 + 0.0373144i
\(237\) −1864.91 5739.61i −0.511135 1.57311i
\(238\) −877.517 637.553i −0.238996 0.173641i
\(239\) −4056.25 + 2947.04i −1.09781 + 0.797608i −0.980701 0.195511i \(-0.937363\pi\)
−0.117111 + 0.993119i \(0.537363\pi\)
\(240\) −576.194 + 1773.34i −0.154972 + 0.476953i
\(241\) 6074.13 1.62352 0.811761 0.583990i \(-0.198509\pi\)
0.811761 + 0.583990i \(0.198509\pi\)
\(242\) −2661.78 34.2523i −0.707048 0.00909843i
\(243\) 5309.35 1.40163
\(244\) 665.429 2047.98i 0.174589 0.537330i
\(245\) −1579.10 + 1147.29i −0.411777 + 0.299173i
\(246\) 3199.40 + 2324.50i 0.829212 + 0.602458i
\(247\) −298.741 919.430i −0.0769572 0.236850i
\(248\) −185.765 571.727i −0.0475649 0.146390i
\(249\) 3395.31 + 2466.84i 0.864132 + 0.627829i
\(250\) −662.570 + 481.385i −0.167618 + 0.121782i
\(251\) −1721.13 + 5297.09i −0.432816 + 1.33207i 0.462493 + 0.886623i \(0.346955\pi\)
−0.895309 + 0.445447i \(0.853045\pi\)
\(252\) 2962.56 0.740570
\(253\) −5221.68 3845.34i −1.29757 0.955552i
\(254\) 1394.66 0.344524
\(255\) 897.224 2761.37i 0.220339 0.678133i
\(256\) −207.108 + 150.473i −0.0505636 + 0.0367366i
\(257\) 4778.90 + 3472.08i 1.15992 + 0.842732i 0.989768 0.142685i \(-0.0455737\pi\)
0.170153 + 0.985418i \(0.445574\pi\)
\(258\) 630.645 + 1940.93i 0.152179 + 0.468359i
\(259\) 1495.58 + 4602.91i 0.358805 + 1.10429i
\(260\) 2125.53 + 1544.29i 0.506998 + 0.368356i
\(261\) 4112.34 2987.79i 0.975277 0.708580i
\(262\) 160.633 494.379i 0.0378777 0.116576i
\(263\) −6853.74 −1.60692 −0.803459 0.595360i \(-0.797009\pi\)
−0.803459 + 0.595360i \(0.797009\pi\)
\(264\) −1853.13 + 1328.24i −0.432015 + 0.309651i
\(265\) 193.072 0.0447559
\(266\) −295.397 + 909.138i −0.0680900 + 0.209560i
\(267\) 4215.93 3063.05i 0.966333 0.702082i
\(268\) 1681.53 + 1221.70i 0.383268 + 0.278460i
\(269\) 340.340 + 1047.46i 0.0771409 + 0.237415i 0.982190 0.187893i \(-0.0601657\pi\)
−0.905049 + 0.425308i \(0.860166\pi\)
\(270\) 505.932 + 1557.10i 0.114037 + 0.350970i
\(271\) 2080.54 + 1511.60i 0.466362 + 0.338832i 0.796022 0.605268i \(-0.206934\pi\)
−0.329660 + 0.944100i \(0.606934\pi\)
\(272\) 322.500 234.310i 0.0718913 0.0522321i
\(273\) 2313.58 7120.46i 0.512909 1.57857i
\(274\) 4167.12 0.918777
\(275\) 3558.86 + 22.8971i 0.780390 + 0.00502090i
\(276\) −5554.17 −1.21131
\(277\) −2268.22 + 6980.85i −0.492000 + 1.51422i 0.329581 + 0.944127i \(0.393092\pi\)
−0.821581 + 0.570092i \(0.806908\pi\)
\(278\) 280.613 203.878i 0.0605398 0.0439848i
\(279\) −2068.43 1502.80i −0.443848 0.322475i
\(280\) −802.791 2470.74i −0.171343 0.527338i
\(281\) −2315.45 7126.21i −0.491559 1.51286i −0.822252 0.569124i \(-0.807282\pi\)
0.330693 0.943738i \(-0.392718\pi\)
\(282\) −6308.43 4583.34i −1.33213 0.967852i
\(283\) 5253.84 3817.14i 1.10356 0.801785i 0.121925 0.992539i \(-0.461093\pi\)
0.981638 + 0.190754i \(0.0610933\pi\)
\(284\) 96.9678 298.436i 0.0202605 0.0623554i
\(285\) −2558.85 −0.531835
\(286\) 973.063 + 3061.67i 0.201183 + 0.633007i
\(287\) −5509.91 −1.13324
\(288\) −336.452 + 1035.49i −0.0688390 + 0.211865i
\(289\) 3472.52 2522.93i 0.706802 0.513522i
\(290\) −3606.14 2620.01i −0.730206 0.530525i
\(291\) 433.681 + 1334.73i 0.0873638 + 0.268878i
\(292\) 1414.15 + 4352.30i 0.283413 + 0.872257i
\(293\) 2172.11 + 1578.13i 0.433092 + 0.314660i 0.782884 0.622168i \(-0.213748\pi\)
−0.349792 + 0.936827i \(0.613748\pi\)
\(294\) −1653.78 + 1201.54i −0.328063 + 0.238352i
\(295\) 163.936 504.544i 0.0323551 0.0995787i
\(296\) −1778.69 −0.349271
\(297\) −630.874 + 1899.95i −0.123256 + 0.371200i
\(298\) 898.110 0.174584
\(299\) −2418.38 + 7443.00i −0.467754 + 1.43960i
\(300\) 2466.04 1791.68i 0.474590 0.344810i
\(301\) −2300.35 1671.30i −0.440498 0.320041i
\(302\) −17.6361 54.2783i −0.00336041 0.0103423i
