Properties

Label 22.4.c.b.9.1
Level 22
Weight 4
Character 22.9
Analytic conductor 1.298
Analytic rank 0
Dimension 8
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 22 = 2 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 22.c (of order \(5\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(1.29804202013\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 9.1
Root \(-2.53202 + 7.79275i\)
Character \(\chi\) = 22.9
Dual form 22.4.c.b.5.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.618034 + 1.90211i) q^{2}\) \(+(-6.12891 + 4.45291i) q^{3}\) \(+(-3.23607 - 2.35114i) q^{4}\) \(+(1.67119 + 5.14341i) q^{5}\) \(+(-4.68207 - 14.4099i) q^{6}\) \(+(17.9196 + 13.0193i) q^{7}\) \(+(6.47214 - 4.70228i) q^{8}\) \(+(9.39163 - 28.9045i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.618034 + 1.90211i) q^{2}\) \(+(-6.12891 + 4.45291i) q^{3}\) \(+(-3.23607 - 2.35114i) q^{4}\) \(+(1.67119 + 5.14341i) q^{5}\) \(+(-4.68207 - 14.4099i) q^{6}\) \(+(17.9196 + 13.0193i) q^{7}\) \(+(6.47214 - 4.70228i) q^{8}\) \(+(9.39163 - 28.9045i) q^{9}\) \(-10.8162 q^{10}\) \(+(-11.0504 + 34.7691i) q^{11}\) \(+30.3030 q^{12}\) \(+(23.7408 - 73.0668i) q^{13}\) \(+(-35.8392 + 26.0387i) q^{14}\) \(+(-33.1458 - 24.0818i) q^{15}\) \(+(4.94427 + 15.2169i) q^{16}\) \(+(18.3211 + 56.3866i) q^{17}\) \(+(49.1752 + 35.7279i) q^{18}\) \(+(-77.0690 + 55.9939i) q^{19}\) \(+(6.68478 - 20.5736i) q^{20}\) \(-167.801 q^{21}\) \(+(-59.3052 - 42.5075i) q^{22}\) \(+142.484 q^{23}\) \(+(-18.7283 + 57.6397i) q^{24}\) \(+(77.4654 - 56.2819i) q^{25}\) \(+(124.309 + 90.3155i) q^{26}\) \(+(7.94067 + 24.4389i) q^{27}\) \(+(-27.3787 - 84.2629i) q^{28}\) \(+(16.5188 + 12.0016i) q^{29}\) \(+(66.2915 - 48.1636i) q^{30}\) \(+(65.9146 - 202.864i) q^{31}\) \(-32.0000 q^{32}\) \(+(-87.0970 - 262.303i) q^{33}\) \(-118.577 q^{34}\) \(+(-37.0167 + 113.926i) q^{35}\) \(+(-98.3504 + 71.4558i) q^{36}\) \(+(117.775 + 85.5683i) q^{37}\) \(+(-58.8755 - 181.200i) q^{38}\) \(+(179.855 + 553.535i) q^{39}\) \(+(35.0020 + 25.4304i) q^{40}\) \(+(-67.0130 + 48.6878i) q^{41}\) \(+(103.707 - 319.177i) q^{42}\) \(-151.373 q^{43}\) \(+(117.507 - 86.5342i) q^{44}\) \(+164.363 q^{45}\) \(+(-88.0599 + 271.020i) q^{46}\) \(+(-73.1063 + 53.1148i) q^{47}\) \(+(-98.0625 - 71.2466i) q^{48}\) \(+(45.6154 + 140.390i) q^{49}\) \(+(59.1783 + 182.132i) q^{50}\) \(+(-363.373 - 264.006i) q^{51}\) \(+(-248.617 + 180.631i) q^{52}\) \(+(-72.5723 + 223.355i) q^{53}\) \(-51.3931 q^{54}\) \(+(-197.299 + 1.26939i) q^{55}\) \(+177.199 q^{56}\) \(+(223.013 - 686.363i) q^{57}\) \(+(-33.0375 + 24.0032i) q^{58}\) \(+(-244.726 - 177.804i) q^{59}\) \(+(50.6422 + 155.861i) q^{60}\) \(+(-46.1299 - 141.973i) q^{61}\) \(+(345.133 + 250.754i) q^{62}\) \(+(544.611 - 395.683i) q^{63}\) \(+(19.7771 - 60.8676i) q^{64}\) \(+415.488 q^{65}\) \(+(552.759 - 3.55635i) q^{66}\) \(+826.236 q^{67}\) \(+(73.2844 - 225.546i) q^{68}\) \(+(-873.271 + 634.468i) q^{69}\) \(+(-193.822 - 140.820i) q^{70}\) \(+(-277.796 - 854.967i) q^{71}\) \(+(-75.1330 - 231.236i) q^{72}\) \(+(111.639 + 81.1105i) q^{73}\) \(+(-235.549 + 171.137i) q^{74}\) \(+(-224.160 + 689.893i) q^{75}\) \(+381.050 q^{76}\) \(+(-650.688 + 479.179i) q^{77}\) \(-1164.04 q^{78}\) \(+(-94.0829 + 289.557i) q^{79}\) \(+(-70.0039 + 50.8608i) q^{80}\) \(+(506.374 + 367.902i) q^{81}\) \(+(-51.1933 - 157.557i) q^{82}\) \(+(-236.180 - 726.886i) q^{83}\) \(+(543.017 + 394.525i) q^{84}\) \(+(-259.401 + 188.466i) q^{85}\) \(+(93.5536 - 287.928i) q^{86}\) \(-154.684 q^{87}\) \(+(91.9746 + 276.992i) q^{88}\) \(-313.100 q^{89}\) \(+(-101.582 + 312.636i) q^{90}\) \(+(1376.71 - 1000.24i) q^{91}\) \(+(-461.088 - 335.000i) q^{92}\) \(+(499.352 + 1536.85i) q^{93}\) \(+(-55.8482 - 171.883i) q^{94}\) \(+(-416.797 - 302.821i) q^{95}\) \(+(196.125 - 142.493i) q^{96}\) \(+(-180.004 + 553.996i) q^{97}\) \(-295.229 q^{98}\) \(+(901.201 + 645.943i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(8q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 16q^{8} \) \(\mathstrut -\mathstrut 21q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(8q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 16q^{8} \) \(\mathstrut -\mathstrut 21q^{9} \) \(\mathstrut -\mathstrut 100q^{10} \) \(\mathstrut -\mathstrut 155q^{11} \) \(\mathstrut +\mathstrut 32q^{12} \) \(\mathstrut +\mathstrut 7q^{13} \) \(\mathstrut +\mathstrut 2q^{14} \) \(\mathstrut +\mathstrut 211q^{15} \) \(\mathstrut -\mathstrut 32q^{16} \) \(\mathstrut +\mathstrut 161q^{17} \) \(\mathstrut +\mathstrut 162q^{18} \) \(\mathstrut -\mathstrut 272q^{19} \) \(\mathstrut +\mathstrut 20q^{20} \) \(\mathstrut -\mathstrut 50q^{21} \) \(\mathstrut +\mathstrut 628q^{23} \) \(\mathstrut +\mathstrut 56q^{24} \) \(\mathstrut -\mathstrut 17q^{25} \) \(\mathstrut +\mathstrut 96q^{26} \) \(\mathstrut -\mathstrut 528q^{27} \) \(\mathstrut +\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 33q^{29} \) \(\mathstrut -\mathstrut 422q^{30} \) \(\mathstrut +\mathstrut 323q^{31} \) \(\mathstrut -\mathstrut 256q^{32} \) \(\mathstrut -\mathstrut 1144q^{33} \) \(\mathstrut +\mathstrut 208q^{34} \) \(\mathstrut -\mathstrut 697q^{35} \) \(\mathstrut -\mathstrut 324q^{36} \) \(\mathstrut +\mathstrut 49q^{37} \) \(\mathstrut -\mathstrut 576q^{38} \) \(\mathstrut +\mathstrut 391q^{39} \) \(\mathstrut +\mathstrut 240q^{40} \) \(\mathstrut +\mathstrut 361q^{41} \) \(\mathstrut +\mathstrut 1430q^{42} \) \(\mathstrut +\mathstrut 1442q^{43} \) \(\mathstrut +\mathstrut 620q^{44} \) \(\mathstrut +\mathstrut 2652q^{45} \) \(\mathstrut -\mathstrut 416q^{46} \) \(\mathstrut -\mathstrut 1069q^{47} \) \(\mathstrut +\mathstrut 48q^{48} \) \(\mathstrut -\mathstrut 709q^{49} \) \(\mathstrut -\mathstrut 76q^{50} \) \(\mathstrut -\mathstrut 1332q^{51} \) \(\mathstrut -\mathstrut 192q^{52} \) \(\mathstrut -\mathstrut 281q^{53} \) \(\mathstrut -\mathstrut 1144q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut +\mathstrut 48q^{56} \) \(\mathstrut -\mathstrut 438q^{57} \) \(\mathstrut -\mathstrut 66q^{58} \) \(\mathstrut -\mathstrut 128q^{59} \) \(\mathstrut -\mathstrut 1116q^{60} \) \(\mathstrut -\mathstrut 617q^{61} \) \(\mathstrut +\mathstrut 1044q^{62} \) \(\mathstrut +\mathstrut 694q^{63} \) \(\mathstrut -\mathstrut 128q^{64} \) \(\mathstrut -\mathstrut 138q^{65} \) \(\mathstrut +\mathstrut 1248q^{66} \) \(\mathstrut +\mathstrut 578q^{67} \) \(\mathstrut +\mathstrut 644q^{68} \) \(\mathstrut -\mathstrut 310q^{69} \) \(\mathstrut +\mathstrut 34q^{70} \) \(\mathstrut +\mathstrut 115q^{71} \) \(\mathstrut +\mathstrut 168q^{72} \) \(\mathstrut -\mathstrut 1487q^{73} \) \(\mathstrut -\mathstrut 98q^{74} \) \(\mathstrut -\mathstrut 1852q^{75} \) \(\mathstrut -\mathstrut 128q^{76} \) \(\mathstrut +\mathstrut 553q^{77} \) \(\mathstrut -\mathstrut 4152q^{78} \) \(\mathstrut +\mathstrut 71q^{79} \) \(\mathstrut -\mathstrut 480q^{80} \) \(\mathstrut +\mathstrut 1630q^{81} \) \(\mathstrut +\mathstrut 658q^{82} \) \(\mathstrut +\mathstrut 1942q^{83} \) \(\mathstrut +\mathstrut 2960q^{84} \) \(\mathstrut -\mathstrut 329q^{85} \) \(\mathstrut +\mathstrut 2426q^{86} \) \(\mathstrut +\mathstrut 2122q^{87} \) \(\mathstrut +\mathstrut 560q^{88} \) \(\mathstrut -\mathstrut 2202q^{89} \) \(\mathstrut +\mathstrut 1286q^{90} \) \(\mathstrut +\mathstrut 4523q^{91} \) \(\mathstrut -\mathstrut 2088q^{92} \) \(\mathstrut +\mathstrut 6019q^{93} \) \(\mathstrut -\mathstrut 1332q^{94} \) \(\mathstrut -\mathstrut 793q^{95} \) \(\mathstrut -\mathstrut 96q^{96} \) \(\mathstrut -\mathstrut 5128q^{97} \) \(\mathstrut -\mathstrut 3292q^{98} \) \(\mathstrut -\mathstrut 2213q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/22\mathbb{Z}\right)^\times\).

