Properties

Label 22.4.c.b.5.2
Level 22
Weight 4
Character 22.5
Analytic conductor 1.298
Analytic rank 0
Dimension 8
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 22 = 2 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 22.c (of order \(5\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(1.29804202013\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 5.2
Root \(2.22300 + 6.84169i\)
Character \(\chi\) = 22.5
Dual form 22.4.c.b.9.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.618034 - 1.90211i) q^{2}\) \(+(6.31989 + 4.59167i) q^{3}\) \(+(-3.23607 + 2.35114i) q^{4}\) \(+(4.60996 - 14.1880i) q^{5}\) \(+(4.82797 - 14.8590i) q^{6}\) \(+(-17.6106 + 12.7948i) q^{7}\) \(+(6.47214 + 4.70228i) q^{8}\) \(+(10.5141 + 32.3592i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.618034 - 1.90211i) q^{2}\) \(+(6.31989 + 4.59167i) q^{3}\) \(+(-3.23607 + 2.35114i) q^{4}\) \(+(4.60996 - 14.1880i) q^{5}\) \(+(4.82797 - 14.8590i) q^{6}\) \(+(-17.6106 + 12.7948i) q^{7}\) \(+(6.47214 + 4.70228i) q^{8}\) \(+(10.5141 + 32.3592i) q^{9}\) \(-29.8363 q^{10}\) \(+(-29.3767 + 21.6335i) q^{11}\) \(-31.2473 q^{12}\) \(+(-13.6056 - 41.8736i) q^{13}\) \(+(35.2211 + 25.5896i) q^{14}\) \(+(94.2810 - 68.4992i) q^{15}\) \(+(4.94427 - 15.2169i) q^{16}\) \(+(-7.69900 + 23.6951i) q^{17}\) \(+(55.0527 - 39.9982i) q^{18}\) \(+(-17.7638 - 12.9061i) q^{19}\) \(+(18.4398 + 56.7520i) q^{20}\) \(-170.046 q^{21}\) \(+(59.3052 + 42.5075i) q^{22}\) \(+177.749 q^{23}\) \(+(19.3119 + 59.4358i) q^{24}\) \(+(-78.9203 - 57.3389i) q^{25}\) \(+(-71.2397 + 51.7587i) q^{26}\) \(+(-16.9569 + 52.1881i) q^{27}\) \(+(26.9065 - 82.8098i) q^{28}\) \(+(120.864 - 87.8130i) q^{29}\) \(+(-188.562 - 136.998i) q^{30}\) \(+(23.2207 + 71.4658i) q^{31}\) \(-32.0000 q^{32}\) \(+(-284.992 + 1.83359i) q^{33}\) \(+49.8290 q^{34}\) \(+(100.349 + 308.842i) q^{35}\) \(+(-110.105 - 79.9963i) q^{36}\) \(+(-179.874 + 130.686i) q^{37}\) \(+(-13.5703 + 41.7652i) q^{38}\) \(+(106.284 - 327.109i) q^{39}\) \(+(96.5522 - 70.1493i) q^{40}\) \(+(204.779 + 148.781i) q^{41}\) \(+(105.094 + 323.448i) q^{42}\) \(+130.623 q^{43}\) \(+(44.2015 - 139.076i) q^{44}\) \(+507.582 q^{45}\) \(+(-109.855 - 338.099i) q^{46}\) \(+(-403.775 - 293.360i) q^{47}\) \(+(101.118 - 73.4667i) q^{48}\) \(+(40.4316 - 124.436i) q^{49}\) \(+(-60.2897 + 185.553i) q^{50}\) \(+(-157.457 + 114.399i) q^{51}\) \(+(142.479 + 103.517i) q^{52}\) \(+(3.99933 + 12.3087i) q^{53}\) \(+109.748 q^{54}\) \(+(171.511 + 516.526i) q^{55}\) \(-174.143 q^{56}\) \(+(-53.0044 - 163.131i) q^{57}\) \(+(-241.728 - 175.626i) q^{58}\) \(+(-28.7697 + 20.9024i) q^{59}\) \(+(-144.049 + 443.336i) q^{60}\) \(+(166.357 - 511.995i) q^{61}\) \(+(121.585 - 88.3366i) q^{62}\) \(+(-599.190 - 435.337i) q^{63}\) \(+(19.7771 + 60.8676i) q^{64}\) \(-656.824 q^{65}\) \(+(179.622 + 540.953i) q^{66}\) \(-519.621 q^{67}\) \(+(-30.7960 - 94.7804i) q^{68}\) \(+(1123.35 + 816.165i) q^{69}\) \(+(525.434 - 381.750i) q^{70}\) \(+(24.2420 - 74.6091i) q^{71}\) \(+(-84.1131 + 258.873i) q^{72}\) \(+(-925.571 + 672.467i) q^{73}\) \(+(359.748 + 261.372i) q^{74}\) \(+(-235.486 - 724.752i) q^{75}\) \(+87.8290 q^{76}\) \(+(240.543 - 756.848i) q^{77}\) \(-687.886 q^{78}\) \(+(238.730 + 734.735i) q^{79}\) \(+(-193.104 - 140.299i) q^{80}\) \(+(396.416 - 288.013i) q^{81}\) \(+(156.438 - 481.465i) q^{82}\) \(+(166.017 - 510.947i) q^{83}\) \(+(550.282 - 399.803i) q^{84}\) \(+(300.694 + 218.467i) q^{85}\) \(+(-80.7296 - 248.460i) q^{86}\) \(+1167.06 q^{87}\) \(+(-291.857 + 1.87776i) q^{88}\) \(+667.089 q^{89}\) \(+(-313.703 - 965.477i) q^{90}\) \(+(775.368 + 563.338i) q^{91}\) \(+(-575.208 + 417.913i) q^{92}\) \(+(-181.395 + 558.278i) q^{93}\) \(+(-308.457 + 949.332i) q^{94}\) \(+(-265.003 + 192.536i) q^{95}\) \(+(-202.237 - 146.933i) q^{96}\) \(+(-55.5161 - 170.861i) q^{97}\) \(-261.679 q^{98}\) \(+(-1008.91 - 723.148i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(8q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 16q^{8} \) \(\mathstrut -\mathstrut 21q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(8q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 16q^{8} \) \(\mathstrut -\mathstrut 21q^{9} \) \(\mathstrut -\mathstrut 100q^{10} \) \(\mathstrut -\mathstrut 155q^{11} \) \(\mathstrut +\mathstrut 32q^{12} \) \(\mathstrut +\mathstrut 7q^{13} \) \(\mathstrut +\mathstrut 2q^{14} \) \(\mathstrut +\mathstrut 211q^{15} \) \(\mathstrut -\mathstrut 32q^{16} \) \(\mathstrut +\mathstrut 161q^{17} \) \(\mathstrut +\mathstrut 162q^{18} \) \(\mathstrut -\mathstrut 272q^{19} \) \(\mathstrut +\mathstrut 20q^{20} \) \(\mathstrut -\mathstrut 50q^{21} \) \(\mathstrut +\mathstrut 628q^{23} \) \(\mathstrut +\mathstrut 56q^{24} \) \(\mathstrut -\mathstrut 17q^{25} \) \(\mathstrut +\mathstrut 96q^{26} \) \(\mathstrut -\mathstrut 528q^{27} \) \(\mathstrut +\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 33q^{29} \) \(\mathstrut -\mathstrut 422q^{30} \) \(\mathstrut +\mathstrut 323q^{31} \) \(\mathstrut -\mathstrut 256q^{32} \) \(\mathstrut -\mathstrut 1144q^{33} \) \(\mathstrut +\mathstrut 208q^{34} \) \(\mathstrut -\mathstrut 697q^{35} \) \(\mathstrut -\mathstrut 324q^{36} \) \(\mathstrut +\mathstrut 49q^{37} \) \(\mathstrut -\mathstrut 576q^{38} \) \(\mathstrut +\mathstrut 