\(303\) 991.509 + 3051.55i 0.187989 + 0.578571i
\(304\) −284.221 206.498i −0.0536223 0.0389589i
\(305\) −6497.28 + 4720.55i −1.21978 + 0.886223i
\(306\) 523.909 1612.43i 0.0978754 0.301230i
\(307\) 8331.66 1.54890 0.774451 0.632633i \(-0.218026\pi\)
0.774451 + 0.632633i \(0.218026\pi\)
\(308\) 1001.04 3014.76i 0.185194 0.557734i
\(309\) −10683.9 −1.96695
\(310\) −692.818 + 2132.27i −0.126934 + 0.390661i
\(311\) 4061.55 2950.89i 0.740545 0.538037i −0.152337 0.988329i \(-0.548680\pi\)
0.892882 + 0.450292i \(0.148680\pi\)
\(312\) 2226.05 + 1617.32i 0.403926 + 0.293470i
\(313\) 933.873 + 2874.16i 0.168644 + 0.519033i 0.999286 0.0377733i \(-0.0120265\pi\)
−0.830642 + 0.556807i \(0.812026\pi\)
\(314\) −1065.40 3278.98i −0.191479 0.589310i
\(315\) −8938.80 6494.42i −1.59887 1.16165i
\(316\) −2500.01 + 1816.36i −0.445052 + 0.323350i
\(317\) −3257.08 + 10024.3i −0.577085 + 1.77609i 0.0518809 + 0.998653i \(0.483478\pi\)
−0.628966 + 0.777433i \(0.716522\pi\)
\(318\) 202.203 0.0356571
\(319\) −1650.88 5194.37i −0.289755 0.911690i
\(320\) 954.761 0.166790
\(321\) 954.104 2936.43i 0.165897 0.510578i
\(322\) 6260.52 4548.54i 1.08349 0.787205i
\(323\) 442.576 + 321.550i 0.0762402 + 0.0553917i
\(324\) −605.669 1864.06i −0.103853 0.319626i
\(325\) −1327.23 4084.81i −0.226528 0.697183i
\(326\) 5368.99 + 3900.80i 0.912150 + 0.662716i
\(327\) 3196.77 2322.59i 0.540617 0.392781i
\(328\) 625.750 1925.86i 0.105339 0.324201i
\(329\) 10864.2 1.82055
\(330\) 8503.09 + 54.7074i 1.41842 + 0.00912589i
\(331\) 309.871 0.0514563 0.0257281 0.999669i \(-0.491810\pi\)
0.0257281 + 0.999669i \(0.491810\pi\)
\(332\) 664.067 2043.79i 0.109775 0.337854i
\(333\) −6120.11 + 4446.52i −1.00715 + 0.731736i
\(334\) −4879.34 3545.05i −0.799358 0.580768i
\(335\) −2395.43 7372.39i −0.390676 1.20238i
\(336\) −840.756 2587.58i −0.136509 0.420131i
\(337\) −9032.40 6562.42i −1.46002 1.06076i −0.983358 0.181677i \(-0.941848\pi\)
−0.476659 0.879088i \(-0.658152\pi\)
\(338\) −418.239 + 303.869i −0.0673054 + 0.0489002i
\(339\) −3711.80 + 11423.7i −0.594682 + 1.83024i
\(340\) −1486.71 −0.237142
\(341\) −2228.20 + 1597.08i −0.353854 + 0.253627i
\(342\) −1494.17 −0.236244
\(343\) −1427.13 + 4392.25i −0.224658 + 0.691425i
\(344\) 845.412 614.227i 0.132504 0.0962701i
\(345\) 16758.4 + 12175.7i 2.61519 + 1.90005i
\(346\) 1365.49 + 4202.55i 0.212165 + 0.652978i
\(347\) 777.327 + 2392.37i 0.120257 + 0.370112i 0.993007 0.118055i \(-0.0376658\pi\)
−0.872750 + 0.488167i \(0.837666\pi\)
\(348\) −3776.67 2743.91i −0.581756 0.422670i
\(349\) 9203.85 6686.99i 1.41166 1.02563i 0.418587 0.908177i \(-0.362526\pi\)
0.993078 0.117457i \(-0.0374744\pi\)
\(350\) −1312.38 + 4039.08i −0.200427 + 0.616852i
\(351\) 2416.01 0.367400
\(352\) 940.054 + 692.273i 0.142344 + 0.104825i
\(353\) 6210.08 0.936343 0.468172 0.883638i \(-0.344913\pi\)
0.468172 + 0.883638i \(0.344913\pi\)
\(354\) 171.689 528.405i 0.0257773 0.0793344i
\(355\) −946.799 + 687.889i −0.141552 + 0.102843i
\(356\) −2158.75 1568.42i −0.321386 0.233500i
\(357\) 1309.19 + 4029.27i 0.194088 + 0.597343i
\(358\) 1404.07 + 4321.28i 0.207283 + 0.637952i
\(359\) 2012.43 + 1462.12i 0.295856 + 0.214952i 0.725804 0.687902i \(-0.241468\pi\)
−0.429948 + 0.902854i \(0.641468\pi\)
\(360\) 3285.14 2386.79i 0.480950 0.349430i
\(361\) −1970.56 + 6064.77i −0.287296 + 0.884207i
\(362\) 1248.87 0.181324
\(363\) 8332.44 + 6219.24i 1.20479 + 0.899244i
\(364\) −3833.63 −0.552024
\(365\) 5274.11 16232.0i 0.756328 2.32774i
\(366\) −6804.54 + 4943.79i −0.971801 + 0.706055i
\(367\) −5436.21 3949.64i −0.773209 0.561770i 0.129724 0.991550i \(-0.458591\pi\)
−0.902933 + 0.429781i \(0.858591\pi\)
\(368\) 878.840 + 2704.79i 0.124491 + 0.383144i
\(369\) −2661.35 8190.80i −0.375459 1.15554i