\(n\) \(13\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 + 1.90211i −0.218508 + 0.672499i
\(3\) −6.12891 + 4.45291i −1.17951 + 0.856963i −0.992116 0.125322i \(-0.960004\pi\)
−0.187393 + 0.982285i \(0.560004\pi\)
\(4\) −3.23607 2.35114i −0.404508 0.293893i
\(5\) 1.67119 + 5.14341i 0.149476 + 0.460041i 0.997559 0.0698226i \(-0.0222433\pi\)
−0.848083 + 0.529863i \(0.822243\pi\)
\(6\) −4.68207 14.4099i −0.318574 0.980471i
\(7\) 17.9196 + 13.0193i 0.967566 + 0.702978i 0.954896 0.296942i \(-0.0959667\pi\)
0.0126708 + 0.999920i \(0.495967\pi\)
\(8\) 6.47214 4.70228i 0.286031 0.207813i
\(9\) 9.39163 28.9045i 0.347838 1.07054i
\(10\) −10.8162 −0.342038
\(11\) −11.0504 + 34.7691i −0.302892 + 0.953025i
\(12\) 30.3030 0.728977
\(13\) 23.7408 73.0668i 0.506502 1.55885i −0.291730 0.956501i \(-0.594231\pi\)
0.798231 0.602351i \(-0.205769\pi\)
\(14\) −35.8392 + 26.0387i −0.684173 + 0.497081i
\(15\) −33.1458 24.0818i −0.570546 0.414526i
\(16\) 4.94427 + 15.2169i 0.0772542 + 0.237764i
\(17\) 18.3211 + 56.3866i 0.261384 + 0.804456i 0.992505 + 0.122208i \(0.0389975\pi\)
−0.731121 + 0.682248i \(0.761003\pi\)
\(18\) 49.1752 + 35.7279i 0.643928 + 0.467841i
\(19\) −77.0690 + 55.9939i −0.930571 + 0.676099i −0.946133 0.323780i \(-0.895046\pi\)
0.0155616 + 0.999879i \(0.495046\pi\)
\(20\) 6.68478 20.5736i 0.0747381 0.230020i
\(21\) −167.801 −1.74368
\(22\) −59.3052 42.5075i −0.574724 0.411938i
\(23\) 142.484 1.29174 0.645868 0.763449i \(-0.276495\pi\)
0.645868 + 0.763449i \(0.276495\pi\)
\(24\) −18.7283 + 57.6397i −0.159287 + 0.490236i
\(25\) 77.4654 56.2819i 0.619723 0.450255i
\(26\) 124.309 + 90.3155i 0.937651 + 0.681243i
\(27\) 7.94067 + 24.4389i 0.0565994 + 0.174195i
\(28\) −27.3787 84.2629i −0.184789 0.568721i
\(29\) 16.5188 + 12.0016i 0.105774 + 0.0768496i 0.639415 0.768862i \(-0.279177\pi\)
−0.533641 + 0.845711i \(0.679177\pi\)
\(30\) 66.2915 48.1636i 0.403437 0.293114i
\(31\) 65.9146 202.864i 0.381891 1.17534i −0.556820 0.830633i \(-0.687979\pi\)
0.938711 0.344706i \(-0.112021\pi\)
\(32\) −32.0000 −0.176777
\(33\) −87.0970 262.303i −0.459444 1.38367i
\(34\) −118.577 −0.598110
\(35\) −37.0167 + 113.926i −0.178770 + 0.550198i
\(36\) −98.3504 + 71.4558i −0.455326 + 0.330814i
\(37\) 117.775 + 85.5683i 0.523298 + 0.380199i 0.817845 0.575439i \(-0.195169\pi\)
−0.294547 + 0.955637i \(0.595169\pi\)
\(38\) −58.8755 181.200i −0.251339 0.773541i
\(39\) 179.855 + 553.535i 0.738456 + 2.27273i
\(40\) 35.0020 + 25.4304i 0.138357 + 0.100523i
\(41\) −67.0130 + 48.6878i −0.255260 + 0.185457i −0.708055 0.706157i \(-0.750427\pi\)
0.452795 + 0.891615i \(0.350427\pi\)
\(42\) 103.707 319.177i 0.381008 1.17262i
\(43\) −151.373 −0.536841 −0.268420 0.963302i \(-0.586502\pi\)
−0.268420 + 0.963302i \(0.586502\pi\)
\(44\) 117.507 86.5342i 0.402609 0.296489i
\(45\) 164.363 0.544483
\(46\) −88.0599 + 271.020i −0.282255 + 0.868691i
\(47\) −73.1063 + 53.1148i −0.226886 + 0.164842i −0.695421 0.718603i \(-0.744782\pi\)
0.468535 + 0.883445i \(0.344782\pi\)
\(48\) −98.0625 71.2466i −0.294877 0.214241i
\(49\) 45.6154 + 140.390i 0.132989 + 0.409300i
\(50\) 59.1783 + 182.132i 0.167381 + 0.515147i
\(51\) −363.373 264.006i −0.997693 0.724867i
\(52\) −248.617 + 180.631i −0.663019 + 0.481712i
\(53\) −72.5723 + 223.355i −0.188086 + 0.578870i −0.999988 0.00492438i \(-0.998433\pi\)
0.811902 + 0.583794i \(0.198433\pi\)
\(54\) −51.3931 −0.129513
\(55\) −197.299 + 1.26939i −0.483705 + 0.00311208i
\(56\) 177.199 0.422842
\(57\) 223.013 686.363i 0.518224 1.59493i
\(58\) −33.0375 + 24.0032i −0.0747937 + 0.0543408i
\(59\) −244.726 177.804i −0.540009 0.392340i 0.284079 0.958801i \(-0.408312\pi\)
−0.824089 + 0.566461i \(0.808312\pi\)
\(60\) 50.6422 + 155.861i 0.108965 + 0.335359i
\(61\) −46.1299 141.973i −0.0968250 0.297997i 0.890900 0.454200i \(-0.150075\pi\)
−0.987725 + 0.156203i \(0.950075\pi\)
\(62\) 345.133 + 250.754i 0.706967 + 0.513642i
\(63\) 544.611 395.683i 1.08912 0.791292i
\(64\) 19.7771 60.8676i 0.0386271 0.118882i
\(65\) 415.488 0.792845
\(66\) 552.759 3.55635i 1.03091 0.00663268i
\(67\) 826.236 1.50658 0.753290 0.657689i \(-0.228466\pi\)
0.753290 + 0.657689i \(0.228466\pi\)
\(68\) 73.2844 225.546i 0.130692 0.402228i
\(69\) −873.271 + 634.468i −1.52362 + 1.10697i
\(70\) −193.822 140.820i −0.330945 0.240445i
\(71\) −277.796 854.967i −0.464342 1.42910i −0.859808 0.510617i \(-0.829417\pi\)
0.395467 0.918480i \(-0.370583\pi\)
\(72\) −75.1330 231.236i −0.122979 0.378491i
\(73\) 111.639 + 81.1105i 0.178991 + 0.130045i 0.673673 0.739029i \(-0.264716\pi\)
−0.494682 + 0.869074i \(0.664716\pi\)
\(74\) −235.549 + 171.137i −0.370028 + 0.268841i
\(75\) −224.160 + 689.893i −0.345117 + 1.06216i
\(76\) 381.050 0.575124
\(77\) −650.688 + 479.179i −0.963024 + 0.709189i
\(78\) −1164.04 −1.68977
\(79\) −94.0829 + 289.557i −0.133989 + 0.412377i −0.995431 0.0954791i \(-0.969562\pi\)
0.861442 + 0.507856i \(0.169562\pi\)
\(80\) −70.0039 + 50.8608i −0.0978335 + 0.0710802i
\(81\) 506.374 + 367.902i 0.694614 + 0.504667i
\(82\) −51.1933 157.557i −0.0689434 0.212186i
\(83\) −236.180 726.886i −0.312338 0.961279i −0.976836 0.213989i \(-0.931354\pi\)
0.664498 0.747290i \(-0.268646\pi\)
\(84\) 543.017 + 394.525i 0.705333 + 0.512455i
\(85\) −259.401 + 188.466i −0.331012 + 0.240494i
\(86\) 93.5536 287.928i 0.117304 0.361024i
\(87\) −154.684 −0.190619
\(88\) 91.9746 + 276.992i 0.111415 + 0.335539i
\(89\) −313.100 −0.372905 −0.186452 0.982464i \(-0.559699\pi\)
−0.186452 + 0.982464i \(0.559699\pi\)
\(90\) −101.582 + 312.636i −0.118974 + 0.366164i
\(91\) 1376.71 1000.24i 1.58591 1.15223i
\(92\) −461.088 335.000i −0.522519 0.379632i
\(93\) 499.352 + 1536.85i 0.556779 + 1.71359i
\(94\) −55.8482 171.883i −0.0612798 0.188600i
\(95\) −416.797 302.821i −0.450131 0.327040i
\(96\) 196.125 142.493i 0.208510 0.151491i
\(97\) −180.004 + 553.996i −0.188419 + 0.579894i −0.999990 0.00435900i \(-0.998612\pi\)
0.811571 + 0.584253i \(0.198612\pi\)
\(98\) −295.229 −0.304313
\(99\) 901.201 + 645.943i 0.914890 + 0.655755i
\(100\) −383.010 −0.383010
\(101\) −43.7427 + 134.626i −0.0430947 + 0.132632i −0.970289 0.241949i \(-0.922213\pi\)
0.927194 + 0.374581i \(0.122213\pi\)
\(102\) 726.746 528.012i 0.705476 0.512558i
\(103\) −680.691 494.551i −0.651169 0.473102i 0.212500 0.977161i \(-0.431839\pi\)