391q^{39} \) \(\mathstrut +\mathstrut 240q^{40} \) \(\mathstrut +\mathstrut 361q^{41} \) \(\mathstrut +\mathstrut 1430q^{42} \) \(\mathstrut +\mathstrut 1442q^{43} \) \(\mathstrut +\mathstrut 620q^{44} \) \(\mathstrut +\mathstrut 2652q^{45} \) \(\mathstrut -\mathstrut 416q^{46} \) \(\mathstrut -\mathstrut 1069q^{47} \) \(\mathstrut +\mathstrut 48q^{48} \) \(\mathstrut -\mathstrut 709q^{49} \) \(\mathstrut -\mathstrut 76q^{50} \) \(\mathstrut -\mathstrut 1332q^{51} \) \(\mathstrut -\mathstrut 192q^{52} \) \(\mathstrut -\mathstrut 281q^{53} \) \(\mathstrut -\mathstrut 1144q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut +\mathstrut 48q^{56} \) \(\mathstrut -\mathstrut 438q^{57} \) \(\mathstrut -\mathstrut 66q^{58} \) \(\mathstrut -\mathstrut 128q^{59} \) \(\mathstrut -\mathstrut 1116q^{60} \) \(\mathstrut -\mathstrut 617q^{61} \) \(\mathstrut +\mathstrut 1044q^{62} \) \(\mathstrut +\mathstrut 694q^{63} \) \(\mathstrut -\mathstrut 128q^{64} \) \(\mathstrut -\mathstrut 138q^{65} \) \(\mathstrut +\mathstrut 1248q^{66} \) \(\mathstrut +\mathstrut 578q^{67} \) \(\mathstrut +\mathstrut 644q^{68} \) \(\mathstrut -\mathstrut 310q^{69} \) \(\mathstrut +\mathstrut 34q^{70} \) \(\mathstrut +\mathstrut 115q^{71} \) \(\mathstrut +\mathstrut 168q^{72} \) \(\mathstrut -\mathstrut 1487q^{73} \) \(\mathstrut -\mathstrut 98q^{74} \) \(\mathstrut -\mathstrut 1852q^{75} \) \(\mathstrut -\mathstrut 128q^{76} \) \(\mathstrut +\mathstrut 553q^{77} \) \(\mathstrut -\mathstrut 4152q^{78} \) \(\mathstrut +\mathstrut 71q^{79} \) \(\mathstrut -\mathstrut 480q^{80} \) \(\mathstrut +\mathstrut 1630q^{81} \) \(\mathstrut +\mathstrut 658q^{82} \) \(\mathstrut +\mathstrut 1942q^{83} \) \(\mathstrut +\mathstrut 2960q^{84} \) \(\mathstrut -\mathstrut 329q^{85} \) \(\mathstrut +\mathstrut 2426q^{86} \) \(\mathstrut +\mathstrut 2122q^{87} \) \(\mathstrut +\mathstrut 560q^{88} \) \(\mathstrut -\mathstrut 2202q^{89} \) \(\mathstrut +\mathstrut 1286q^{90} \) \(\mathstrut +\mathstrut 4523q^{91} \) \(\mathstrut -\mathstrut 2088q^{92} \) \(\mathstrut +\mathstrut 6019q^{93} \) \(\mathstrut -\mathstrut 1332q^{94} \) \(\mathstrut -\mathstrut 793q^{95} \) \(\mathstrut -\mathstrut 96q^{96} \) \(\mathstrut -\mathstrut 5128q^{97} \) \(\mathstrut -\mathstrut 3292q^{98} \) \(\mathstrut -\mathstrut 2213q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/22\mathbb{Z}\right)^\times\).

\(n\) \(13\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 1.90211i −0.218508 0.672499i
\(3\) 6.31989 + 4.59167i 1.21626 + 0.883667i 0.995784 0.0917244i \(-0.0292379\pi\)
0.220479 + 0.975392i \(0.429238\pi\)
\(4\) −3.23607 + 2.35114i −0.404508 + 0.293893i
\(5\) 4.60996 14.1880i 0.412327 1.26901i −0.502293 0.864698i \(-0.667510\pi\)
0.914620 0.404315i \(-0.132490\pi\)
\(6\) 4.82797 14.8590i 0.328502 1.01102i
\(7\) −17.6106 + 12.7948i −0.950881 + 0.690856i −0.951015 0.309144i \(-0.899957\pi\)
0.000134039 1.00000i \(0.499957\pi\)
\(8\) 6.47214 + 4.70228i 0.286031 + 0.207813i
\(9\) 10.5141 + 32.3592i 0.389412 + 1.19849i
\(10\) −29.8363 −0.943506
\(11\) −29.3767 + 21.6335i −0.805219 + 0.592978i
\(12\) −31.2473 −0.751692
\(13\) −13.6056 41.8736i −0.290270 0.893358i −0.984769 0.173865i \(-0.944374\pi\)
0.694500 0.719493i \(-0.255626\pi\)
\(14\) 35.2211 + 25.5896i 0.672374 + 0.488509i
\(15\) 94.2810 68.4992i 1.62288 1.17909i
\(16\) 4.94427 15.2169i 0.0772542 0.237764i
\(17\) −7.69900 + 23.6951i −0.109840 + 0.338053i −0.990836 0.135071i \(-0.956874\pi\)
0.880996 + 0.473124i \(0.156874\pi\)
\(18\) 55.0527 39.9982i 0.720892 0.523759i
\(19\) −17.7638 12.9061i −0.214489 0.155835i 0.475353 0.879795i \(-0.342320\pi\)
−0.689842 + 0.723960i \(0.742320\pi\)
\(20\) 18.4398 + 56.7520i 0.206164 + 0.634506i
\(21\) −170.046 −1.76701
\(22\) 59.3052 + 42.5075i 0.574724 + 0.411938i
\(23\) 177.749 1.61145 0.805723 0.592293i \(-0.201777\pi\)
0.805723 + 0.592293i \(0.201777\pi\)
\(24\) 19.3119 + 59.4358i 0.164251 + 0.505512i
\(25\) −78.9203 57.3389i −0.631362 0.458711i
\(26\) −71.2397 + 51.7587i −0.537356 + 0.390412i
\(27\) −16.9569 + 52.1881i −0.120865 + 0.371985i
\(28\) 26.9065 82.8098i 0.181602 0.558914i
\(29\) 120.864 87.8130i 0.773928 0.562292i −0.129223 0.991616i \(-0.541248\pi\)
0.903151 + 0.429324i \(0.141248\pi\)
\(30\) −188.562 136.998i −1.14755 0.833745i
\(31\) 23.2207 + 71.4658i 0.134534 + 0.414053i 0.995517 0.0945803i \(-0.0301509\pi\)
−0.860983 + 0.508633i \(0.830151\pi\)
\(32\) −32.0000 −0.176777
\(33\) −284.992 + 1.83359i −1.50335 + 0.00967232i
\(34\) 49.8290 0.251341
\(35\) 100.349 + 308.842i 0.484630 + 1.49154i
\(36\) −110.105 79.9963i −0.509748 0.370353i
\(37\) −179.874 + 130.686i −0.799219 + 0.580667i −0.910685 0.413102i \(-0.864445\pi\)
0.111466 + 0.993768i \(0.464445\pi\)
\(38\) −13.5703 + 41.7652i −0.0579315 + 0.178295i
\(39\) 106.284 327.109i 0.436387 1.34306i
\(40\) 96.5522 70.1493i 0.381656 0.277289i
\(41\) 204.779 + 148.781i 0.780029 + 0.566724i 0.904988 0.425438i \(-0.139880\pi\)
−0.124959 + 0.992162i \(0.539880\pi\)
\(42\) 105.094 + 323.448i 0.386106 + 1.18831i
\(43\) 130.623 0.463253 0.231626 0.972805i \(-0.425595\pi\)
0.231626 + 0.972805i \(0.425595\pi\)
\(44\) 44.2015 139.076i 0.151446 0.476512i
\(45\) 507.582 1.68146
\(46\) −109.855 338.099i −0.352114 1.08369i