\(370\) 5366.77 + 3899.19i 0.754068 + 0.547862i
\(371\) −227.918 + 165.592i −0.0318946 + 0.0231728i
\(372\) −725.582 + 2233.11i −0.101128 + 0.311240i
\(373\) −8614.37 −1.19580 −0.597902 0.801569i \(-0.703999\pi\)
−0.597902 + 0.801569i \(0.703999\pi\)
\(374\) −1463.81 1077.98i −0.202385 0.149040i
\(375\) 3198.87 0.440503
\(376\) −1233.83 + 3797.33i −0.169228 + 0.520831i
\(377\) −5321.47 + 3866.28i −0.726976 + 0.528179i
\(378\) −1932.72 1404.20i −0.262985 0.191070i
\(379\) −2474.95 7617.10i −0.335434 1.03236i −0.966508 0.256637i \(-0.917386\pi\)
0.631074 0.775723i \(-0.282614\pi\)
\(380\) 404.888 + 1246.12i 0.0546587 + 0.168222i
\(381\) −4407.06 3201.92i −0.592600 0.430549i
\(382\) −2174.96 + 1580.20i −0.291310 + 0.211649i
\(383\) 2475.83 7619.82i 0.330310 1.01659i −0.638676 0.769476i \(-0.720517\pi\)
0.968986 0.247115i \(-0.0794826\pi\)
\(384\) 999.912 0.132882
\(385\) −9629.27 + 6901.86i −1.27468 + 0.913639i
\(386\) −9247.52 −1.21940
\(387\) 1373.39 4226.86i 0.180396 0.555203i
\(388\) 581.372 422.392i 0.0760688 0.0552672i
\(389\) −6496.09 4719.68i −0.846696 0.615160i 0.0775373 0.996989i \(-0.475294\pi\)
−0.924233 + 0.381829i \(0.875294\pi\)
\(390\) −3171.13 9759.72i −0.411734 1.26719i
\(391\) −1368.49 4211.78i −0.177001 0.544754i
\(392\) 846.811 + 615.244i 0.109108 + 0.0792717i
\(393\) −1642.60 + 1193.42i −0.210836 + 0.153181i
\(394\) −410.801 + 1264.32i −0.0525276 + 0.161663i
\(395\) 11524.9 1.46806
\(396\) 4965.14 + 31.9448i 0.630070 + 0.00405376i
\(397\) 4435.00 0.560670 0.280335 0.959902i \(-0.409554\pi\)
0.280335 + 0.959902i \(0.409554\pi\)
\(398\) 1880.57 5787.79i 0.236845 0.728934i
\(399\) 3020.67 2194.64i 0.379004 0.275363i
\(400\) −1262.72 917.423i −0.157841 0.114678i
\(401\) −1214.19 3736.90i −0.151207 0.465366i 0.846550 0.532309i \(-0.178675\pi\)
−0.997757 + 0.0669429i \(0.978675\pi\)
\(402\) −2508.72 7721.03i −0.311252 0.957936i
\(403\) 2676.60 + 1944.67i 0.330847 + 0.240374i
\(404\) 1329.17 965.697i 0.163685 0.118924i
\(405\) −2258.86 + 6952.07i −0.277145 + 0.852965i
\(406\) 6504.07 0.795054
\(407\) 2456.90 + 7730.44i 0.299223 + 0.941483i
\(408\) −1557.02 −0.188931
\(409\) −4500.59 + 13851.4i −0.544107 + 1.67459i 0.178996 + 0.983850i \(0.442715\pi\)
−0.723103 + 0.690740i \(0.757285\pi\)
\(410\) −6109.85 + 4439.07i −0.735961 + 0.534707i
\(411\) −13167.9 9567.02i −1.58035 1.14819i
\(412\) 1690.52 + 5202.89i 0.202150 + 0.622155i
\(413\) 239.208 + 736.208i 0.0285004 + 0.0877153i
\(414\) 9785.57 + 7109.63i 1.16168 + 0.844008i
\(415\) −6483.98 + 4710.89i −0.766955 + 0.557225i
\(416\) 435.378 1339.96i 0.0513129 0.157925i
\(417\) −1354.79 −0.159099
\(418\) −504.877 + 1520.50i −0.0590774 + 0.177918i
\(419\) 4028.77 0.469734 0.234867 0.972028i \(-0.424535\pi\)
0.234867 + 0.972028i \(0.424535\pi\)
\(420\) −3135.63 + 9650.47i −0.364293 + 1.12118i
\(421\) 6898.98 5012.40i 0.798659 0.580260i −0.111861 0.993724i \(-0.535681\pi\)
0.910521 + 0.413464i \(0.135681\pi\)
\(422\) 4193.31 + 3046.62i 0.483714 + 0.351439i
\(423\) 5247.54 + 16150.3i 0.603177 + 1.85639i
\(424\) −31.9946 98.4694i −0.00366462 0.0112785i
\(425\) 1966.26 + 1428.57i 0.224418 + 0.163049i
\(426\) −991.574 + 720.420i −0.112774 + 0.0819354i
\(427\) 3621.24 11145.0i 0.410408 1.26310i
\(428\) −1580.96 −0.178548
\(429\) 3954.25 11908.7i 0.445019 1.34023i
\(430\) −3897.31 −0.437082
\(431\) 4145.53 12758.6i 0.463302 1.42590i −0.397803 0.917471i \(-0.630227\pi\)
0.861105 0.508427i \(-0.169773\pi\)
\(432\) 710.301 516.064i 0.0791074 0.0574749i
\(433\) −3343.11 2428.91i −0.371038 0.269575i 0.386603 0.922246i \(-0.373648\pi\)
−0.757641 + 0.652671i \(0.773648\pi\)
\(434\) −1010.93 3111.32i −0.111811 0.344120i
\(435\) 5380.08 + 16558.2i 0.593000 + 1.82507i