−0.863669 + 0.504059i \(0.831839\pi\)
\(104\) −189.927 584.534i −0.179075 0.551137i
\(105\) −280.429 863.071i −0.260639 0.802163i
\(106\) −379.993 276.081i −0.348191 0.252975i
\(107\) 52.1265 37.8721i 0.0470959 0.0342172i −0.563988 0.825783i \(-0.690734\pi\)
0.611084 + 0.791566i \(0.290734\pi\)
\(108\) 31.7627 97.7555i 0.0282997 0.0870974i
\(109\) 1559.04 1.36999 0.684995 0.728547i \(-0.259804\pi\)
0.684995 + 0.728547i \(0.259804\pi\)
\(110\) 119.523 376.069i 0.103601 0.325971i
\(111\) −1102.86 −0.943052
\(112\) −109.515 + 337.052i −0.0923944 + 0.284361i
\(113\) 1811.50 1316.13i 1.50807 1.09568i 0.541046 0.840993i \(-0.318029\pi\)
0.967024 0.254684i \(-0.0819714\pi\)
\(114\) 1167.71 + 848.392i 0.959352 + 0.697010i
\(115\) 238.118 + 732.853i 0.193084 + 0.594251i
\(116\) −25.2384 77.6758i −0.0202011 0.0621726i
\(117\) −1888.99 1372.43i −1.49263 1.08446i
\(118\) 489.451 355.607i 0.381844 0.277426i
\(119\) −405.809 + 1248.95i −0.312609 + 0.962111i
\(120\) −327.763 −0.249338
\(121\) −1086.78 768.422i −0.816513 0.577327i
\(122\) 298.559 0.221559
\(123\) 193.914 596.806i 0.142151 0.437497i
\(124\) −690.267 + 501.508i −0.499901 + 0.363200i
\(125\) 965.846 + 701.728i 0.691103 + 0.502116i
\(126\) 416.046 + 1280.46i 0.294161 + 0.905335i
\(127\) 337.896 + 1039.94i 0.236090 + 0.726611i 0.996975 + 0.0777237i \(0.0247652\pi\)
−0.760885 + 0.648887i \(0.775235\pi\)
\(128\) 103.554 + 75.2365i 0.0715077 + 0.0519534i
\(129\) 927.750 674.050i 0.633208 0.460053i
\(130\) −256.786 + 790.305i −0.173243 + 0.533187i
\(131\) −2466.16 −1.64481 −0.822403 0.568906i \(-0.807367\pi\)
−0.822403 + 0.568906i \(0.807367\pi\)
\(132\) −334.859 + 1053.61i −0.220801 + 0.694733i
\(133\) −2110.05 −1.37567
\(134\) −510.642 + 1571.60i −0.329200 + 1.01317i
\(135\) −112.429 + 81.6842i −0.0716765 + 0.0520760i
\(136\) 383.722 + 278.790i 0.241940 + 0.175780i
\(137\) −300.762 925.650i −0.187561 0.577253i 0.812422 0.583069i \(-0.198148\pi\)
−0.999983 + 0.00581676i \(0.998148\pi\)
\(138\) −667.120 2053.18i −0.411514 1.26651i
\(139\) 1021.82 + 742.396i 0.623523 + 0.453016i 0.854150 0.520026i \(-0.174078\pi\)
−0.230627 + 0.973042i \(0.574078\pi\)
\(140\) 387.644 281.640i 0.234013 0.170021i
\(141\) 211.546 651.072i 0.126350 0.388866i
\(142\) 1797.93 1.06253
\(143\) 2278.12 + 1632.86i 1.33221 + 0.954872i
\(144\) 486.271 0.281407
\(145\) −34.1230 + 105.020i −0.0195432 + 0.0601477i
\(146\) −223.278 + 162.221i −0.126566 + 0.0919555i
\(147\) −904.716 657.314i −0.507617 0.368805i
\(148\) −179.944 553.810i −0.0999411 0.307587i
\(149\) −151.214 465.390i −0.0831407 0.255881i 0.900841 0.434149i \(-0.142951\pi\)
−0.983982 + 0.178268i \(0.942951\pi\)
\(150\) −1173.72 852.755i −0.638890 0.464181i
\(151\) −1381.62 + 1003.80i −0.744600 + 0.540983i −0.894148 0.447771i \(-0.852218\pi\)
0.149549 + 0.988754i \(0.452218\pi\)
\(152\) −235.502 + 724.801i −0.125669 + 0.386770i
\(153\) 1801.89 0.952118
\(154\) −509.305 1533.83i −0.266500 0.802595i
\(155\) 1153.57 0.597787
\(156\) 719.418 2214.14i 0.369228 1.13637i
\(157\) −2072.48 + 1505.75i −1.05352 + 0.765424i −0.972878 0.231320i \(-0.925696\pi\)
−0.0806377 + 0.996743i \(0.525696\pi\)
\(158\) −492.624 357.913i −0.248045 0.180215i
\(159\) −549.789 1692.08i −0.274221 0.843965i
\(160\) −53.4782 164.589i −0.0264239 0.0813244i
\(161\) 2553.25 + 1855.05i 1.24984 + 0.908063i
\(162\) −1012.75 + 735.804i −0.491166 + 0.356853i
\(163\) 561.202 1727.20i 0.269673 0.829969i −0.720907 0.693032i \(-0.756274\pi\)
0.990580 0.136936i \(-0.0437256\pi\)
\(164\) 331.330 0.157759
\(165\) 1203.57 886.335i 0.567868 0.418188i
\(166\) 1528.59 0.714707
\(167\) 117.094 360.379i 0.0542576 0.166988i −0.920256 0.391318i \(-0.872019\pi\)
0.974513 + 0.224330i \(0.0720193\pi\)
\(168\) −1086.03 + 789.050i −0.498746 + 0.362360i
\(169\) −2997.71 2177.97i −1.36446 0.991336i
\(170\) −198.165 609.888i −0.0894032 0.275155i
\(171\) 894.671 + 2753.51i 0.400100 + 1.23138i
\(172\) 489.853 + 355.899i 0.217157 + 0.157773i
\(173\) −41.0349 + 29.8136i −0.0180337 + 0.0131022i −0.596766 0.802416i \(-0.703548\pi\)
0.578732 + 0.815518i \(0.303548\pi\)
\(174\) 95.5999 294.226i 0.0416518 0.128191i
\(175\) 2120.90 0.916142
\(176\) −583.714 + 3.75552i −0.249995 + 0.00160842i
\(177\) 2291.64 0.973167
\(178\) 193.506 595.551i 0.0814826 0.250778i
\(179\) −16.8824 + 12.2658i −0.00704944 + 0.00512172i −0.591304 0.806448i \(-0.701387\pi\)
0.584255 + 0.811570i \(0.301387\pi\)
\(180\) −531.889 386.440i −0.220248 0.160020i
\(181\) −54.4344 167.532i −0.0223540 0.0687985i 0.939257 0.343214i \(-0.111516\pi\)
−0.961611 + 0.274416i \(0.911516\pi\)
\(182\) 1051.71 + 3236.83i 0.428340 + 1.31830i
\(183\) 914.920 + 664.728i 0.369578 + 0.268514i
\(184\) 922.175 669.999i 0.369476 0.268440i
\(185\) −243.288 + 748.765i −0.0966861 + 0.297569i
\(186\) −3231.88 −1.27405
\(187\) −2162.96 + 13.9161i −0.845837 + 0.00544197i
\(188\) 361.457 0.140223
\(189\) −175.884 + 541.316i −0.0676916 + 0.208333i
\(190\) 833.594 605.642i 0.318291 0.231252i
\(191\) 937.829 + 681.372i 0.355282 + 0.258128i 0.751082 0.660209i \(-0.229532\pi\)
−0.395799 + 0.918337i \(0.629532\pi\)
\(192\) 149.826 + 461.118i 0.0563165 + 0.173324i
\(193\) −397.068 1222.05i −0.148091 0.455777i 0.849305 0.527903i \(-0.177022\pi\)
−0.997396 + 0.0721261i \(0.977022\pi\)
\(194\) −942.514 684.776i −0.348807 0.253423i
\(195\) −2546.49 + 1850.13i −0.935168 + 0.679439i
\(196\) 182.462 561.559i 0.0664947 0.204650i
\(197\) −2685.06 −0.971078 −0.485539 0.874215i \(-0.661377\pi\)
−0.485539 + 0.874215i \(0.661377\pi\)
\(198\) −1785.63 + 1314.97i −0.640905 + 0.471974i
\(199\) −1333.54 −0.475036 −0.237518 0.971383i \(-0.576334\pi\)
−0.237518 + 0.971383i \(0.576334\pi\)
\(200\) 236.713 728.528i 0.0836907 0.257574i
\(201\) −5063.93 + 3679.16i −1.77702 + 1.29108i
\(202\) −229.040 166.407i −0.0797781 0.0579622i
\(203\) 139.757 + 430.126i 0.0483201 + 0.148714i
\(204\) 555.184 + 1708.68i 0.190542 + 0.586429i
\(205\) −362.413 263.308i −0.123473 0.0897085i
\(206\) 1361.38 989.102i 0.460446 0.334534i
\(207\) 1338.16 4118.42i 0.449315 1.38285i
\(208\) 1229.23 0.409768
\(209\) −1095.22 3298.37i −0.362477 1.09164i
\(210\) 1814.97 0.596405
\(211\) −503.132 + 1548.48i −0.164156 + 0.505221i −0.998973 0.0453065i \(-0.985574\pi\)