\(47\) −403.775 293.360i −1.25312 0.910445i −0.254722 0.967014i \(-0.581984\pi\)
−0.998399 + 0.0565693i \(0.981984\pi\)
\(48\) 101.118 73.4667i 0.304066 0.220917i
\(49\) 40.4316 124.436i 0.117876 0.362786i
\(50\) −60.2897 + 185.553i −0.170525 + 0.524822i
\(51\) −157.457 + 114.399i −0.432321 + 0.314100i
\(52\) 142.479 + 103.517i 0.379968 + 0.276063i
\(53\) 3.99933 + 12.3087i 0.0103651 + 0.0319005i 0.956105 0.293023i \(-0.0946613\pi\)
−0.945740 + 0.324924i \(0.894661\pi\)
\(54\) 109.748 0.276569
\(55\) 171.511 + 516.526i 0.420483 + 1.26633i
\(56\) −174.143 −0.415550
\(57\) −53.0044 163.131i −0.123169 0.379074i
\(58\) −241.728 175.626i −0.547250 0.397600i
\(59\) −28.7697 + 20.9024i −0.0634831 + 0.0461232i −0.619074 0.785332i \(-0.712492\pi\)
0.555591 + 0.831456i \(0.312492\pi\)
\(60\) −144.049 + 443.336i −0.309943 + 0.953907i
\(61\) 166.357 511.995i 0.349178 1.07466i −0.610131 0.792301i \(-0.708883\pi\)
0.959309 0.282359i \(-0.0911169\pi\)
\(62\) 121.585 88.3366i 0.249053 0.180948i
\(63\) −599.190 435.337i −1.19827 0.870592i
\(64\) 19.7771 + 60.8676i 0.0386271 + 0.118882i
\(65\) −656.824 −1.25337
\(66\) 179.622 + 540.953i 0.334999 + 1.00889i
\(67\) −519.621 −0.947491 −0.473745 0.880662i \(-0.657098\pi\)
−0.473745 + 0.880662i \(0.657098\pi\)
\(68\) −30.7960 94.7804i −0.0549201 0.169027i
\(69\) 1123.35 + 816.165i 1.95994 + 1.42398i
\(70\) 525.434 381.750i 0.897162 0.651826i
\(71\) 24.2420 74.6091i 0.0405210 0.124711i −0.928750 0.370708i \(-0.879115\pi\)
0.969271 + 0.245997i \(0.0791152\pi\)
\(72\) −84.1131 + 258.873i −0.137678 + 0.423730i
\(73\) −925.571 + 672.467i −1.48397 + 1.07817i −0.507722 + 0.861521i \(0.669512\pi\)
−0.976250 + 0.216648i \(0.930488\pi\)
\(74\) 359.748 + 261.372i 0.565133 + 0.410593i
\(75\) −235.486 724.752i −0.362555 1.11583i
\(76\) 87.8290 0.132562
\(77\) 240.543 756.848i 0.356005 1.12014i
\(78\) −687.886 −0.998561
\(79\) 238.730 + 734.735i 0.339990 + 1.04638i 0.964212 + 0.265134i \(0.0854161\pi\)
−0.624222 + 0.781247i \(0.714584\pi\)
\(80\) −193.104 140.299i −0.269872 0.196073i
\(81\) 396.416 288.013i 0.543780 0.395079i
\(82\) 156.438 481.465i 0.210678 0.648402i
\(83\) 166.017 510.947i 0.219551 0.675708i −0.779248 0.626715i \(-0.784399\pi\)
0.998799 0.0489926i \(-0.0156011\pi\)
\(84\) 550.282 399.803i 0.714770 0.519311i
\(85\) 300.694 + 218.467i 0.383704 + 0.278777i
\(86\) −80.7296 248.460i −0.101224 0.311537i
\(87\) 1167.06 1.43818
\(88\) −291.857 + 1.87776i −0.353546 + 0.00227466i
\(89\) 667.089 0.794509 0.397255 0.917708i \(-0.369963\pi\)
0.397255 + 0.917708i \(0.369963\pi\)
\(90\) −313.703 965.477i −0.367413 1.13078i
\(91\) 775.368 + 563.338i 0.893194 + 0.648943i
\(92\) −575.208 + 417.913i −0.651843 + 0.473592i
\(93\) −181.395 + 558.278i −0.202256 + 0.622481i
\(94\) −308.457 + 949.332i −0.338456 + 1.04166i
\(95\) −265.003 + 192.536i −0.286197 + 0.207934i
\(96\) −202.237 146.933i −0.215007 0.156212i
\(97\) −55.5161 170.861i −0.0581114 0.178848i 0.917787 0.397072i \(-0.129974\pi\)
−0.975899 + 0.218224i \(0.929974\pi\)
\(98\) −261.679 −0.269730
\(99\) −1008.91 723.148i −1.02424 0.734132i
\(100\) 390.203 0.390203
\(101\) −126.924 390.633i −0.125044 0.384846i 0.868865 0.495049i \(-0.164850\pi\)
−0.993909 + 0.110203i \(0.964850\pi\)
\(102\) 314.914 + 228.798i 0.305697 + 0.222102i
\(103\) −1106.46 + 803.890i −1.05847 + 0.769026i −0.973805 0.227383i \(-0.926983\pi\)
−0.0846679 + 0.996409i \(0.526983\pi\)
\(104\) 108.845 334.989i 0.102626 0.315850i
\(105\) −783.907 + 2412.62i −0.728586 + 2.24236i
\(106\) 20.9408 15.2144i 0.0191882 0.0139410i
\(107\) 319.756 + 232.317i 0.288897 + 0.209896i 0.722789 0.691069i \(-0.242860\pi\)
−0.433892 + 0.900965i \(0.642860\pi\)
\(108\) −67.8277 208.752i −0.0604326 0.185993i
\(109\) 505.826 0.444490 0.222245 0.974991i \(-0.428662\pi\)
0.222245 + 0.974991i \(0.428662\pi\)
\(110\) 876.491 645.464i 0.759728 0.559478i
\(111\) −1736.85 −1.48518
\(112\) 107.626 + 331.239i 0.0908011 + 0.279457i
\(113\) −1243.96 903.793i −1.03560 0.752404i −0.0661744 0.997808i \(-0.521079\pi\)
−0.969421 + 0.245404i \(0.921079\pi\)
\(114\) −277.535 + 201.641i −0.228013 + 0.165661i
\(115\) 819.416 2521.90i 0.664443 2.04494i
\(116\) −184.664 + 568.337i −0.147807 + 0.454903i
\(117\) 1211.95 880.530i 0.957645 0.695770i
\(118\) 57.5395 + 41.8049i 0.0448893 + 0.0326140i
\(119\) −167.591 515.791i −0.129101 0.397332i
\(120\) 932.302 0.709226
\(121\) 394.980 1271.04i 0.296754 0.954954i
\(122\) −1076.69 −0.799005
\(123\) 611.031 + 1880.56i 0.447925 + 1.37857i
\(124\) −243.170 176.673i −0.176107 0.127949i
\(125\) 331.285 240.693i 0.237048 0.172226i
\(126\) −457.740 + 1408.78i −0.323641 + 0.996064i
\(127\) −215.487 + 663.202i −0.150562 + 0.463383i −0.997684 0.0680154i \(-0.978333\pi\)
0.847122 + 0.531399i \(0.178333\pi\)
\(128\) 103.554 75.2365i 0.0715077 0.0519534i
\(129\) 825.525 + 599.779i 0.563437 + 0.409361i
\(130\) 405.940 + 1249.35i 0.273871 + 0.842889i
\(131\) −259.910 −0.173347 −0.0866735 0.996237i \(-0.527624\pi\)
−0.0866735 + 0.996237i \(0.527624\pi\)
\(132\) 917.941 675.989i 0.605277 0.445737i
\(133\) 477.962 0.311613
\(134\) 321.144 + 988.379i 0.207034 + 0.637186i
\(135\) 662.273 + 481.170i 0.422218 + 0.306759i
\(136\) −161.250 + 117.155i −0.101670 + 0.0738673i
\(137\) −643.856 + 1981.58i −0.401520 + 1.23575i 0.522245 + 0.852795i \(0.325094\pi\)