\(436\) −1636.89 1189.27i −0.179800 0.130632i
\(437\) −3157.50 + 2294.06i −0.345637 + 0.251120i
\(438\) 5523.53 16999.7i 0.602567 1.85451i
\(439\) 3358.46 0.365126 0.182563 0.983194i \(-0.441561\pi\)
0.182563 + 0.983194i \(0.441561\pi\)
\(440\) −1318.81 4149.52i −0.142890 0.449592i
\(441\) 4451.74 0.480698
\(442\) −677.952 + 2086.52i −0.0729568 + 0.224538i
\(443\) 357.383 259.654i 0.0383290 0.0278477i −0.568456 0.822714i \(-0.692459\pi\)
0.606785 + 0.794866i \(0.292459\pi\)
\(444\) 5620.57 + 4083.58i 0.600767 + 0.436483i
\(445\) 3075.25 + 9464.66i 0.327598 + 1.00824i
\(446\) −1629.88 5016.26i −0.173043 0.532571i
\(447\) −2837.98 2061.91i −0.300295 0.218177i
\(448\) −1127.08 + 818.869i −0.118860 + 0.0863569i
\(449\) −126.227 + 388.486i −0.0132673 + 0.0408325i −0.957471 0.288530i \(-0.906834\pi\)
0.944204 + 0.329362i \(0.106834\pi\)
\(450\) −6638.23 −0.695398
\(451\) −9234.40 59.4126i −0.964148 0.00620317i
\(452\) 6150.49 0.640033
\(453\) −68.8849 + 212.006i −0.00714458 + 0.0219888i
\(454\) 405.592 294.680i 0.0419282 0.0304626i
\(455\) 11567.0 + 8403.95i 1.19181 + 0.865897i
\(456\) 424.036 + 1305.05i 0.0435467 + 0.134023i
\(457\) 470.585 + 1448.31i 0.0481686 + 0.148248i 0.972248 0.233953i \(-0.0751663\pi\)
−0.924079 + 0.382201i \(0.875166\pi\)
\(458\) 2911.35 + 2115.22i 0.297027 + 0.215803i
\(459\) −1106.05 + 803.592i −0.112475 + 0.0817178i
\(460\) 3277.66 10087.6i 0.332221 1.02247i
\(461\) −13861.4 −1.40041 −0.700203 0.713944i \(-0.746907\pi\)
−0.700203 + 0.713944i \(0.746907\pi\)
\(462\) −10084.6 + 7228.25i −1.01554 + 0.727898i
\(463\) −6502.26 −0.652669 −0.326334 0.945254i \(-0.605814\pi\)
−0.326334 + 0.945254i \(0.605814\pi\)
\(464\) −738.656 + 2273.35i −0.0739036 + 0.227452i
\(465\) 7084.62 5147.27i 0.706540 0.513331i
\(466\) 5146.12 + 3738.87i 0.511565 + 0.371674i
\(467\) 131.015 + 403.223i 0.0129821 + 0.0399548i 0.957338 0.288971i \(-0.0933132\pi\)
−0.944356 + 0.328926i \(0.893313\pi\)
\(468\) −1851.69 5698.91i −0.182894 0.562890i
\(469\) 9150.83 + 6648.46i 0.900951 + 0.654579i
\(470\) 12047.1 8752.76i 1.18233 0.859010i
\(471\) −4161.37 + 12807.4i −0.407104 + 1.25294i
\(472\) −284.491 −0.0277431
\(473\) −3837.28 2825.84i −0.373020 0.274699i
\(474\) 12070.0 1.16960
\(475\) 661.898 2037.11i 0.0639368 0.196777i
\(476\) 1755.03 1275.11i 0.168995 0.122782i
\(477\) −356.249 258.830i −0.0341961 0.0248449i
\(478\) −3098.70 9536.82i −0.296509 0.912561i
\(479\) 1408.29 + 4334.29i 0.134335 + 0.413442i 0.995486 0.0949081i \(-0.0302557\pi\)
−0.861151 + 0.508350i \(0.830256\pi\)
\(480\) −3016.99 2191.97i −0.286888 0.208436i
\(481\) 7919.59 5753.92i 0.750732 0.545439i
\(482\) −3754.02 + 11553.7i −0.354753 + 1.09182i
\(483\) −30225.6 −2.84744
\(484\) 1710.22 5041.84i 0.160614 0.473501i
\(485\) −2680.10 −0.250922
\(486\) −3281.36 + 10099.0i −0.306267 + 0.942592i
\(487\) 5427.63 3943.41i 0.505030 0.366926i −0.305905 0.952062i \(-0.598959\pi\)
0.810935 + 0.585136i \(0.198959\pi\)
\(488\) 3484.23 + 2531.44i 0.323204 + 0.234822i
\(489\) −8010.13 24652.6i −0.740758 2.27982i
\(490\) −1206.33 3712.70i −0.111217 0.342291i
\(491\) −11753.1 8539.14i −1.08027 0.784859i −0.102537 0.994729i \(-0.532696\pi\)
−0.977729 + 0.209870i \(0.932696\pi\)
\(492\) −6398.80 + 4649.00i −0.586341 + 0.426002i
\(493\) 1150.20 3539.96i 0.105076 0.323391i
\(494\) 1933.49 0.176097
\(495\) −14911.1 10980.8i −1.35394 0.997070i
\(496\) 1202.30 0.108840
\(497\) 527.695 1624.08i 0.0476265 0.146579i
\(498\) −6790.62 + 4933.67i −0.611034 + 0.443942i
\(499\) 7847.09 + 5701.24i 0.703976 + 0.511468i 0.881225 0.472698i \(-0.156720\pi\)
−0.177249 + 0.984166i \(0.556720\pi\)
\(500\) −506.158 1557.79i −0.0452722 0.139333i
\(501\) 7279.61 + 22404.3i 0.649159 + 1.99791i