0.834817 + 0.550528i \(0.185574\pi\)
\(212\) 759.987 552.163i 0.246208 0.178881i
\(213\) 5509.68 + 4003.01i 1.77238 + 1.28771i
\(214\) 39.8211 + 122.557i 0.0127202 + 0.0391487i
\(215\) −252.974 778.573i −0.0802449 0.246968i
\(216\) 166.312 + 120.832i 0.0523892 + 0.0380630i
\(217\) 3822.32 2777.08i 1.19574 0.868757i
\(218\) −963.540 + 2965.47i −0.299354 + 0.921317i
\(219\) −1045.40 −0.322565
\(220\) 641.457 + 459.770i 0.196577 + 0.140899i
\(221\) 4554.94 1.38642
\(222\) 681.604 2097.76i 0.206064 0.634201i
\(223\) 2126.25 1544.81i 0.638495 0.463894i −0.220837 0.975311i \(-0.570879\pi\)
0.859333 + 0.511416i \(0.170879\pi\)
\(224\) −573.427 416.619i −0.171043 0.124270i
\(225\) −899.271 2767.67i −0.266451 0.820051i
\(226\) 1383.87 + 4259.10i 0.407316 + 1.25359i
\(227\) −1377.40 1000.74i −0.402736 0.292605i 0.367919 0.929858i \(-0.380070\pi\)
−0.770654 + 0.637253i \(0.780070\pi\)
\(228\) −2335.42 + 1696.78i −0.678364 + 0.492861i
\(229\) 1667.44 5131.85i 0.481168 1.48088i −0.356287 0.934377i \(-0.615957\pi\)
0.837455 0.546506i \(-0.184043\pi\)
\(230\) −1541.13 −0.441823
\(231\) 1854.27 5834.30i 0.528146 1.66177i
\(232\) 163.346 0.0462251
\(233\) −1870.85 + 5757.87i −0.526022 + 1.61893i 0.236264 + 0.971689i \(0.424077\pi\)
−0.762286 + 0.647241i \(0.775923\pi\)
\(234\) 3777.98 2744.86i 1.05545 0.766826i
\(235\) −395.366 287.250i −0.109748 0.0797368i
\(236\) 373.907 + 1150.77i 0.103133 + 0.317410i
\(237\) −712.748 2193.61i −0.195350 0.601226i
\(238\) −2124.84 1543.79i −0.578711 0.420458i
\(239\) −2537.56 + 1843.65i −0.686783 + 0.498977i −0.875601 0.483035i \(-0.839534\pi\)
0.188818 + 0.982012i \(0.439534\pi\)
\(240\) 202.569 623.443i 0.0544823 0.167679i
\(241\) −6499.26 −1.73715 −0.868577 0.495555i \(-0.834965\pi\)
−0.868577 + 0.495555i \(0.834965\pi\)
\(242\) 2133.29 1592.27i 0.566666 0.422953i
\(243\) −5435.56 −1.43494
\(244\) −184.520 + 567.893i −0.0484125 + 0.148998i
\(245\) −645.850 + 469.237i −0.168416 + 0.122361i
\(246\) 1015.35 + 737.692i 0.263155 + 0.191193i
\(247\) 2261.61 + 6960.53i 0.582603 + 1.79307i
\(248\) −527.317 1622.91i −0.135019 0.415545i
\(249\) 4684.29 + 3403.33i 1.19219 + 0.866174i
\(250\) −1931.69 + 1403.46i −0.488684 + 0.355050i
\(251\) 1719.92 5293.38i 0.432512 1.33114i −0.463102 0.886305i \(-0.653264\pi\)
0.895615 0.444831i \(-0.146736\pi\)
\(252\) −2692.70 −0.673113
\(253\) −1574.50 + 4954.04i −0.391256 + 1.23106i
\(254\) −2186.91 −0.540232
\(255\) 750.623 2310.18i 0.184337 0.567330i
\(256\) −207.108 + 150.473i −0.0505636 + 0.0367366i
\(257\) 4883.48 + 3548.05i 1.18530 + 0.861173i 0.992760 0.120116i \(-0.0383265\pi\)
0.192543 + 0.981289i \(0.438327\pi\)
\(258\) 708.738 + 2181.27i 0.171024 + 0.526357i
\(259\) 996.430 + 3066.70i 0.239055 + 0.735735i
\(260\) −1344.55 976.870i −0.320712 0.233011i
\(261\) 502.037 364.751i 0.119063 0.0865040i
\(262\) 1524.17 4690.92i 0.359403 1.10613i
\(263\) −708.442 −0.166100 −0.0830502 0.996545i \(-0.526466\pi\)
−0.0830502 + 0.996545i \(0.526466\pi\)
\(264\) −1797.13 1288.10i −0.418960 0.300293i
\(265\) −1270.09 −0.294418
\(266\) 1304.08 4013.55i 0.300595 0.925137i
\(267\) 1918.96 1394.21i 0.439844 0.319566i
\(268\) −2673.76 1942.60i −0.609424 0.442773i
\(269\) −1486.28 4574.30i −0.336878 1.03680i −0.965790 0.259327i \(-0.916499\pi\)
0.628912 0.777477i \(-0.283501\pi\)
\(270\) −85.8879 264.336i −0.0193591 0.0595813i
\(271\) 4239.96 + 3080.51i 0.950404 + 0.690509i 0.950902 0.309491i \(-0.100159\pi\)
−0.000498618 1.00000i \(0.500159\pi\)
\(272\) −767.444 + 557.581i −0.171078 + 0.124295i
\(273\) −3983.74 + 12260.7i −0.883177 + 2.71814i
\(274\) 1946.57 0.429185
\(275\) 1100.85 + 3315.34i 0.241395 + 0.726990i
\(276\) 4317.69 0.941646
\(277\) −1650.07 + 5078.40i −0.357918 + 1.10156i 0.596380 + 0.802702i \(0.296605\pi\)
−0.954298 + 0.298856i \(0.903395\pi\)
\(278\) −2043.64 + 1484.79i −0.440897 + 0.320331i
\(279\) −5244.64 3810.45i −1.12541 0.817655i
\(280\) 296.133 + 911.405i 0.0632048 + 0.194524i
\(281\) −1013.57 3119.44i −0.215175 0.662242i −0.999141 0.0414376i \(-0.986806\pi\)
0.783966 0.620804i \(-0.213194\pi\)
\(282\) 1107.67 + 804.769i 0.233903 + 0.169941i
\(283\) 3960.54 2877.50i 0.831906 0.604415i −0.0881920 0.996103i \(-0.528109\pi\)
0.920098 + 0.391688i \(0.128109\pi\)
\(284\) −1111.18 + 3419.87i −0.232171 + 0.714549i
\(285\) 3902.95 0.811195
\(286\) −4513.84 + 3324.08i −0.933248 + 0.687262i
\(287\) −1834.73 −0.377354
\(288\) −300.532 + 924.943i −0.0614897 + 0.189246i
\(289\) 1130.92 821.661i 0.230189 0.167242i
\(290\) −178.670 129.811i −0.0361789 0.0262855i
\(291\) −1363.67 4196.93i −0.274706 0.845459i
\(292\) −170.569 524.958i −0.0341843 0.105208i
\(293\) −5425.10 3941.57i −1.08170 0.785901i −0.103721 0.994606i \(-0.533075\pi\)
−0.977978 + 0.208706i \(0.933075\pi\)
\(294\) 1809.43 1314.63i 0.358939 0.260785i
\(295\) 505.532 1555.87i 0.0997736 0.307072i
\(296\) 1164.62 0.228690
\(297\) −937.464 + 6.03149i −0.183156 + 0.00117839i
\(298\) 978.680 0.190246
\(299\) 3382.69 10410.8i 0.654267 2.01363i
\(300\) 2347.43 1705.51i 0.451763 0.328225i
\(301\) −2712.54 1970.77i −0.519429 0.377387i
\(302\) −1055.46 3248.38i −0.201109 0.618951i
\(303\) −331.384 1019.89i −0.0628300 0.193371i
\(304\) −1233.10 895.903i −0.232643 0.169025i
\(305\) 653.134 474.530i 0.122618 0.0890869i
\(306\) −1113.63 + 3427.39i −0.208045 + 0.640298i
\(307\) 9507.29 1.76746 0.883730 0.467998i \(-0.155025\pi\)
0.883730 + 0.467998i \(0.155025\pi\)
\(308\) 3232.29 20.7960i 0.597977 0.00384728i
\(309\) 6374.08 1.17349
\(310\) −712.946 + 2194.22i −0.130621 + 0.402011i
\(311\) −4666.47 + 3390.39i −0.850840 + 0.618171i −0.925378 0.379047i \(-0.876252\pi\)
0.0745375 + 0.997218i \(0.476252\pi\)
\(312\) 3766.92 + 2736.83i 0.683525 + 0.496610i
\(313\) 1847.23 + 5685.18i 0.333583 + 1.02666i 0.967416 + 0.253192i \(0.0814806\pi\)
−0.633833 + 0.773470i \(0.718519\pi\)
\(314\) −1583.23 4872.69i −0.284545 0.875739i
\(315\) 2945.31 + 2139.89i 0.526824 + 0.382760i
\(316\) 985.249 715.825i 0.175394 0.127431i
\(317\) 1616.76 4975.87i 0.286455 0.881617i −0.699504 0.714628i \(-0.746596\pi\)
0.985959 0.166988i \(-0.0534042\pi\)
\(318\) 3558.31 0.627485
\(319\) −599.822 + 441.720i −0.105278 + 0.0775285i
\(320\) 346.118 0.0604644
\(321\) −150.837 + 464.230i −0.0262272 + 0.0807189i