−0.923766 + 0.382958i \(0.874906\pi\)
\(138\) 858.167 2641.17i 0.529362 1.62921i
\(139\) −140.307 + 101.939i −0.0856163 + 0.0622039i −0.629770 0.776782i \(-0.716851\pi\)
0.544154 + 0.838986i \(0.316851\pi\)
\(140\) −1050.87 763.500i −0.634389 0.460911i
\(141\) −1204.80 3708.00i −0.719594 2.21468i
\(142\) −156.897 −0.0927220
\(143\) 1305.56 + 935.772i 0.763473 + 0.547225i
\(144\) 544.391 0.315041
\(145\) −688.711 2119.63i −0.394444 1.21397i
\(146\) 1851.14 + 1344.93i 1.04933 + 0.762380i
\(147\) 826.891 600.772i 0.463951 0.337080i
\(148\) 274.823 845.818i 0.152637 0.469769i
\(149\) −138.766 + 427.077i −0.0762961 + 0.234815i −0.981930 0.189246i \(-0.939396\pi\)
0.905634 + 0.424061i \(0.139396\pi\)
\(150\) −1233.02 + 895.842i −0.671172 + 0.487635i
\(151\) −23.0859 16.7729i −0.0124418 0.00903947i 0.581547 0.813513i \(-0.302448\pi\)
−0.593989 + 0.804473i \(0.702448\pi\)
\(152\) −54.2813 167.061i −0.0289658 0.0891474i
\(153\) −847.702 −0.447926
\(154\) −1588.27 + 10.2187i −0.831083 + 0.00534705i
\(155\) 1121.00 0.580910
\(156\) 425.137 + 1308.44i 0.218194 + 0.671531i
\(157\) −1394.63 1013.26i −0.708941 0.515076i 0.173891 0.984765i \(-0.444366\pi\)
−0.882832 + 0.469689i \(0.844366\pi\)
\(158\) 1250.01 908.182i 0.629399 0.457285i
\(159\) −31.2420 + 96.1531i −0.0155827 + 0.0479587i
\(160\) −147.519 + 454.016i −0.0728898 + 0.224332i
\(161\) −3130.26 + 2274.27i −1.53229 + 1.11328i
\(162\) −792.831 576.026i −0.384510 0.279363i
\(163\) 1025.39 + 3155.82i 0.492727 + 1.51646i 0.820470 + 0.571690i \(0.193712\pi\)
−0.327743 + 0.944767i \(0.606288\pi\)
\(164\) −1012.49 −0.482084
\(165\) −1287.78 + 4051.91i −0.607599 + 1.91176i
\(166\) −1074.48 −0.502386
\(167\) −931.871 2868.00i −0.431799 1.32894i −0.896332 0.443384i \(-0.853778\pi\)
0.464533 0.885556i \(-0.346222\pi\)
\(168\) −1100.56 799.606i −0.505419 0.367208i
\(169\) 209.120 151.934i 0.0951842 0.0691554i
\(170\) 229.710 706.973i 0.103635 0.318955i
\(171\) 230.862 710.519i 0.103242 0.317747i
\(172\) −422.706 + 307.114i −0.187390 + 0.136147i
\(173\) 1787.45 + 1298.66i 0.785534 + 0.570724i 0.906635 0.421917i \(-0.138643\pi\)
−0.121101 + 0.992640i \(0.538643\pi\)
\(174\) −721.281 2219.87i −0.314254 0.967173i
\(175\) 2123.47 0.917254
\(176\) 183.949 + 553.984i 0.0787824 + 0.237262i
\(177\) −277.799 −0.117970
\(178\) −412.284 1268.88i −0.173607 0.534306i
\(179\) 1837.95 + 1335.35i 0.767457 + 0.557590i 0.901189 0.433427i \(-0.142696\pi\)
−0.133731 + 0.991018i \(0.542696\pi\)
\(180\) −1642.57 + 1193.40i −0.680166 + 0.494169i
\(181\) −192.961 + 593.873i −0.0792413 + 0.243880i −0.982828 0.184527i \(-0.940925\pi\)
0.903586 + 0.428406i \(0.140925\pi\)
\(182\) 592.328 1823.00i 0.241243 0.742471i
\(183\) 3402.27 2471.89i 1.37433 0.998512i
\(184\) 1150.42 + 835.826i 0.460923 + 0.334880i
\(185\) 1024.96 + 3154.51i 0.407333 + 1.25364i
\(186\) 1174.02 0.462812
\(187\) −286.438 862.640i −0.112013 0.337340i
\(188\) 1996.37 0.774471
\(189\) −369.116 1136.02i −0.142059 0.437214i
\(190\) 530.005 + 385.071i 0.202372 + 0.147032i
\(191\) 1087.48 790.100i 0.411975 0.299317i −0.362426 0.932013i \(-0.618051\pi\)
0.774401 + 0.632695i \(0.218051\pi\)
\(192\) −154.495 + 475.487i −0.0580714 + 0.178725i
\(193\) 1428.82 4397.46i 0.532895 1.64008i −0.215258 0.976557i \(-0.569059\pi\)
0.748154 0.663526i \(-0.230941\pi\)
\(194\) −290.686 + 211.196i −0.107578 + 0.0781597i
\(195\) −4151.06 3015.92i −1.52443 1.10756i
\(196\) 161.726 + 497.743i 0.0589382 + 0.181393i
\(197\) 664.691 0.240392 0.120196 0.992750i \(-0.461648\pi\)
0.120196 + 0.992750i \(0.461648\pi\)
\(198\) −751.965 + 2366.00i −0.269898 + 0.849213i
\(199\) −3042.82 −1.08392 −0.541959 0.840405i \(-0.682317\pi\)
−0.541959 + 0.840405i \(0.682317\pi\)
\(200\) −241.159 742.211i −0.0852625 0.262411i
\(201\) −3283.95 2385.93i −1.15240 0.837266i
\(202\) −664.584 + 482.849i −0.231485 + 0.168184i
\(203\) −1004.93 + 3092.87i −0.347451 + 1.06934i
\(204\) 240.573 740.407i 0.0825660 0.254112i
\(205\) 3054.93 2219.53i 1.04081 0.756190i
\(206\) 2212.92 + 1607.78i 0.748454 + 0.543783i
\(207\) 1868.88 + 5751.81i 0.627517 + 1.93130i
\(208\) −704.457 −0.234833
\(209\) 801.047 5.15380i 0.265118 0.00170572i
\(210\) 5073.55 1.66718
\(211\) 800.851 + 2464.77i 0.261293 + 0.804178i 0.992524 + 0.122048i \(0.0389462\pi\)
−0.731231 + 0.682130i \(0.761054\pi\)
\(212\) −41.8815 30.4287i −0.0135681 0.00985779i
\(213\) 495.787 360.210i 0.159487 0.115874i
\(214\) 244.272 751.792i 0.0780285 0.240147i
\(215\) 602.168 1853.28i 0.191012 0.587873i
\(216\) −355.151 + 258.032i −0.111875 + 0.0812817i
\(217\) −1323.32 961.449i −0.413977 0.300772i
\(218\) −312.618 962.139i −0.0971245 0.298919i
\(219\) −8937.26 −2.75764
\(220\) −1769.45 1268.27i −0.542255 0.388666i
\(221\) 1096.95 0.333886
\(222\) 1073.43 + 3303.69i 0.324523 + 0.998779i
\(223\) −2133.54 1550.11i −0.640684 0.465484i 0.219401 0.975635i \(-0.429590\pi\)
−0.860085 + 0.510150i \(0.829590\pi\)
\(224\) 563.538 409.434i 0.168094 0.122127i
\(225\) 1025.66 3156.66i 0.303900 0.935308i
\(226\) −950.304 + 2924.73i −0.279705 + 0.860843i
\(227\) −202.796 + 147.340i −0.0592954 + 0.0430806i −0.617038 0.786933i \(-0.711668\pi\)
0.557743 + 0.830014i \(0.311668\pi\)
\(228\) 555.070 + 403.282i 0.161230 + 0.117140i
\(229\) 556.018 + 1711.25i 0.160449 + 0.493810i 0.998672 0.0515169i \(-0.0164056\pi\)