\(502\) −9011.95 6547.57i −0.801241 0.582136i
\(503\) −12707.4 + 9232.43i −1.12643 + 0.818397i −0.985171 0.171576i \(-0.945114\pi\)
−0.141256 + 0.989973i \(0.545114\pi\)
\(504\) −1830.96 + 5635.12i −0.161820 + 0.498032i
\(505\) −6127.41 −0.539933
\(506\) 10541.4 7555.67i 0.926136 0.663815i
\(507\) 2019.25 0.176879
\(508\) −861.950 + 2652.81i −0.0752812 + 0.231692i
\(509\) 1192.56 866.443i 0.103849 0.0754507i −0.534649 0.845074i \(-0.679556\pi\)
0.638498 + 0.769624i \(0.279556\pi\)
\(510\) 4697.93 + 3413.24i 0.407898 + 0.296355i
\(511\) 7695.74 + 23685.0i 0.666222 + 2.05042i
\(512\) −158.217 486.941i −0.0136568 0.0420312i
\(513\) 974.766 + 708.209i 0.0838928 + 0.0609517i
\(514\) −9557.81 + 6944.15i −0.820188 + 0.595902i
\(515\) 6304.85 19404.3i 0.539466 1.66031i
\(516\) −4081.62 −0.348223
\(517\) 18208.0 + 117.147i 1.54891 + 0.00996542i
\(518\) −9679.57 −0.821035
\(519\) 5333.48 16414.8i 0.451086 1.38830i
\(520\) −4251.05 + 3088.57i −0.358502 + 0.260467i
\(521\) 7501.89 + 5450.44i 0.630832 + 0.458326i 0.856688 0.515834i \(-0.172518\pi\)
−0.225856 + 0.974161i \(0.572518\pi\)
\(522\) 3141.55 + 9668.69i 0.263413 + 0.810703i
\(523\) −1311.01 4034.86i −0.109610 0.337346i 0.881174 0.472791i \(-0.156754\pi\)
−0.990785 + 0.135445i \(0.956754\pi\)
\(524\) 841.087 + 611.085i 0.0701203 + 0.0509454i
\(525\) 13420.1 9750.28i 1.11562 0.810547i
\(526\) 4235.84 13036.6i 0.351125 1.08065i
\(527\) −1872.17 −0.154749
\(528\) −1381.17 4345.76i −0.113841 0.358191i
\(529\) 19427.7 1.59676
\(530\) −119.325 + 367.245i −0.00977953 + 0.0300983i
\(531\) −978.875 + 711.194i −0.0799992 + 0.0581228i
\(532\) −1546.72 1123.76i −0.126050 0.0915809i
\(533\) 3443.86 + 10599.1i 0.279869 + 0.861348i
\(534\) 3220.68 + 9912.25i 0.260997 + 0.803268i
\(535\) 4770.17 + 3465.73i 0.385481 + 0.280068i
\(536\) −3363.06 + 2443.41i −0.271011 + 0.196901i
\(537\) 5484.16 16878.5i 0.440706 1.35635i
\(538\) −2202.73 −0.176517
\(539\) 1504.24 4530.19i 0.120208 0.362020i
\(540\) −3274.46 −0.260945
\(541\) −2014.87 + 6201.13i −0.160122 + 0.492805i −0.998644 0.0520633i \(-0.983420\pi\)
0.838522 + 0.544868i \(0.183420\pi\)
\(542\) −4161.09 + 3023.21i −0.329768 + 0.239590i
\(543\) −3946.36 2867.20i −0.311887 0.226599i
\(544\) 246.368 + 758.243i 0.0194172 + 0.0597599i
\(545\) 2331.84 + 7176.66i 0.183275 + 0.564063i
\(546\) 12114.1 + 8801.38i 0.949513 + 0.689861i
\(547\) −5154.07 + 3744.65i −0.402874 + 0.292705i −0.770711 0.637185i \(-0.780099\pi\)
0.367836 + 0.929890i \(0.380099\pi\)
\(548\) −2575.42 + 7926.34i −0.200760 + 0.617876i
\(549\) 18316.8 1.42394
\(550\) −2243.05 + 6755.20i −0.173898 + 0.523714i
\(551\) −3280.33 −0.253624
\(552\) 3432.67 10564.7i 0.264681 0.814605i
\(553\) −13605.0 + 9884.59i −1.04619 + 0.760100i
\(554\) −11876.5 8628.81i −0.910804 0.661738i
\(555\) −8006.81 24642.4i −0.612379 1.88471i
\(556\) 214.370 + 659.762i 0.0163513 + 0.0503240i
\(557\) −4938.23 3587.84i −0.375655 0.272929i 0.383897 0.923376i \(-0.374582\pi\)
−0.759552 + 0.650447i \(0.774582\pi\)
\(558\) 4136.86 3005.61i 0.313848 0.228024i
\(559\) −1777.20 + 5469.67i −0.134468 + 0.413851i
\(560\) 5195.77 0.392074
\(561\) 2150.70 + 6767.02i 0.161859 + 0.509276i
\(562\) 14985.9 1.12481
\(563\) −4200.34 + 12927.3i −0.314429 + 0.967711i 0.661561 + 0.749892i \(0.269894\pi\)
−0.975989 + 0.217820i \(0.930106\pi\)
\(564\) 12616.9 9166.69i 0.941961 0.684375i
\(565\) −18557.6 13482.9i −1.38181 1.00395i
\(566\) 4013.57 + 12352.5i 0.298062 + 0.917341i
\(567\) −3296.03 10144.1i −0.244127 0.751347i
\(568\) 507.730 + 368.888i 0.0375068 + 0.0272503i
\(569\) −13913.1 + 10108.5i −1.02508 + 0.744761i −0.967317 0.253569i \(-0.918395\pi\)
−0.0577589 + 0.998331i \(0.518395\pi\)
\(570\) 1581.46 4867.22i 0.116210 0.357659i