\(322\) −5106.50 + 3710.09i −0.883771 + 0.642097i
\(323\) −4569.29 3319.79i −0.787128 0.571882i
\(324\) −773.670 2381.11i −0.132659 0.408284i
\(325\) −2273.24 6996.32i −0.387990 1.19411i
\(326\) 2938.49 + 2134.94i 0.499227 + 0.362710i
\(327\) −9555.22 + 6942.27i −1.61592 + 1.17403i
\(328\) −204.773 + 630.228i −0.0344717 + 0.106093i
\(329\) −2001.55 −0.335408
\(330\) 942.059 + 2837.12i 0.157147 + 0.473268i
\(331\) −3963.72 −0.658205 −0.329102 0.944294i \(-0.606746\pi\)
−0.329102 + 0.944294i \(0.606746\pi\)
\(332\) −944.719 + 2907.55i −0.156169 + 0.480639i
\(333\) 3579.40 2600.59i 0.589039 0.427962i
\(334\) 613.114 + 445.453i 0.100443 + 0.0729764i
\(335\) 1380.80 + 4249.67i 0.225198 + 0.693088i
\(336\) −829.656 2553.42i −0.134707 0.414585i
\(337\) −4131.33 3001.58i −0.667797 0.485183i 0.201490 0.979491i \(-0.435422\pi\)
−0.869287 + 0.494308i \(0.835422\pi\)
\(338\) 5995.43 4355.93i 0.964817 0.700981i
\(339\) −5241.91 + 16132.9i −0.839827 + 2.58472i
\(340\) 1282.55 0.204576
\(341\) 6325.03 + 4533.51i 1.00446 + 0.719952i
\(342\) −5790.43 −0.915528
\(343\) 1337.35 4115.94i 0.210525 0.647929i
\(344\) −979.706 + 711.798i −0.153553 + 0.111563i
\(345\) −4722.74 3431.27i −0.736996 0.535459i
\(346\) −31.3479 96.4789i −0.00487073 0.0149906i
\(347\) 2331.77 + 7176.44i 0.360737 + 1.11023i 0.952608 + 0.304201i \(0.0983896\pi\)
−0.591871 + 0.806033i \(0.701610\pi\)
\(348\) 500.568 + 363.684i 0.0771070 + 0.0560215i
\(349\) 2634.74 1914.25i 0.404109 0.293603i −0.367103 0.930180i \(-0.619650\pi\)
0.771213 + 0.636578i \(0.219650\pi\)
\(350\) −1310.79 + 4034.19i −0.200184 + 0.616104i
\(351\) 1974.19 0.300212
\(352\) 353.612 1112.61i 0.0535442 0.168473i
\(353\) −6506.83 −0.981087 −0.490543 0.871417i \(-0.663202\pi\)
−0.490543 + 0.871417i \(0.663202\pi\)
\(354\) −1416.31 + 4358.97i −0.212645 + 0.654453i
\(355\) 3933.19 2857.63i 0.588034 0.427232i
\(356\) 1013.21 + 736.142i 0.150843 + 0.109594i
\(357\) −3074.31 9461.75i −0.455769 1.40271i
\(358\) −12.8970 39.6929i −0.00190399 0.00585988i
\(359\) −3289.63 2390.06i −0.483622 0.351372i 0.319105 0.947720i \(-0.396618\pi\)
−0.802726 + 0.596348i \(0.796618\pi\)
\(360\) 1063.78 772.880i 0.155739 0.113151i
\(361\) 684.768 2107.50i 0.0998349 0.307260i
\(362\) 352.307 0.0511514
\(363\) 10082.5 129.743i 1.45783 0.0187597i
\(364\) −6806.81 −0.980148
\(365\) −230.614 + 709.756i −0.0330709 + 0.101782i
\(366\) −1829.84 + 1329.46i −0.261331 + 0.189868i
\(367\) 1126.37 + 818.358i 0.160208 + 0.116398i 0.665001 0.746843i \(-0.268431\pi\)
−0.504793 + 0.863240i \(0.668431\pi\)
\(368\) 704.479 + 2168.16i 0.0997922 + 0.307129i
\(369\) 777.933 + 2394.23i 0.109749 + 0.337774i
\(370\) −1273.87 925.524i −0.178988 0.130042i
\(371\) −4208.39 + 3057.58i −0.588919 + 0.427875i
\(372\) 1997.41 6147.39i 0.278389 0.856794i
\(373\) 9440.30 1.31046 0.655228 0.755431i \(-0.272572\pi\)
0.655228 + 0.755431i \(0.272572\pi\)
\(374\) 1310.32 4122.80i 0.181163 0.570014i
\(375\) −9044.32 −1.24546
\(376\) −223.393 + 687.533i −0.0306399 + 0.0943000i
\(377\) 1269.09 922.044i 0.173372 0.125962i
\(378\) −920.943 669.104i −0.125313 0.0910450i
\(379\) 398.740 + 1227.20i 0.0540420 + 0.166324i 0.974435 0.224671i \(-0.0721308\pi\)
−0.920393 + 0.390995i \(0.872131\pi\)
\(380\) 636.809 + 1959.90i 0.0859674 + 0.264581i
\(381\) −6701.69 4869.06i −0.901149 0.654723i
\(382\) −1875.66 + 1362.74i −0.251222 + 0.182524i
\(383\) −1746.84 + 5376.22i −0.233053 + 0.717264i 0.764321 + 0.644836i \(0.223075\pi\)
−0.997374 + 0.0724273i \(0.976925\pi\)
\(384\) −969.696 −0.128866
\(385\) −3552.04 2545.95i −0.470205 0.337023i
\(386\) 2569.88 0.338868
\(387\) −1421.64 + 4375.35i −0.186734 + 0.574707i
\(388\) 1885.03 1369.55i 0.246644 0.179197i
\(389\) 10386.2 + 7545.99i 1.35373 + 0.983539i 0.998816 + 0.0486380i \(0.0154881\pi\)
0.354909 + 0.934901i \(0.384512\pi\)
\(390\) −1945.34 5987.15i −0.252580 0.777362i
\(391\) 2610.46 + 8034.18i 0.337639 + 1.03915i
\(392\) 955.381 + 694.125i 0.123097 + 0.0894352i
\(393\) 15114.9 10981.6i 1.94006 1.40954i
\(394\) 1659.46 5107.28i 0.212188 0.653049i
\(395\) −1646.54 −0.209738
\(396\) −1397.64 4209.17i −0.177359 0.534138i
\(397\) 7691.26 0.972326 0.486163 0.873868i \(-0.338396\pi\)
0.486163 + 0.873868i \(0.338396\pi\)
\(398\) 824.173 2536.54i 0.103799 0.319461i
\(399\) 12932.3 9395.86i 1.62262 1.17890i
\(400\) 1239.45 + 900.510i 0.154931 + 0.112564i
\(401\) 2406.06 + 7405.09i 0.299633 + 0.922176i 0.981626 + 0.190817i \(0.0611136\pi\)
−0.681993 + 0.731359i \(0.738886\pi\)
\(402\) −3868.50 11906.0i −0.479958 1.47716i
\(403\) −13257.8 9632.33i −1.63875 1.19062i
\(404\) 458.080 332.814i 0.0564117 0.0409855i
\(405\) −1046.02 + 3219.32i −0.128339 + 0.394986i
\(406\) −904.523 −0.110568
\(407\) −4276.59 + 3149.36i −0.520842 + 0.383557i
\(408\) −3593.23 −0.436008
\(409\) −2737.85 + 8426.25i −0.330998 + 1.01871i 0.637662 + 0.770316i \(0.279902\pi\)
−0.968660 + 0.248391i \(0.920098\pi\)
\(410\) 724.826 526.617i 0.0873087 0.0634335i
\(411\) 5965.18 + 4333.96i 0.715914 + 0.520142i
\(412\) 1040.00 + 3200.80i 0.124362 + 0.382748i
\(413\) −2070.50 6372.33i −0.246689 0.759230i
\(414\) 7006.68 + 5090.65i 0.831786 + 0.604328i
\(415\) 3343.97 2429.54i 0.395540 0.287377i
\(416\) −759.706 + 2338.14i −0.0895377 + 0.275569i
\(417\) −9568.47 −1.12367
\(418\) 6950.76 44.7200i 0.813332 0.00523284i
\(419\) 9469.08 1.10405 0.552023 0.833829i \(-0.313856\pi\)
0.552023 + 0.833829i \(0.313856\pi\)
\(420\) −1121.72 + 3452.29i −0.130319 + 0.401082i
\(421\) −4189.04 + 3043.52i −0.484944 + 0.352333i −0.803237 0.595660i \(-0.796891\pi\)
0.318292 + 0.947993i \(0.396891\pi\)
\(422\) −2634.43 1914.03i −0.303891 0.220790i
\(423\) 848.668 + 2611.93i 0.0975500 + 0.300228i
\(424\) 580.578 + 1786.84i 0.0664985 + 0.204661i
\(425\) 4592.79 + 3336.86i 0.524196 + 0.380850i
\(426\) −11019.4 + 8006.03i −1.25326 + 0.910548i
\(427\) 1021.77 3144.68i 0.115801 0.356398i
\(428\) −257.728 −0.0291069
\(429\) −21233.4 + 136.612i −2.38964 + 0.0153746i
\(430\) 1637.28 0.183620
\(431\) 3233.42 9951.43i 0.361365 1.11217i −0.590862 0.806773i \(-0.701212\pi\)
0.952226 0.305393i \(-0.0987880\pi\)
\(432\) −332.623 + 241.665i −0.0370448 + 0.0269146i
\(433\) −12813.4 9309.48i −1.42211 1.03322i −0.991419 0.130721i \(-0.958271\pi\)