−0.838224 + 0.545327i \(0.816406\pi\)
\(230\) −5303.37 −1.52041
\(231\) 4995.40 3678.71i 1.42283 1.04780i
\(232\) 1195.17 0.338219
\(233\) 982.821 + 3024.81i 0.276338 + 0.850481i 0.988862 + 0.148833i \(0.0475518\pi\)
−0.712524 + 0.701647i \(0.752448\pi\)
\(234\) −2423.89 1761.06i −0.677157 0.491984i
\(235\) −6023.57 + 4376.38i −1.67206 + 1.21482i
\(236\) 43.9563 135.283i 0.0121242 0.0373144i
\(237\) −1864.91 + 5739.61i −0.511135 + 1.57311i
\(238\) −877.517 + 637.553i −0.238996 + 0.173641i
\(239\) −4056.25 2947.04i −1.09781 0.797608i −0.117111 0.993119i \(-0.537363\pi\)
−0.980701 + 0.195511i \(0.937363\pi\)
\(240\) −576.194 1773.34i −0.154972 0.476953i
\(241\) 6074.13 1.62352 0.811761 0.583990i \(-0.198509\pi\)
0.811761 + 0.583990i \(0.198509\pi\)
\(242\) −2661.78 + 34.2523i −0.707048 + 0.00909843i
\(243\) 5309.35 1.40163
\(244\) 665.429 + 2047.98i 0.174589 + 0.537330i
\(245\) −1579.10 1147.29i −0.411777 0.299173i
\(246\) 3199.40 2324.50i 0.829212 0.602458i
\(247\) −298.741 + 919.430i −0.0769572 + 0.236850i
\(248\) −185.765 + 571.727i −0.0475649 + 0.146390i
\(249\) 3395.31 2466.84i 0.864132 0.627829i
\(250\) −662.570 481.385i −0.167618 0.121782i
\(251\) −1721.13 5297.09i −0.432816 1.33207i −0.895309 0.445447i \(-0.853045\pi\)
0.462493 0.886623i \(-0.346955\pi\)
\(252\) 2962.56 0.740570
\(253\) −5221.68 + 3845.34i −1.29757 + 0.955552i
\(254\) 1394.66 0.344524
\(255\) 897.224 + 2761.37i 0.220339 + 0.678133i
\(256\) −207.108 150.473i −0.0505636 0.0367366i
\(257\) 4778.90 3472.08i 1.15992 0.842732i 0.170153 0.985418i \(-0.445574\pi\)
0.989768 + 0.142685i \(0.0455737\pi\)
\(258\) 630.645 1940.93i 0.152179 0.468359i
\(259\) 1495.58 4602.91i 0.358805 1.10429i
\(260\) 2125.53 1544.29i 0.506998 0.368356i
\(261\) 4112.34 + 2987.79i 0.975277 + 0.708580i
\(262\) 160.633 + 494.379i 0.0378777 + 0.116576i
\(263\) −6853.74 −1.60692 −0.803459 0.595360i \(-0.797009\pi\)
−0.803459 + 0.595360i \(0.797009\pi\)
\(264\) −1853.13 1328.24i −0.432015 0.309651i
\(265\) 193.072 0.0447559
\(266\) −295.397 909.138i −0.0680900 0.209560i
\(267\) 4215.93 + 3063.05i 0.966333 + 0.702082i
\(268\) 1681.53 1221.70i 0.383268 0.278460i
\(269\) 340.340 1047.46i 0.0771409 0.237415i −0.905049 0.425308i \(-0.860166\pi\)
0.982190 + 0.187893i \(0.0601657\pi\)
\(270\) 505.932 1557.10i 0.114037 0.350970i
\(271\) 2080.54 1511.60i 0.466362 0.338832i −0.329660 0.944100i \(-0.606934\pi\)
0.796022 + 0.605268i \(0.206934\pi\)
\(272\) 322.500 + 234.310i 0.0718913 + 0.0522321i
\(273\) 2313.58 + 7120.46i 0.512909 + 1.57857i
\(274\) 4167.12 0.918777
\(275\) 3558.86 22.8971i 0.780390 0.00502090i
\(276\) −5554.17 −1.21131
\(277\) −2268.22 6980.85i −0.492000 1.51422i −0.821581 0.570092i \(-0.806908\pi\)
0.329581 0.944127i \(-0.393092\pi\)
\(278\) 280.613 + 203.878i 0.0605398 + 0.0439848i
\(279\) −2068.43 + 1502.80i −0.443848 + 0.322475i
\(280\) −802.791 + 2470.74i −0.171343 + 0.527338i
\(281\) −2315.45 + 7126.21i −0.491559 + 1.51286i 0.330693 + 0.943738i \(0.392718\pi\)
−0.822252 + 0.569124i \(0.807282\pi\)
\(282\) −6308.43 + 4583.34i −1.33213 + 0.967852i
\(283\) 5253.84 + 3817.14i 1.10356 + 0.801785i 0.981638 0.190754i \(-0.0610933\pi\)
0.121925 + 0.992539i \(0.461093\pi\)
\(284\) 96.9678 + 298.436i 0.0202605 + 0.0623554i
\(285\) −2558.85 −0.531835
\(286\) 973.063 3061.67i 0.201183 0.633007i
\(287\) −5509.91 −1.13324
\(288\) −336.452 1035.49i −0.0688390 0.211865i
\(289\) 3472.52 + 2522.93i 0.706802 + 0.513522i
\(290\) −3606.14 + 2620.01i −0.730206 + 0.530525i
\(291\) 433.681 1334.73i 0.0873638 0.268878i
\(292\) 1414.15 4352.30i 0.283413 0.872257i
\(293\) 2172.11 1578.13i 0.433092 0.314660i −0.349792 0.936827i \(-0.613748\pi\)
0.782884 + 0.622168i \(0.213748\pi\)
\(294\) −1653.78 1201.54i −0.328063 0.238352i
\(295\) 163.936 + 504.544i 0.0323551 + 0.0995787i
\(296\) −1778.69 −0.349271
\(297\) −630.874 1899.95i −0.123256 0.371200i
\(298\) 898.110 0.174584
\(299\) −2418.38 7443.00i −0.467754 1.43960i
\(300\) 2466.04 + 1791.68i 0.474590 + 0.344810i
\(301\) −2300.35 + 1671.30i −0.440498 + 0.320041i
\(302\) −17.6361 + 54.2783i −0.00336041 + 0.0103423i
\(303\) 991.509 3051.55i 0.187989 0.578571i
\(304\) −284.221 + 206.498i −0.0536223 + 0.0389589i
\(305\) −6497.28 4720.55i −1.21978 0.886223i
\(306\) 523.909 + 1612.43i 0.0978754 + 0.301230i
\(307\) 8331.66 1.54890 0.774451 0.632633i \(-0.218026\pi\)
0.774451 + 0.632633i \(0.218026\pi\)
\(308\) 1001.04 + 3014.76i 0.185194 + 0.557734i
\(309\) −10683.9 −1.96695
\(310\) −692.818 2132.27i −0.126934 0.390661i
\(311\) 4061.55 + 2950.89i 0.740545 + 0.538037i 0.892882 0.450292i \(-0.148680\pi\)
−0.152337 + 0.988329i \(0.548680\pi\)
\(312\) 2226.05 1617.32i 0.403926 0.293470i
\(313\) 933.873 2874.16i 0.168644 0.519033i −0.830642 0.556807i \(-0.812026\pi\)
0.999286 + 0.0377733i \(0.0120265\pi\)
\(314\) −1065.40 + 3278.98i −0.191479 + 0.589310i
\(315\) −8938.80 + 6494.42i −1.59887 + 1.16165i
\(316\) −2500.01 1816.36i −0.445052 0.323350i
\(317\) −3257.08 10024.3i −0.577085 1.77609i −0.628966 0.777433i \(-0.716522\pi\)
0.0518809 0.998653i \(-0.483478\pi\)
\(318\) 202.203 0.0356571
\(319\) −1650.88 + 5194.37i −0.289755 + 0.911690i
\(320\) 954.761 0.166790
\(321\) 954.104 + 2936.43i 0.165897 + 0.510578i