\(571\) 2475.65 0.181441 0.0907203 0.995876i \(-0.471083\pi\)
0.0907203 + 0.995876i \(0.471083\pi\)
\(572\) −6425.02 41.3375i −0.469657 0.00302169i
\(573\) 10500.6 0.765567
\(574\) 3405.31 10480.5i 0.247622 0.762101i
\(575\) −14028.0 + 10191.9i −1.01741 + 0.739188i
\(576\) −1761.69 1279.94i −0.127437 0.0925883i
\(577\) −6285.32 19344.2i −0.453485 1.39568i −0.872904 0.487892i \(-0.837766\pi\)
0.419419 0.907793i \(-0.362234\pi\)
\(578\) 2652.77 + 8164.38i 0.190901 + 0.587532i
\(579\) 29221.7 + 21230.8i 2.09743 + 1.52387i
\(580\) 7212.27 5240.02i 0.516333 0.375138i
\(581\) 3613.83 11122.2i 0.258050 0.794196i
\(582\) −2806.85 −0.199910
\(583\) −383.767 + 275.068i −0.0272625 + 0.0195406i
\(584\) −9152.55 −0.648519
\(585\) −6905.94 + 21254.3i −0.488078 + 1.50215i
\(586\) −4344.22 + 3156.26i −0.306242 + 0.222498i
\(587\) 11988.4 + 8710.07i 0.842953 + 0.612441i 0.923194 0.384334i \(-0.125569\pi\)
−0.0802411 + 0.996775i \(0.525569\pi\)
\(588\) −1263.38 3888.28i −0.0886068 0.272704i
\(589\) 509.862 + 1569.19i 0.0356681 + 0.109775i
\(590\) 858.382 + 623.651i 0.0598967 + 0.0435175i
\(591\) 4200.77 3052.04i 0.292380 0.212427i
\(592\) 1099.29 3383.27i 0.0763186 0.234885i
\(593\) 11123.2 0.770281 0.385140 0.922858i \(-0.374153\pi\)
0.385140 + 0.922858i \(0.374153\pi\)
\(594\) −3224.02 2374.23i −0.222699 0.164000i
\(595\) −8090.63 −0.557451
\(596\) −555.062 + 1708.31i −0.0381481 + 0.117408i
\(597\) −19230.3 + 13971.6i −1.31833 + 0.957824i
\(598\) −12662.8 9200.06i −0.865920 0.629127i
\(599\) 2560.26 + 7879.67i 0.174640 + 0.537487i 0.999617 0.0276796i \(-0.00881183\pi\)
−0.824977 + 0.565167i \(0.808812\pi\)
\(600\) 1883.89 + 5798.01i 0.128182 + 0.394505i
\(601\) −22101.0 16057.3i −1.50003 1.08984i −0.970370 0.241625i \(-0.922320\pi\)
−0.529660 0.848210i \(-0.677680\pi\)
\(602\) 4600.70 3342.60i 0.311479 0.226303i
\(603\) −5463.37 + 16814.5i −0.368965 + 1.13556i
\(604\) 114.143 0.00768944
\(605\) −16212.7 + 11463.4i −1.08949 + 0.770338i
\(606\) −6417.18 −0.430165
\(607\) 5045.53 15528.6i 0.337384 1.03836i −0.628152 0.778091i \(-0.716188\pi\)
0.965536 0.260270i \(-0.0838115\pi\)
\(608\) 568.441 412.997i 0.0379167 0.0275481i
\(609\) −20552.5 14932.3i −1.36754 0.993574i
\(610\) −4963.48 15276.0i −0.329452 1.01395i
\(611\) −6790.45 20898.9i −0.449611 1.38376i
\(612\) 2743.22 + 1993.07i 0.181190 + 0.131642i
\(613\) 17009.8 12358.4i 1.12075 0.814274i 0.136429 0.990650i \(-0.456437\pi\)
0.984323 + 0.176376i \(0.0564374\pi\)
\(614\) −5149.25 + 15847.8i −0.338448 + 1.04163i
\(615\) 29498.2 1.93412
\(616\) 5115.74 + 3767.33i 0.334609 + 0.246412i
\(617\) 871.824 0.0568854 0.0284427 0.999595i \(-0.490945\pi\)
0.0284427 + 0.999595i \(0.490945\pi\)
\(618\) 6603.02 20322.0i 0.429793 1.32277i
\(619\) −7602.75 + 5523.72i −0.493668 + 0.358671i −0.806593 0.591107i \(-0.798691\pi\)
0.312925 + 0.949778i \(0.398691\pi\)
\(620\) −3627.64 2635.64i −0.234983 0.170725i
\(621\) −3014.08 9276.38i −0.194768 0.599434i
\(622\) 3102.75 + 9549.28i 0.200014 + 0.615581i
\(623\) −11747.8 8535.29i −0.755484 0.548891i
\(624\) −4452.09 + 3234.63i −0.285619 + 0.207514i
\(625\) −5655.84 + 17406.9i −0.361974 + 1.11404i
\(626\) −6044.15 −0.385899
\(627\) 5086.19 3645.57i 0.323960 0.232201i
\(628\) 6895.44 0.438150
\(629\) −1711.77 + 5268.28i −0.108510 + 0.333959i
\(630\) 17877.6 12988.8i 1.13057 0.821409i
\(631\) 11759.8 + 8544.01i 0.741919 + 0.539036i 0.893311 0.449438i \(-0.148376\pi\)
−0.151393 + 0.988474i \(0.548376\pi\)
\(632\) −1909.84 5877.88i −0.120205 0.369952i
\(633\) −6256.10 19254.3i −0.392824 1.20899i
\(634\) −17054.3 12390.7i −1.06832 0.776178i
\(635\) 8416.12 6114.67i 0.525958 0.382131i
\(636\) −124.968 + 384.612i −0.00779136 + 0.0239794i
\(637\) −5760.67 −0.358314