−0.430688 0.902501i \(-0.641729\pi\)
\(434\) 2919.99 + 8986.81i 0.322959 + 0.993965i
\(435\) −258.507 795.603i −0.0284930 0.0876925i
\(436\) −5045.16 3665.52i −0.554173 0.402630i
\(437\) −10981.1 + 7978.23i −1.20205 + 0.873342i
\(438\) 646.095 1988.47i 0.0704831 0.216925i
\(439\) −4824.70 −0.524534 −0.262267 0.964995i \(-0.584470\pi\)
−0.262267 + 0.964995i \(0.584470\pi\)
\(440\) −1270.98 + 935.971i −0.137708 + 0.101411i
\(441\) 4486.29 0.484429
\(442\) −2815.11 + 8664.01i −0.302944 + 0.932364i
\(443\) −2899.02 + 2106.26i −0.310918 + 0.225895i −0.732290 0.680993i \(-0.761549\pi\)
0.421372 + 0.906888i \(0.361549\pi\)
\(444\) 3568.93 + 2592.98i 0.381472 + 0.277156i
\(445\) −523.251 1610.40i −0.0557404 0.171551i
\(446\) 1624.31 + 4999.12i 0.172452 + 0.530752i
\(447\) 2999.12 + 2178.99i 0.317346 + 0.230565i
\(448\) 1146.85 833.238i 0.120946 0.0878723i
\(449\) −2409.09 + 7414.42i −0.253212 + 0.779306i 0.740965 + 0.671544i \(0.234368\pi\)
−0.994177 + 0.107762i \(0.965632\pi\)
\(450\) 5820.21 0.609705
\(451\) −952.312 2868.00i −0.0994293 0.299443i
\(452\) −8956.57 −0.932039
\(453\) 3997.96 12304.5i 0.414659 1.27619i
\(454\) 2754.79 2001.47i 0.284777 0.206903i
\(455\) 7445.37 + 5409.38i 0.767130 + 0.557353i
\(456\) −1784.10 5490.91i −0.183220 0.563893i
\(457\) 1034.60 + 3184.16i 0.105900 + 0.325927i 0.989941 0.141483i \(-0.0451871\pi\)
−0.884041 + 0.467410i \(0.845187\pi\)
\(458\) 8730.83 + 6343.32i 0.890753 + 0.647170i
\(459\) −1232.54 + 895.494i −0.125338 + 0.0910634i
\(460\) 952.474 2931.41i 0.0965420 0.297126i
\(461\) 7171.96 0.724580 0.362290 0.932065i \(-0.381995\pi\)
0.362290 + 0.932065i \(0.381995\pi\)
\(462\) 9951.50 + 7132.82i 1.00213 + 0.718288i
\(463\) 4034.74 0.404990 0.202495 0.979283i \(-0.435095\pi\)
0.202495 + 0.979283i \(0.435095\pi\)
\(464\) −100.954 + 310.703i −0.0101006 + 0.0310863i
\(465\) −7070.13 + 5136.75i −0.705095 + 0.512282i
\(466\) −9795.87 7117.12i −0.973788 0.707498i
\(467\) −3653.15 11243.2i −0.361986 1.11408i −0.951847 0.306574i \(-0.900817\pi\)
0.589860 0.807505i \(-0.299183\pi\)
\(468\) 2886.12 + 8882.56i 0.285066 + 0.877343i
\(469\) 14805.8 + 10757.1i 1.45772 + 1.05909i
\(470\) 790.732 574.501i 0.0776037 0.0563824i
\(471\) 5997.09 18457.1i 0.586691 1.80565i
\(472\) −2419.98 −0.235993
\(473\) 1672.73 5263.10i 0.162605 0.511622i
\(474\) 4613.00 0.447009
\(475\) −2818.74 + 8675.18i −0.272279 + 0.837988i
\(476\) 4249.69 3087.58i 0.409210 0.297309i
\(477\) 5774.37 + 4195.33i 0.554277 + 0.402706i
\(478\) −1938.53 5966.17i −0.185494 0.570891i
\(479\) −2676.07 8236.09i −0.255267 0.785630i −0.993777 0.111388i \(-0.964470\pi\)
0.738510 0.674242i \(-0.235530\pi\)
\(480\) 1060.66 + 770.618i 0.100859 + 0.0732786i
\(481\) 9048.27 6573.95i 0.857725 0.623173i
\(482\) 4016.76 12362.3i 0.379582 1.16823i
\(483\) −23909.0 −2.25238
\(484\) 1710.22 + 5041.84i 0.160614 + 0.473501i
\(485\) −3150.25 −0.294939
\(486\) 3359.36 10339.0i 0.313547 0.964997i
\(487\) −6009.10 + 4365.87i −0.559134 + 0.406235i −0.831142 0.556060i \(-0.812312\pi\)
0.272008 + 0.962295i \(0.412312\pi\)
\(488\) −966.157 701.954i −0.0896227 0.0651147i
\(489\) 4251.52 + 13084.8i 0.393171 + 1.21006i
\(490\) −493.385 1518.48i −0.0454875 0.139996i
\(491\) 4485.10 + 3258.62i 0.412240 + 0.299510i 0.774508 0.632564i \(-0.217998\pi\)
−0.362268 + 0.932074i \(0.617998\pi\)
\(492\) −2030.69 + 1475.38i −0.186079 + 0.135194i
\(493\) −374.086 + 1151.32i −0.0341744 + 0.105178i
\(494\) −14637.5 −1.33314
\(495\) −1816.27 + 5714.74i −0.164920 + 0.518906i
\(496\) 3412.87 0.308956
\(497\) 6153.12 18937.4i 0.555342 1.70917i
\(498\) −9368.57 + 6806.67i −0.843003 + 0.612478i
\(499\) −16513.7 11997.9i −1.48147 1.07635i −0.977079 0.212875i \(-0.931717\pi\)
−0.504391 0.863476i \(-0.668283\pi\)
\(500\) −1475.68 4541.68i −0.131989 0.406220i
\(501\) 887.077 + 2730.14i 0.0791051 + 0.243460i
\(502\) 9005.63 + 6542.98i 0.800680 + 0.581728i
\(503\) 147.841 107.413i 0.0131052 0.00952148i −0.581213 0.813751i \(-0.697422\pi\)
0.594319 + 0.804230i \(0.297422\pi\)
\(504\) 1664.18 5121.83i 0.147081 0.452667i
\(505\) −765.540 −0.0674576
\(506\) −8450.04 6056.64i −0.742392 0.532115i
\(507\) 28071.0 2.45893
\(508\) 1351.58 4159.75i 0.118045 0.363305i
\(509\) −3847.11 + 2795.09i −0.335010 + 0.243399i −0.742554 0.669787i \(-0.766386\pi\)
0.407543 + 0.913186i \(0.366386\pi\)
\(510\) 3930.31 + 2855.54i 0.341249 + 0.247932i
\(511\) 944.519 + 2906.93i 0.0817673 + 0.251654i
\(512\) −158.217 486.941i −0.0136568 0.0420312i
\(513\) −1980.41 1438.85i −0.170443 0.123834i
\(514\) −9766.95 + 7096.11i −0.838136 + 0.608941i
\(515\) 1406.11 4327.56i 0.120312 0.370282i
\(516\) −4587.05 −0.391344
\(517\) −1038.90 3128.78i −0.0883770 0.266158i
\(518\) −6449.03 −0.547016
\(519\) 118.742 365.450i 0.0100428 0.0309084i
\(520\) 2689.09 1953.74i 0.226778 0.164764i
\(521\) 9490.70 + 6895.40i 0.798071 + 0.579833i 0.910348 0.413844i \(-0.135814\pi\)
−0.112277 + 0.993677i \(0.535814\pi\)
\(522\) 383.522 + 1180.36i 0.0321577 + 0.0989712i
\(523\) −106.252 327.011i −0.00888353 0.0273407i 0.946517 0.322655i \(-0.104575\pi\)
−0.955400 + 0.295315i \(0.904575\pi\)
\(524\) 7980.67 + 5798.29i 0.665338 + 0.483396i
\(525\) −12998.8 + 9444.18i −1.08060 + 0.785101i
\(526\) 437.841 1347.54i 0.0362943 0.111702i
\(527\) 12646.4 1.04533
\(528\) 3560.81 2622.24i 0.293493 0.216134i
\(529\) 8134.66 0.668584
\(530\) 784.956 2415.85i 0.0643327 0.197996i
\(531\) −7437.69 + 5403.80i −0.607850 + 0.441629i
\(532\) 6828.26 + 4961.02i 0.556471 + 0.404300i
\(533\) 1966.51 + 6052.31i 0.159811 + 0.491847i
\(534\) 1465.95 + 4511.74i 0.118798 + 0.365622i
\(535\) 281.906 + 204.816i 0.0227810 + 0.0165514i
\(536\) 5347.51 3885.20i 0.430928 0.313088i
\(537\) 48.8522 150.352i 0.00392575 0.0120822i
\(538\) 9619.41 0.770859
\(539\) −5385.29 + 34.6480i −0.430354 + 0.00276882i
\(540\) 555.878 0.0442985
\(541\) −5328.62 + 16399.8i −0.423466 + 1.30329i 0.480989 + 0.876726i \(0.340278\pi\)
−0.904455 + 0.426568i \(0.859722\pi\)
\(542\) −8479.93 + 6161.03i −0.672037 + 0.488263i
\(543\) 1079.63 + 784.395i 0.0853246 + 0.0619919i
\(544\) −586.275 1804.37i −0.0462065 0.142209i
\(545\) 2605.46 + 8018.78i 0.204781 + 0.630251i
\(546\) −20859.2 15155.1i −1.63496 1.18787i
\(547\) 6183.49 4492.57i 0.483340 0.351167i −0.319277 0.947661i \(-0.603440\pi\)