\(322\) 6260.52 + 4548.54i 1.08349 + 0.787205i
\(323\) 442.576 321.550i 0.0762402 0.0553917i
\(324\) −605.669 + 1864.06i −0.103853 + 0.319626i
\(325\) −1327.23 + 4084.81i −0.226528 + 0.697183i
\(326\) 5368.99 3900.80i 0.912150 0.662716i
\(327\) 3196.77 + 2322.59i 0.540617 + 0.392781i
\(328\) 625.750 + 1925.86i 0.105339 + 0.324201i
\(329\) 10864.2 1.82055
\(330\) 8503.09 54.7074i 1.41842 0.00912589i
\(331\) 309.871 0.0514563 0.0257281 0.999669i \(-0.491810\pi\)
0.0257281 + 0.999669i \(0.491810\pi\)
\(332\) 664.067 + 2043.79i 0.109775 + 0.337854i
\(333\) −6120.11 4446.52i −1.00715 0.731736i
\(334\) −4879.34 + 3545.05i −0.799358 + 0.580768i
\(335\) −2395.43 + 7372.39i −0.390676 + 1.20238i
\(336\) −840.756 + 2587.58i −0.136509 + 0.420131i
\(337\) −9032.40 + 6562.42i −1.46002 + 1.06076i −0.476659 + 0.879088i \(0.658152\pi\)
−0.983358 + 0.181677i \(0.941848\pi\)
\(338\) −418.239 303.869i −0.0673054 0.0489002i
\(339\) −3711.80 11423.7i −0.594682 1.83024i
\(340\) −1486.71 −0.237142
\(341\) −2228.20 1597.08i −0.353854 0.253627i
\(342\) −1494.17 −0.236244
\(343\) −1427.13 4392.25i −0.224658 0.691425i
\(344\) 845.412 + 614.227i 0.132504 + 0.0962701i
\(345\) 16758.4 12175.7i 2.61519 1.90005i
\(346\) 1365.49 4202.55i 0.212165 0.652978i
\(347\) 777.327 2392.37i 0.120257 0.370112i −0.872750 0.488167i \(-0.837666\pi\)
0.993007 + 0.118055i \(0.0376658\pi\)
\(348\) −3776.67 + 2743.91i −0.581756 + 0.422670i
\(349\) 9203.85 + 6686.99i 1.41166 + 1.02563i 0.993078 + 0.117457i \(0.0374744\pi\)
0.418587 + 0.908177i \(0.362526\pi\)
\(350\) −1312.38 4039.08i −0.200427 0.616852i
\(351\) 2416.01 0.367400
\(352\) 940.054 692.273i 0.142344 0.104825i
\(353\) 6210.08 0.936343 0.468172 0.883638i \(-0.344913\pi\)
0.468172 + 0.883638i \(0.344913\pi\)
\(354\) 171.689 + 528.405i 0.0257773 + 0.0793344i
\(355\) −946.799 687.889i −0.141552 0.102843i
\(356\) −2158.75 + 1568.42i −0.321386 + 0.233500i
\(357\) 1309.19 4029.27i 0.194088 0.597343i
\(358\) 1404.07 4321.28i 0.207283 0.637952i
\(359\) 2012.43 1462.12i 0.295856 0.214952i −0.429948 0.902854i \(-0.641468\pi\)
0.725804 + 0.687902i \(0.241468\pi\)
\(360\) 3285.14 + 2386.79i 0.480950 + 0.349430i
\(361\) −1970.56 6064.77i −0.287296 0.884207i
\(362\) 1248.87 0.181324
\(363\) 8332.44 6219.24i 1.20479 0.899244i
\(364\) −3833.63 −0.552024
\(365\) 5274.11 + 16232.0i 0.756328 + 2.32774i
\(366\) −6804.54 4943.79i −0.971801 0.706055i
\(367\) −5436.21 + 3949.64i −0.773209 + 0.561770i −0.902933 0.429781i \(-0.858591\pi\)
0.129724 + 0.991550i \(0.458591\pi\)
\(368\) 878.840 2704.79i 0.124491 0.383144i
\(369\) −2661.35 + 8190.80i −0.375459 + 1.15554i
\(370\) 5366.77 3899.19i 0.754068 0.547862i
\(371\) −227.918 165.592i −0.0318946 0.0231728i
\(372\) −725.582 2233.11i −0.101128 0.311240i
\(373\) −8614.37 −1.19580 −0.597902 0.801569i \(-0.703999\pi\)
−0.597902 + 0.801569i \(0.703999\pi\)
\(374\) −1463.81 + 1077.98i −0.202385 + 0.149040i
\(375\) 3198.87 0.440503
\(376\) −1233.83 3797.33i −0.169228 0.520831i
\(377\) −5321.47 3866.28i −0.726976 0.528179i
\(378\) −1932.72 + 1404.20i −0.262985 + 0.191070i
\(379\) −2474.95 + 7617.10i −0.335434 + 1.03236i 0.631074 + 0.775723i \(0.282614\pi\)
−0.966508 + 0.256637i \(0.917386\pi\)
\(380\) 404.888 1246.12i 0.0546587 0.168222i
\(381\) −4407.06 + 3201.92i −0.592600 + 0.430549i
\(382\) −2174.96 1580.20i −0.291310 0.211649i
\(383\) 2475.83 + 7619.82i 0.330310 + 1.01659i 0.968986 + 0.247115i \(0.0794826\pi\)
−0.638676 + 0.769476i \(0.720517\pi\)
\(384\) 999.912 0.132882
\(385\) −9629.27 6901.86i −1.27468 0.913639i
\(386\) −9247.52 −1.21940
\(387\) 1373.39 + 4226.86i 0.180396 + 0.555203i
\(388\) 581.372 + 422.392i 0.0760688 + 0.0552672i
\(389\) −6496.09 + 4719.68i −0.846696 + 0.615160i −0.924233 0.381829i \(-0.875294\pi\)
0.0775373 + 0.996989i \(0.475294\pi\)
\(390\) −3171.13 + 9759.72i −0.411734 + 1.26719i
\(391\) −1368.49 + 4211.78i −0.177001 + 0.544754i
\(392\) 846.811 615.244i 0.109108 0.0792717i
\(393\) −1642.60 1193.42i −0.210836 0.153181i
\(394\) −410.801 1264.32i −0.0525276 0.161663i
\(395\) 11524.9 1.46806
\(396\) 4965.14 31.9448i 0.630070 0.00405376i
\(397\) 4435.00 0.560670 0.280335 0.959902i \(-0.409554\pi\)
0.280335 + 0.959902i \(0.409554\pi\)
\(398\) 1880.57 + 5787.79i 0.236845 + 0.728934i
\(399\) 3020.67 + 2194.64i 0.379004 + 0.275363i
\(400\) −1262.72 + 917.423i −0.157841 + 0.114678i
\(401\) −1214.19 + 3736.90i −0.151207 + 0.465366i −0.997757 0.0669429i \(-0.978675\pi\)
0.846550 + 0.532309i \(0.178675\pi\)
\(402\) −2508.72 + 7721.03i −0.311252 + 0.957936i
\(403\) 2676.60 1944.67i 0.330847 0.240374i
\(404\) 1329.17 + 965.697i 0.163685 + 0.118924i
\(405\) −2258.86 6952.07i −0.277145 0.852965i
\(406\) 6504.07 0.795054
\(407\) 2456.90 7730.44i 0.299223 0.941483i
\(408\) −1557.02 −0.188931
\(409\) −4500.59 13851.4i −0.544107 1.67459i −0.723103 0.690740i \(-0.757285\pi\)
0.178996 0.983850i \(-0.442715\pi\)
\(410\) −6109.85 4439.07i −0.735961 0.534707i
\(411\) −13167.9 + 9567.02i −1.58035 + 1.14819i
\(412\) 1690.52 5202.89i 0.202150 0.622155i
\(413\) 239.208 736.208i 0.0285004 0.0877153i
\(414\) 9785.57 7109.63i 1.16168 0.844008i
\(415\) −6483.98 4710.89i −0.766955 0.557225i
\(416\) 435.378 + 1339.96i 0.0513129 + 0.157925i
\(417\) −1354.79 −0.159099
\(418\) −504.877 1520.50i −0.0590774 0.177918i