\(638\) 10900.6 + 70.1325i 0.676424 + 0.00435200i
\(639\) 2669.17 0.165244
\(640\) −590.075 + 1816.06i −0.0364449 + 0.112166i
\(641\) 9238.70 6712.31i 0.569277 0.413604i −0.265565 0.964093i \(-0.585559\pi\)
0.834843 + 0.550489i \(0.185559\pi\)
\(642\) 4995.76 + 3629.63i 0.307113 + 0.223131i
\(643\) 7407.11 + 22796.7i 0.454289 + 1.39816i 0.871968 + 0.489563i \(0.162844\pi\)
−0.417679 + 0.908595i \(0.637156\pi\)
\(644\) 4782.61 + 14719.4i 0.292642 + 0.900659i
\(645\) 12315.3 + 8947.58i 0.751805 + 0.546218i
\(646\) −885.152 + 643.100i −0.0539100 + 0.0391679i
\(647\) 2569.24 7907.32i 0.156117 0.480478i −0.842156 0.539234i \(-0.818714\pi\)
0.998272 + 0.0587569i \(0.0187137\pi\)
\(648\) 3919.97 0.237641
\(649\) 392.966 + 1236.44i 0.0237677 + 0.0747833i
\(650\) 8590.04 0.518353
\(651\) −3948.59 + 12152.5i −0.237723 + 0.731635i
\(652\) −10738.0 + 7801.60i −0.644988 + 0.468611i
\(653\) 24334.7 + 17680.2i 1.45833 + 1.05954i 0.983794 + 0.179303i \(0.0573843\pi\)
0.474536 + 0.880236i \(0.342616\pi\)
\(654\) 2442.11 + 7516.05i 0.146016 + 0.449390i
\(655\) −1198.17 3687.60i −0.0714757 0.219980i
\(656\) 3276.47 + 2380.50i 0.195007 + 0.141681i
\(657\) −31492.1 + 22880.3i −1.87005 + 1.35867i
\(658\) −6714.44 + 20664.9i −0.397806 + 1.22432i
\(659\) −10041.6 −0.593572 −0.296786 0.954944i \(-0.595915\pi\)
−0.296786 + 0.954944i \(0.595915\pi\)
\(660\) −5359.26 + 16140.0i −0.316074 + 0.951893i
\(661\) 1402.50 0.0825281 0.0412640 0.999148i \(-0.486862\pi\)
0.0412640 + 0.999148i \(0.486862\pi\)
\(662\) −191.511 + 589.409i −0.0112436 + 0.0346043i
\(663\) 6932.60 5036.83i 0.406093 0.295044i
\(664\) 3477.10 + 2526.26i 0.203219 + 0.147648i
\(665\) 2203.39 + 6781.32i 0.128487 + 0.395441i
\(666\) −4675.35 14389.3i −0.272021 0.837196i
\(667\) 21483.5 + 15608.7i 1.24714 + 0.906102i
\(668\) 9758.68 7090.10i 0.565232 0.410665i
\(669\) −6366.17 + 19593.1i −0.367908 + 1.13230i
\(670\) 15503.6 0.893963
\(671\) 6189.24 18639.6i 0.356085 1.07239i
\(672\) 5441.49 0.312366
\(673\) 6299.43 19387.7i 0.360810 1.11046i −0.591753 0.806119i \(-0.701564\pi\)
0.952563 0.304341i \(-0.0984361\pi\)
\(674\) 18064.8 13124.8i 1.03239 0.750074i
\(675\) 4330.65 + 3146.40i 0.246944 + 0.179415i
\(676\) −319.507 983.340i −0.0181786 0.0559479i
\(677\) −2282.09 7023.55i −0.129554 0.398725i 0.865149 0.501514i \(-0.167223\pi\)
−0.994703 + 0.102789i \(0.967223\pi\)
\(678\) −19435.2 14120.5i −1.10089 0.799846i
\(679\) 3163.81 2298.64i 0.178815 0.129917i
\(680\) 918.838 2827.89i 0.0518174 0.159478i
\(681\) −1958.19 −0.110188
\(682\) −1660.73 5225.35i −0.0932442 0.293386i
\(683\) −25844.0 −1.44787 −0.723935 0.689868i \(-0.757668\pi\)
−0.723935 + 0.689868i \(0.757668\pi\)
\(684\) 923.446 2842.07i 0.0516211 0.158873i
\(685\) 25146.5 18270.0i 1.40263 1.01907i
\(686\) −7472.53 5429.11i −0.415893 0.302164i
\(687\) −4343.51 13368.0i −0.241216 0.742386i
\(688\) 645.837 + 1987.68i 0.0357882 + 0.110145i
\(689\) 460.996 + 334.933i 0.0254899 + 0.0185195i
\(690\) −33516.7 + 24351.3i −1.84922 + 1.34353i
\(691\) 2607.73 8025.78i 0.143564 0.441845i −0.853259 0.521487i \(-0.825378\pi\)
0.996824 + 0.0796417i \(0.0253776\pi\)
\(692\) −8837.64 −0.485486
\(693\) 27020.1 + 173.843i 1.48111 + 0.00952920i
\(694\) −5030.97 −0.275177
\(695\) 799.499 2460.60i 0.0436356 0.134296i
\(696\) 7553.35 5487.83i 0.411363 0.298873i
\(697\) −5101.98 3706.80i −0.277261 0.201442i
\(698\) 7031.12 + 21639.6i 0.381278 + 1.17345i
\(699\) −7677.62 23629.3i −0.415442 1.27860i
\(700\) −6871.70 4992.58i −0.371037 0.269574i
\(701\) 10503.8 7631.43i 0.565937 0.411177i −0.267690 0.963505i \(-0.586260\pi\)
0.833627 + 0.552328i \(0.186260\pi\)
\(702\) −1493.18 + 4595.53i −0.0802798 + 0.247076i
\(703\) 4881.90 0.261912