0.802617 + 0.596494i \(0.203440\pi\)
\(548\) −1203.05 + 3702.60i −0.0937804 + 0.288626i
\(549\) −4536.89 −0.352696
\(550\) −6986.50 + 44.9500i −0.541646 + 0.00348486i
\(551\) −1945.10 −0.150388
\(552\) −2668.48 + 8212.73i −0.205757 + 0.633256i
\(553\) −5455.77 + 3963.85i −0.419535 + 0.304810i
\(554\) −8639.89 6277.25i −0.662588 0.481399i
\(555\) −1843.09 5672.45i −0.140964 0.433842i
\(556\) −1561.20 4804.89i −0.119082 0.366498i
\(557\) −21120.3 15344.8i −1.60664 1.16729i −0.872955 0.487800i \(-0.837799\pi\)
−0.733684 0.679491i \(-0.762201\pi\)
\(558\) 10489.3 7620.90i 0.795782 0.578170i
\(559\) −3593.72 + 11060.3i −0.271911 + 0.836855i
\(560\) −1916.62 −0.144628
\(561\) 13194.6 9716.78i 0.993009 0.731271i
\(562\) 6559.94 0.492374
\(563\) −5585.14 + 17189.3i −0.418092 + 1.28675i 0.491364 + 0.870954i \(0.336498\pi\)
−0.909456 + 0.415800i \(0.863502\pi\)
\(564\) −2215.34 + 1609.54i −0.165395 + 0.120166i
\(565\) 9796.79 + 7117.79i 0.729476 + 0.529996i
\(566\) 3025.58 + 9311.78i 0.224690 + 0.691525i
\(567\) 4284.16 + 13185.3i 0.317316 + 0.976597i
\(568\) −5818.23 4227.19i −0.429802 0.312269i
\(569\) −6314.50 + 4587.76i −0.465233 + 0.338012i −0.795581 0.605848i \(-0.792834\pi\)
0.330347 + 0.943859i \(0.392834\pi\)
\(570\) −2412.15 + 7423.84i −0.177253 + 0.545527i
\(571\) −13039.6 −0.955672 −0.477836 0.878449i \(-0.658579\pi\)
−0.477836 + 0.878449i \(0.658579\pi\)
\(572\) −3533.06 10640.2i −0.258260 0.777780i
\(573\) −8781.96 −0.640264
\(574\) 1133.92 3489.86i 0.0824548 0.253770i
\(575\) 11037.6 8019.26i 0.800519 0.581611i
\(576\) −1573.61 1143.29i −0.113831 0.0827034i
\(577\) −2957.12 9101.06i −0.213356 0.656642i −0.999266 0.0383013i \(-0.987805\pi\)
0.785910 0.618340i \(-0.212195\pi\)
\(578\) 863.946 + 2658.95i 0.0621720 + 0.191346i
\(579\) 7875.26 + 5721.71i 0.565259 + 0.410685i
\(580\) 357.340 259.623i 0.0255823 0.0185866i
\(581\) 5231.34 16100.4i 0.373550 1.14967i
\(582\) 8825.83 0.628595
\(583\) −6963.88 4991.42i −0.494708 0.354586i
\(584\) 1103.95 0.0782220
\(585\) 3902.11 12009.4i 0.275782 0.848769i
\(586\) 10850.2 7883.14i 0.764877 0.555716i
\(587\) −7869.31 5717.39i −0.553324 0.402013i 0.275686 0.961248i \(-0.411095\pi\)
−0.829009 + 0.559235i \(0.811095\pi\)
\(588\) 1382.28 + 4254.23i 0.0969462 + 0.298370i
\(589\) 6279.19 + 19325.4i 0.439269 + 1.35193i
\(590\) 2647.00 + 1923.16i 0.184704 + 0.134195i
\(591\) 16456.5 11956.3i 1.14540 0.832179i
\(592\) −719.775 + 2215.24i −0.0499706 + 0.153794i
\(593\) 6926.77 0.479677 0.239838 0.970813i \(-0.422906\pi\)
0.239838 + 0.970813i \(0.422906\pi\)
\(594\) 567.912 1786.89i 0.0392285 0.123429i
\(595\) −7102.06 −0.489338
\(596\) −604.858 + 1861.56i −0.0415704 + 0.127940i
\(597\) 8173.14 5938.13i 0.560309 0.407088i
\(598\) 17712.0 + 12868.5i 1.21120 + 0.879987i
\(599\) −6793.63 20908.7i −0.463406 1.42622i −0.860976 0.508646i \(-0.830146\pi\)
0.397570 0.917572i \(-0.369854\pi\)
\(600\) 1793.28 + 5519.14i 0.122017 + 0.375530i
\(601\) 5957.01 + 4328.02i 0.404312 + 0.293750i 0.771295 0.636478i \(-0.219609\pi\)
−0.366983 + 0.930228i \(0.619609\pi\)
\(602\) 5425.08 3941.55i 0.367292 0.266853i
\(603\) 7759.71 23881.9i 0.524046 1.61285i
\(604\) 6831.10 0.460188
\(605\) 2136.09 6873.93i 0.143544 0.461926i
\(606\) 2144.76 0.143771
\(607\) 3142.21 9670.72i 0.210113 0.646660i −0.789352 0.613941i \(-0.789583\pi\)
0.999465 0.0327190i \(-0.0104167\pi\)
\(608\) 2466.21 1791.81i 0.164503 0.119519i
\(609\) −2771.87 2013.88i −0.184437 0.134001i
\(610\) 498.950 + 1535.61i 0.0331179 + 0.101926i
\(611\) 2145.32 + 6602.63i 0.142047 + 0.437175i
\(612\) −5831.03 4236.49i −0.385140 0.279820i
\(613\) −20293.8 + 14744.3i −1.33713 + 0.971479i −0.337581 + 0.941296i \(0.609609\pi\)
−0.999544 + 0.0301824i \(0.990391\pi\)
\(614\) −5875.83 + 18083.9i −0.386204 + 1.18861i
\(615\) 3393.68 0.222515
\(616\) −1958.11 + 6161.03i −0.128075 + 0.402979i
\(617\) −26335.5 −1.71836 −0.859178 0.511677i \(-0.829024\pi\)
−0.859178 + 0.511677i \(0.829024\pi\)
\(618\) −3939.40 + 12124.2i −0.256417 + 0.789171i
\(619\) 19936.7 14484.9i 1.29455 0.940544i 0.294661 0.955602i \(-0.404793\pi\)
0.999887 + 0.0150577i \(0.00479321\pi\)
\(620\) −3733.03 2712.21i −0.241810 0.175685i
\(621\) 1131.42 + 3482.15i 0.0731115 + 0.225014i
\(622\) −3564.87 10971.5i −0.229804 0.707264i
\(623\) −5610.62 4076.35i −0.360810 0.262144i
\(624\) −7533.84 + 5473.66i −0.483326 + 0.351157i
\(625\) 1703.48 5242.78i 0.109023 0.335538i
\(626\) −11955.5 −0.763319
\(627\) 21399.9 + 15338.5i 1.36304 + 0.976972i
\(628\) 10246.9 0.651108
\(629\) −2667.14 + 8208.62i −0.169071 + 0.520348i
\(630\) −5890.62 + 4279.79i −0.372521 + 0.270652i
\(631\) −6031.48 4382.13i −0.380522 0.276465i 0.381039 0.924559i \(-0.375567\pi\)
−0.761561 + 0.648094i \(0.775567\pi\)
\(632\) 752.663 + 2316.46i 0.0473724 + 0.145797i
\(633\) −3811.60 11730.9i −0.239332 0.736589i
\(634\) 8465.45 + 6150.51i 0.530293 + 0.385281i
\(635\) −4784.13 + 3475.88i −0.298980 + 0.217222i
\(636\) −2199.16 + 6768.31i −0.137110 + 0.421983i
\(637\) 11340.8 0.705397
\(638\) −469.491 1413.93i −0.0291338 0.0877397i
\(639\) −27321.3 −1.69141
\(640\) −213.913 + 658.356i −0.0132120 + 0.0406622i
\(641\) 2247.99 1633.26i 0.138518 0.100639i −0.516368 0.856367i \(-0.672716\pi\)
0.654887 + 0.755727i \(0.272716\pi\)
\(642\) −789.795 573.820i −0.0485525 0.0352755i
\(643\) 2335.46 + 7187.81i 0.143237 + 0.440839i 0.996780 0.0801836i \(-0.0255507\pi\)
−0.853543 + 0.521023i \(0.825551\pi\)
\(644\) −3901.02 12006.1i −0.238698 0.734638i
\(645\) 5017.37 + 3645.33i 0.306292 + 0.222535i
\(646\) 9138.59 6639.57i 0.556584 0.404382i
\(647\) −8476.55 + 26088.1i −0.515066 + 1.58521i 0.268096 + 0.963392i \(0.413605\pi\)
−0.783162 + 0.621817i \(0.786395\pi\)
\(648\) 5007.30 0.303557
\(649\) 8886.37 6544.09i 0.537474 0.395806i
\(650\) 14712.7 0.887817
\(651\) −11060.6 + 34040.9i −0.665895 + 2.04941i
\(652\) −5876.98 + 4269.88i −0.353007 + 0.256474i
\(653\) −230.350 167.359i −0.0138044 0.0100295i 0.580862 0.814002i \(-0.302716\pi\)
−0.594666 + 0.803973i \(0.702716\pi\)
\(654\) −7299.54 22465.7i −0.436444 1.34324i
\(655\) −4121.44 12684.5i −0.245859 0.756677i
\(656\) −1072.21 779.004i −0.0638150 0.0463643i
\(657\) 3392.93 2465.11i 0.201477 0.146382i
\(658\) 1237.03 3807.18i 0.0732893 0.225561i