\(419\) 4028.77 0.469734 0.234867 0.972028i \(-0.424535\pi\)
0.234867 + 0.972028i \(0.424535\pi\)
\(420\) −3135.63 9650.47i −0.364293 1.12118i
\(421\) 6898.98 + 5012.40i 0.798659 + 0.580260i 0.910521 0.413464i \(-0.135681\pi\)
−0.111861 + 0.993724i \(0.535681\pi\)
\(422\) 4193.31 3046.62i 0.483714 0.351439i
\(423\) 5247.54 16150.3i 0.603177 1.85639i
\(424\) −31.9946 + 98.4694i −0.00366462 + 0.0112785i
\(425\) 1966.26 1428.57i 0.224418 0.163049i
\(426\) −991.574 720.420i −0.112774 0.0819354i
\(427\) 3621.24 + 11145.0i 0.410408 + 1.26310i
\(428\) −1580.96 −0.178548
\(429\) 3954.25 + 11908.7i 0.445019 + 1.34023i
\(430\) −3897.31 −0.437082
\(431\) 4145.53 + 12758.6i 0.463302 + 1.42590i 0.861105 + 0.508427i \(0.169773\pi\)
−0.397803 + 0.917471i \(0.630227\pi\)
\(432\) 710.301 + 516.064i 0.0791074 + 0.0574749i
\(433\) −3343.11 + 2428.91i −0.371038 + 0.269575i −0.757641 0.652671i \(-0.773648\pi\)
0.386603 + 0.922246i \(0.373648\pi\)
\(434\) −1010.93 + 3111.32i −0.111811 + 0.344120i
\(435\) 5380.08 16558.2i 0.593000 1.82507i
\(436\) −1636.89 + 1189.27i −0.179800 + 0.130632i
\(437\) −3157.50 2294.06i −0.345637 0.251120i
\(438\) 5523.53 + 16999.7i 0.602567 + 1.85451i
\(439\) 3358.46 0.365126 0.182563 0.983194i \(-0.441561\pi\)
0.182563 + 0.983194i \(0.441561\pi\)
\(440\) −1318.81 + 4149.52i −0.142890 + 0.449592i
\(441\) 4451.74 0.480698
\(442\) −677.952 2086.52i −0.0729568 0.224538i
\(443\) 357.383 + 259.654i 0.0383290 + 0.0278477i 0.606785 0.794866i \(-0.292459\pi\)
−0.568456 + 0.822714i \(0.692459\pi\)
\(444\) 5620.57 4083.58i 0.600767 0.436483i
\(445\) 3075.25 9464.66i 0.327598 1.00824i
\(446\) −1629.88 + 5016.26i −0.173043 + 0.532571i
\(447\) −2837.98 + 2061.91i −0.300295 + 0.218177i
\(448\) −1127.08 818.869i −0.118860 0.0863569i
\(449\) −126.227 388.486i −0.0132673 0.0408325i 0.944204 0.329362i \(-0.106834\pi\)
−0.957471 + 0.288530i \(0.906834\pi\)
\(450\) −6638.23 −0.695398
\(451\) −9234.40 + 59.4126i −0.964148 + 0.00620317i
\(452\) 6150.49 0.640033
\(453\) −68.8849 212.006i −0.00714458 0.0219888i
\(454\) 405.592 + 294.680i 0.0419282 + 0.0304626i
\(455\) 11567.0 8403.95i 1.19181 0.865897i
\(456\) 424.036 1305.05i 0.0435467 0.134023i
\(457\) 470.585 1448.31i 0.0481686 0.148248i −0.924079 0.382201i \(-0.875166\pi\)
0.972248 + 0.233953i \(0.0751663\pi\)
\(458\) 2911.35 2115.22i 0.297027 0.215803i
\(459\) −1106.05 803.592i −0.112475 0.0817178i
\(460\) 3277.66 + 10087.6i 0.332221 + 1.02247i
\(461\) −13861.4 −1.40041 −0.700203 0.713944i \(-0.746907\pi\)
−0.700203 + 0.713944i \(0.746907\pi\)
\(462\) −10084.6 7228.25i −1.01554 0.727898i
\(463\) −6502.26 −0.652669 −0.326334 0.945254i \(-0.605814\pi\)
−0.326334 + 0.945254i \(0.605814\pi\)
\(464\) −738.656 2273.35i −0.0739036 0.227452i
\(465\) 7084.62 + 5147.27i 0.706540 + 0.513331i
\(466\) 5146.12 3738.87i 0.511565 0.371674i
\(467\) 131.015 403.223i 0.0129821 0.0399548i −0.944356 0.328926i \(-0.893313\pi\)
0.957338 + 0.288971i \(0.0933132\pi\)
\(468\) −1851.69 + 5698.91i −0.182894 + 0.562890i
\(469\) 9150.83 6648.46i 0.900951 0.654579i
\(470\) 12047.1 + 8752.76i 1.18233 + 0.859010i
\(471\) −4161.37 12807.4i −0.407104 1.25294i
\(472\) −284.491 −0.0277431
\(473\) −3837.28 + 2825.84i −0.373020 + 0.274699i
\(474\) 12070.0 1.16960
\(475\) 661.898 + 2037.11i 0.0639368 + 0.196777i
\(476\) 1755.03 + 1275.11i 0.168995 + 0.122782i
\(477\) −356.249 + 258.830i −0.0341961 + 0.0248449i
\(478\) −3098.70 + 9536.82i −0.296509 + 0.912561i
\(479\) 1408.29 4334.29i 0.134335 0.413442i −0.861151 0.508350i \(-0.830256\pi\)
0.995486 + 0.0949081i \(0.0302557\pi\)
\(480\) −3016.99 + 2191.97i −0.286888 + 0.208436i
\(481\) 7919.59 + 5753.92i 0.750732 + 0.545439i
\(482\) −3754.02 11553.7i −0.354753 1.09182i
\(483\) −30225.6 −2.84744
\(484\) 1710.22 + 5041.84i 0.160614 + 0.473501i
\(485\) −2680.10 −0.250922
\(486\) −3281.36 10099.0i −0.306267 0.942592i
\(487\) 5427.63 + 3943.41i 0.505030 + 0.366926i 0.810935 0.585136i \(-0.198959\pi\)
−0.305905 + 0.952062i \(0.598959\pi\)
\(488\) 3484.23 2531.44i 0.323204 0.234822i
\(489\) −8010.13 + 24652.6i −0.740758 + 2.27982i
\(490\) −1206.33 + 3712.70i −0.111217 + 0.342291i
\(491\) −11753.1 + 8539.14i −1.08027 + 0.784859i −0.977729 0.209870i \(-0.932696\pi\)
−0.102537 + 0.994729i \(0.532696\pi\)
\(492\) −6398.80 4649.00i −0.586341 0.426002i
\(493\) 1150.20 + 3539.96i 0.105076 + 0.323391i
\(494\) 1933.49 0.176097
\(495\) −14911.1 + 10980.8i −1.35394 + 0.997070i
\(496\) 1202.30 0.108840
\(497\) 527.695 + 1624.08i 0.0476265 + 0.146579i
\(498\) −6790.62 4933.67i −0.611034 0.443942i
\(499\) 7847.09 5701.24i 0.703976 0.511468i −0.177249 0.984166i \(-0.556720\pi\)
0.881225 + 0.472698i \(0.156720\pi\)
\(500\) −506.158 + 1557.79i −0.0452722 + 0.139333i
\(501\) 7279.61 22404.3i 0.649159 1.99791i
\(502\) −9011.95 + 6547.57i −0.801241 + 0.582136i
\(503\) −12707.4 9232.43i −1.12643 0.818397i −0.141256 0.989973i \(-0.545114\pi\)
−0.985171 + 0.171576i \(0.945114\pi\)
\(504\) −1830.96 5635.12i −0.161820 0.498032i
\(505\) −6127.41 −0.539933
\(506\) 10541.4 + 7555.67i 0.926136 + 0.663815i
\(507\) 2019.25 0.176879
\(508\) −861.950 2652.81i −0.0752812 0.231692i
\(509\) 1192.56 + 866.443i 0.103849 + 0.0754507i 0.638498 0.769624i \(-0.279556\pi\)
−0.534649 + 0.845074i \(0.679556\pi\)
\(510\) 4697.93 3413.24i 0.407898 0.296355i