\(704\) −1897.77 + 1360.24i −0.101598 + 0.0728210i
\(705\) −58163.2 −3.10717
\(706\) −3838.04 + 11812.3i −0.204598 + 0.629689i
\(707\) 7233.28 5255.29i 0.384775 0.279555i
\(708\) 898.976 + 653.144i 0.0477197 + 0.0346704i
\(709\) −5537.15 17041.6i −0.293303 0.902695i −0.983786 0.179346i \(-0.942602\pi\)
0.690483 0.723349i \(-0.257398\pi\)
\(710\) −723.290 2226.06i −0.0382318 0.117665i
\(711\) −21265.4 15450.2i −1.12168 0.814948i
\(712\) 4317.49 3136.84i 0.227254 0.165110i
\(713\) 4127.45 12703.0i 0.216794 0.667224i
\(714\) −8473.24 −0.444122
\(715\) 19295.3 + 14209.4i 1.00924 + 0.743220i
\(716\) −9087.33 −0.474315
\(717\) −12103.2 + 37250.0i −0.630410 + 1.94020i
\(718\) −4024.87 + 2924.24i −0.209202 + 0.151994i
\(719\) −2845.59 2067.45i −0.147598 0.107236i 0.511536 0.859262i \(-0.329077\pi\)
−0.659133 + 0.752026i \(0.729077\pi\)
\(720\) 2509.62 + 7723.82i 0.129900 + 0.399791i
\(721\) 9199.75 + 28313.9i 0.475196 + 1.46250i
\(722\) −10318.0 7496.47i −0.531851 0.386412i
\(723\) 38387.8 27890.4i 1.97463 1.43465i
\(724\) −771.844 + 2375.49i −0.0396207 + 0.121940i
\(725\) −14573.7 −0.746559
\(726\) −16979.4 + 12005.5i −0.867997 + 0.613729i
\(727\) −29438.9 −1.50183 −0.750913 0.660401i \(-0.770386\pi\)
−0.750913 + 0.660401i \(0.770386\pi\)
\(728\) 2369.31 7292.00i 0.120622 0.371235i
\(729\) 22851.3 16602.5i 1.16097 0.843492i
\(730\) 27615.6 + 20063.9i 1.40014 + 1.01726i
\(731\) −1005.67 3095.13i −0.0508837 0.156604i
\(732\) −5198.21 15998.4i −0.262474 0.807813i
\(733\) −2779.70 2019.57i −0.140069 0.101766i 0.515544 0.856863i \(-0.327590\pi\)
−0.655613 + 0.755097i \(0.727590\pi\)
\(734\) 10872.4 7899.28i 0.546742 0.397231i
\(735\) −4711.81 + 14501.5i −0.236459 + 0.727747i
\(736\) −5687.97 −0.284866
\(737\) 15264.8 + 11241.3i 0.762937 + 0.561841i
\(738\) 17224.6 0.859143
\(739\) −10383.5 + 31957.2i −0.516866 + 1.59075i 0.262995 + 0.964797i \(0.415290\pi\)
−0.779861 + 0.625953i \(0.784710\pi\)
\(740\) −10733.5 + 7798.37i −0.533206 + 0.387397i
\(741\) −6109.73 4438.98i −0.302897 0.220067i
\(742\) −174.114 535.867i −0.00861444 0.0265125i
\(743\) −368.875 1135.28i −0.0182136 0.0560557i 0.941537 0.336911i \(-0.109382\pi\)
−0.959750 + 0.280855i \(0.909382\pi\)
\(744\) −3799.20 2760.28i −0.187211 0.136017i
\(745\) 5419.66 3937.61i 0.266525 0.193641i
\(746\) 5323.97 16385.5i 0.261293 0.804177i
\(747\) 18279.4 0.895324
\(748\) 2955.12 2118.11i 0.144452 0.103537i
\(749\) −8603.54 −0.419715
\(750\) −1977.01 + 6084.60i −0.0962535 + 0.296238i
\(751\) −19828.5 + 14406.2i −0.963451 + 0.699988i −0.953950 0.299967i \(-0.903024\pi\)
−0.00950152 + 0.999955i \(0.503024\pi\)
\(752\) −6460.40 4693.76i −0.313280 0.227611i
\(753\) 13445.1 + 41379.9i 0.650688 + 2.00261i
\(754\) −4065.25 12511.5i −0.196349 0.604302i
\(755\) −344.399 250.221i −0.0166013 0.0120615i
\(756\) 3865.43 2808.40i 0.185958 0.135107i
\(757\) 3338.57 10275.0i 0.160294 0.493333i −0.838365 0.545109i \(-0.816488\pi\)
0.998659 + 0.0517762i \(0.0164882\pi\)
\(758\) 16018.2 0.767555
\(759\) −50657.0 325.918i −2.42257 0.0155864i
\(760\) −2620.49 −0.125073
\(761\) 2526.49 7775.75i 0.120349 0.370395i −0.872676 0.488299i \(-0.837617\pi\)
0.993025 + 0.117904i \(0.0376175\pi\)
\(762\) 8814.12 6403.83i 0.419031 0.304444i
\(763\) −8907.88 6471.96i −0.422657 0.307078i
\(764\) −1661.52 5113.63i −0.0786802 0.242153i
\(765\) −3907.87 12027.2i −0.184692 0.568424i
\(766\) 12963.6 + 9418.61i 0.611481 + 0.444267i
\(767\) 1266.69 920.304i 0.0596317 0.0433250i
\(768\) −617.980 + 1901.95i −0.0290357 + 0.0893627i
\(769\) −28895.9 −1.35502 −0.677511 0.735513i \(-0.736941\pi\)
−0.677511 + 0.735513i \(0.736941\pi\)
\(770\) −7176.90 22581.5i −0.335893 1.05686i
\(771\) 46144.8 2.15547
\(772\) 5715.28 17589.8i 0.266448 0.820041i
\(773\)