\(659\) 20747.0 1.22639 0.613193 0.789933i \(-0.289885\pi\)
0.613193 + 0.789933i \(0.289885\pi\)
\(660\) −5978.75 + 38.4662i −0.352610 + 0.00226863i
\(661\) −18908.8 −1.11266 −0.556328 0.830963i \(-0.687790\pi\)
−0.556328 + 0.830963i \(0.687790\pi\)
\(662\) 2449.71 7539.44i 0.143823 0.442642i
\(663\) −27916.8 + 20282.8i −1.63529 + 1.18811i
\(664\) −4946.61 3593.92i −0.289105 0.210047i
\(665\) −3526.30 10852.8i −0.205630 0.632865i
\(666\) 2734.42 + 8415.68i 0.159094 + 0.489641i
\(667\) 2353.66 + 1710.03i 0.136633 + 0.0992694i
\(668\) −1226.23 + 890.906i −0.0710242 + 0.0516021i
\(669\) −6152.69 + 18936.0i −0.355571 + 1.09433i
\(670\) −8936.74 −0.515308
\(671\) 5446.03 35.0388i 0.313326 0.00201589i
\(672\) 5369.65 0.308242
\(673\) 9229.07 28404.2i 0.528610 1.62689i −0.228455 0.973554i \(-0.573367\pi\)
0.757065 0.653340i \(-0.226633\pi\)
\(674\) 8262.65 6003.17i 0.472204 0.343076i
\(675\) 1990.59 + 1446.25i 0.113508 + 0.0824684i
\(676\) 4580.10 + 14096.1i 0.260588 + 0.802008i
\(677\) −5340.04 16435.0i −0.303153 0.933009i −0.980360 0.197216i \(-0.936810\pi\)
0.677207 0.735793i \(-0.263190\pi\)
\(678\) −27447.0 19941.4i −1.55471 1.12956i
\(679\) −10438.3 + 7583.84i −0.589961 + 0.428632i
\(680\) −792.659 + 2439.55i −0.0447016 + 0.137577i
\(681\) 12898.1 0.725782
\(682\) −12532.3 + 9229.05i −0.703648 + 0.518180i
\(683\) 25104.0 1.40641 0.703204 0.710988i \(-0.251752\pi\)
0.703204 + 0.710988i \(0.251752\pi\)
\(684\) 3578.68 11014.1i 0.200050 0.615691i
\(685\) 4258.37 3093.88i 0.237524 0.172571i
\(686\) 7002.45 + 5087.58i 0.389730 + 0.283156i
\(687\) 12632.1 + 38877.6i 0.701521 + 2.15906i
\(688\) −748.429 2303.43i −0.0414732 0.127641i
\(689\) 14596.9 + 10605.2i 0.807106 + 0.586397i
\(690\) 9445.47 6862.54i 0.521135 0.378627i
\(691\) −8085.06 + 24883.3i −0.445109 + 1.36990i 0.437256 + 0.899337i \(0.355950\pi\)
−0.882364 + 0.470567i \(0.844050\pi\)
\(692\) 202.888 0.0111454
\(693\) 7739.39 + 23308.1i 0.424235 + 1.27763i
\(694\) −15091.5 −0.825455
\(695\) −2110.79 + 6496.33i −0.115204 + 0.354561i
\(696\) −1001.14 + 727.367i −0.0545229 + 0.0396132i
\(697\) −3973.09 2886.62i −0.215913 0.156870i
\(698\) 2012.76 + 6194.64i 0.109146 + 0.335917i
\(699\) −14173.1 43620.2i −0.766916 2.36032i
\(700\) −6863.37 4986.53i −0.370587 0.269248i
\(701\) 1229.26 893.108i 0.0662317 0.0481201i −0.554177 0.832399i \(-0.686967\pi\)
0.620408 + 0.784279i \(0.286967\pi\)
\(702\) −1220.11 + 3755.13i −0.0655987 + 0.201892i
\(703\) −13868.1 −0.744018
\(704\) 1897.77 + 1360.24i 0.101598 + 0.0728210i
\(705\) 3702.26 0.197781
\(706\) 4021.44 12376.7i 0.214375 0.659779i
\(707\) −2536.59 + 1842.94i −0.134934 + 0.0980354i
\(708\) −7415.92 5387.98i −0.393654 0.286007i
\(709\) −6716.14 20670.2i −0.355755 1.09490i −0.955571 0.294762i \(-0.904760\pi\)
0.599816 0.800138i \(-0.295240\pi\)
\(710\) 3004.69 + 9247.49i 0.158823 + 0.488806i
\(711\) 7485.91 + 5438.83i 0.394857 + 0.286881i
\(712\) −2026.42 + 1472.28i −0.106662 + 0.0774946i
\(713\) 9391.77 28904.9i 0.493302 1.51823i
\(714\) 19897.3 1.04291
\(715\) −4591.29 + 14446.1i −0.240146 + 0.755601i
\(716\) 83.4712 0.00435679
\(717\) 7342.89 22599.1i 0.382462 1.17710i
\(718\) 6579.26 4780.11i 0.341972 0.248457i
\(719\) 11384.4 + 8271.22i 0.590494 + 0.429019i 0.842492 0.538709i \(-0.181088\pi\)
−0.251998 + 0.967728i \(0.581088\pi\)
\(720\) 812.654 + 2501.09i 0.0420636 + 0.129459i
\(721\) −5758.97 17724.3i −0.297469 0.915516i
\(722\) 3585.49 + 2605.01i 0.184817 + 0.134278i
\(723\) 39833.4 28940.6i 2.04899 1.48868i
\(724\) −217.737 + 670.127i −0.0111770 + 0.0343993i
\(725\) 1955.10 0.100153
\(726\) −5984.53 + 19258.2i −0.305932 + 0.984489i
\(727\) 10409.2 0.531027 0.265513 0.964107i \(-0.414459\pi\)
0.265513 + 0.964107i \(0.414459\pi\)
\(728\) 4206.84 12947.3i 0.214170 0.659148i
\(729\) 19642.0 14270.7i 0.997915 0.725027i
\(730\) −1207.51 877.307i −0.0612218 0.0444803i
\(731\) −2773.32 8535.39i −0.140321 0.431865i
\(732\) −1397.87 4302.21i −0.0705832 0.217233i
\(733\) 15690.8 + 11400.0i 0.790658 + 0.574447i 0.908159 0.418626i \(-0.137488\pi\)
−0.117501 + 0.993073i \(0.537488\pi\)
\(734\) −2252.75 + 1636.72i −0.113284 + 0.0823056i
\(735\) 1868.88 5751.82i 0.0937887 0.288652i
\(736\) −4559.48 −0.228349
\(737\) −9130.21 + 28727.5i −0.456331 + 1.43581i
\(738\) −5034.89 −0.251134
\(739\) −2061.83 + 6345.68i −0.102633 + 0.315872i −0.989168 0.146790i \(-0.953106\pi\)
0.886535 + 0.462662i \(0.153106\pi\)
\(740\) 2547.75 1851.05i 0.126564 0.0919539i
\(741\) −44855.8 32589.7i −2.22378 1.61567i
\(742\) −3214.93 9894.52i −0.159062 0.489541i
\(743\) 2028.75 + 6243.86i 0.100172 + 0.308297i 0.988567 0.150782i \(-0.0481792\pi\)
−0.888395 + 0.459080i \(0.848179\pi\)
\(744\) 10458.6 + 7598.60i 0.515363 + 0.374433i
\(745\) 2140.98 1555.52i 0.105288 0.0764962i
\(746\) −5834.43 + 17956.5i −0.286345 + 0.881280i
\(747\) −23228.4 −1.13773
\(748\) 7032.22 + 5040.40i 0.343748 + 0.246384i
\(749\) 1427.16 0.0696223
\(750\) 5589.70 17203.3i 0.272142 0.837568i
\(751\) −15321.7 + 11131.9i −0.744470 + 0.540889i −0.894108 0.447852i \(-0.852189\pi\)
0.149638 + 0.988741i \(0.452189\pi\)
\(752\) −1169.70 849.837i −0.0567215 0.0412106i
\(753\) 13029.7 + 40101.3i 0.630583 + 1.94073i
\(754\) 969.495 + 2983.80i 0.0468262 + 0.144116i
\(755\) −7471.93 5428.68i −0.360174 0.261682i
\(756\) 1841.89 1338.21i 0.0886094 0.0643785i
\(757\) −3386.32 + 10422.0i −0.162586 + 0.500389i −0.998850 0.0479377i \(-0.984735\pi\)
0.836264 + 0.548327i \(0.184735\pi\)
\(758\) −2580.70 −0.123661
\(759\) −12409.9 37373.9i −0.593481 1.78734i
\(760\) −4121.52 −0.196715
\(761\) −10952.2 + 33707.5i −0.521706 + 1.60565i 0.249033 + 0.968495i \(0.419887\pi\)
−0.770739 + 0.637151i \(0.780113\pi\)
\(762\) 13403.4 9738.12i 0.637209 0.462959i
\(763\) 27937.4 + 20297.7i 1.32556 + 0.963074i
\(764\) −1432.87 4409.93i −0.0678529 0.208830i
\(765\) 3011.31 + 9267.85i 0.142319 + 0.438013i
\(766\) −9146.57 6645.37i −0.431435 0.313456i
\(767\) −18801.5 + 13660.1i −0.885115 + 0.643074i
\(768\) 599.305 1844.47i 0.0281583 0.0866622i
\(769\) 4444.21 0.208404 0.104202 0.994556i \(-0.466771\pi\)
0.104202 + 0.994556i \(0.466771\pi\)
\(770\) 7037.98 5182.90i 0.329391 0.242570i
\(771\) −45729.5 −2.13607
\(772\) −1588.27 + 4888.19i −0.0740455 + 0.227888i
\(773\)