\(511\) 7695.74 23685.0i 0.666222 2.05042i
\(512\) −158.217 + 486.941i −0.0136568 + 0.0420312i
\(513\) 974.766 708.209i 0.0838928 0.0609517i
\(514\) −9557.81 6944.15i −0.820188 0.595902i
\(515\) 6304.85 + 19404.3i 0.539466 + 1.66031i
\(516\) −4081.62 −0.348223
\(517\) 18208.0 117.147i 1.54891 0.00996542i
\(518\) −9679.57 −0.821035
\(519\) 5333.48 + 16414.8i 0.451086 + 1.38830i
\(520\) −4251.05 3088.57i −0.358502 0.260467i
\(521\) 7501.89 5450.44i 0.630832 0.458326i −0.225856 0.974161i \(-0.572518\pi\)
0.856688 + 0.515834i \(0.172518\pi\)
\(522\) 3141.55 9668.69i 0.263413 0.810703i
\(523\) −1311.01 + 4034.86i −0.109610 + 0.337346i −0.990785 0.135445i \(-0.956754\pi\)
0.881174 + 0.472791i \(0.156754\pi\)
\(524\) 841.087 611.085i 0.0701203 0.0509454i
\(525\) 13420.1 + 9750.28i 1.11562 + 0.810547i
\(526\) 4235.84 + 13036.6i 0.351125 + 1.08065i
\(527\) −1872.17 −0.154749
\(528\) −1381.17 + 4345.76i −0.113841 + 0.358191i
\(529\) 19427.7 1.59676
\(530\) −119.325 367.245i −0.00977953 0.0300983i
\(531\) −978.875 711.194i −0.0799992 0.0581228i
\(532\) −1546.72 + 1123.76i −0.126050 + 0.0915809i
\(533\) 3443.86 10599.1i 0.279869 0.861348i
\(534\) 3220.68 9912.25i 0.260997 0.803268i
\(535\) 4770.17 3465.73i 0.385481 0.280068i
\(536\) −3363.06 2443.41i −0.271011 0.196901i
\(537\) 5484.16 + 16878.5i 0.440706 + 1.35635i
\(538\) −2202.73 −0.176517
\(539\) 1504.24 + 4530.19i 0.120208 + 0.362020i
\(540\) −3274.46 −0.260945
\(541\) −2014.87 6201.13i −0.160122 0.492805i 0.838522 0.544868i \(-0.183420\pi\)
−0.998644 + 0.0520633i \(0.983420\pi\)
\(542\) −4161.09 3023.21i −0.329768 0.239590i
\(543\) −3946.36 + 2867.20i −0.311887 + 0.226599i
\(544\) 246.368 758.243i 0.0194172 0.0597599i
\(545\) 2331.84 7176.66i 0.183275 0.564063i
\(546\) 12114.1 8801.38i 0.949513 0.689861i
\(547\) −5154.07 3744.65i −0.402874 0.292705i 0.367836 0.929890i \(-0.380099\pi\)
−0.770711 + 0.637185i \(0.780099\pi\)
\(548\) −2575.42 7926.34i −0.200760 0.617876i
\(549\) 18316.8 1.42394
\(550\) −2243.05 6755.20i −0.173898 0.523714i
\(551\) −3280.33 −0.253624
\(552\) 3432.67 + 10564.7i 0.264681 + 0.814605i
\(553\) −13605.0 9884.59i −1.04619 0.760100i
\(554\) −11876.5 + 8628.81i −0.910804 + 0.661738i
\(555\) −8006.81 + 24642.4i −0.612379 + 1.88471i
\(556\) 214.370 659.762i 0.0163513 0.0503240i
\(557\) −4938.23 + 3587.84i −0.375655 + 0.272929i −0.759552 0.650447i \(-0.774582\pi\)
0.383897 + 0.923376i \(0.374582\pi\)
\(558\) 4136.86 + 3005.61i 0.313848 + 0.228024i
\(559\) −1777.20 5469.67i −0.134468 0.413851i
\(560\) 5195.77 0.392074
\(561\) 2150.70 6767.02i 0.161859 0.509276i
\(562\) 14985.9 1.12481
\(563\) −4200.34 12927.3i −0.314429 0.967711i −0.975989 0.217820i \(-0.930106\pi\)
0.661561 0.749892i \(-0.269894\pi\)
\(564\) 12616.9 + 9166.69i 0.941961 + 0.684375i
\(565\) −18557.6 + 13482.9i −1.38181 + 1.00395i
\(566\) 4013.57 12352.5i 0.298062 0.917341i
\(567\) −3296.03 + 10144.1i −0.244127 + 0.751347i
\(568\) 507.730 368.888i 0.0375068 0.0272503i
\(569\) −13913.1 10108.5i −1.02508 0.744761i −0.0577589 0.998331i \(-0.518395\pi\)
−0.967317 + 0.253569i \(0.918395\pi\)
\(570\) 1581.46 + 4867.22i 0.116210 + 0.357659i
\(571\) 2475.65 0.181441 0.0907203 0.995876i \(-0.471083\pi\)
0.0907203 + 0.995876i \(0.471083\pi\)
\(572\) −6425.02 + 41.3375i −0.469657 + 0.00302169i
\(573\) 10500.6 0.765567
\(574\) 3405.31 + 10480.5i 0.247622 + 0.762101i
\(575\) −14028.0 10191.9i −1.01741 0.739188i
\(576\) −1761.69 + 1279.94i −0.127437 + 0.0925883i
\(577\) −6285.32 + 19344.2i −0.453485 + 1.39568i 0.419419 + 0.907793i \(0.362234\pi\)
−0.872904 + 0.487892i \(0.837766\pi\)
\(578\) 2652.77 8164.38i 0.190901 0.587532i
\(579\) 29221.7 21230.8i 2.09743 1.52387i
\(580\) 7212.27 + 5240.02i 0.516333 + 0.375138i
\(581\) 3613.83 + 11122.2i 0.258050 + 0.794196i
\(582\) −2806.85 −0.199910
\(583\) −383.767 275.068i −0.0272625 0.0195406i
\(584\) −9152.55 −0.648519
\(585\) −6905.94 21254.3i −0.488078 1.50215i
\(586\) −4344.22 3156.26i −0.306242 0.222498i
\(587\) 11988.4 8710.07i 0.842953 0.612441i −0.0802411 0.996775i \(-0.525569\pi\)
0.923194 + 0.384334i \(0.125569\pi\)
\(588\) −1263.38 + 3888.28i −0.0886068 + 0.272704i
\(589\) 509.862 1569.19i 0.0356681 0.109775i
\(590\) 858.382 623.651i 0.0598967 0.0435175i
\(591\) 4200.77 + 3052.04i 0.292380 + 0.212427i
\(592\) 1099.29 + 3383.27i 0.0763186 + 0.234885i
\(593\) 11123.2 0.770281 0.385140 0.922858i \(-0.374153\pi\)
0.385140 + 0.922858i \(0.374153\pi\)
\(594\) −3224.02 + 2374.23i −0.222699 + 0.164000i
\(595\) −8090.63 −0.557451
\(596\) −555.062 1708.31i −0.0381481 0.117408i
\(597\) −19230.3 13971.6i −1.31833 0.957824i
\(598\) −12662.8 + 9200.06i −0.865920 + 0.629127i
\(599\) 2560.26 7879.67i 0.174640 0.537487i −0.824977 0.565167i \(-0.808812\pi\)
0.999617 + 0.0276796i \(0.00881183\pi\)
\(600\) 1883.89 5798.01i 0.128182 0.394505i
\(601\) −22101.0 + 16057.3i −1.50003 + 1.08984i −0.529660 + 0.848210i \(0.677680\pi\)
−0.970370 + 0.241625i \(0.922320\pi\)
\(602\) 4600.70 + 3342.60i 0.311479 + 0.226303i
\(603\) −5463.37 16814.5i −0.368965 1.13556i
\(604\) 114.143 0.00768944
\(605\) −16212.7 11463.4i −1.08949 0.770338i
\(606\) −6417.18 −0.430165
\(607\) 5045.53 + 15528.6i 0.337384 + 1.03836i 0.965536 + 0.260270i \(0.0838115\pi\)
−0.628152 + 0.778091i \(0.716188\pi\)
\(608\) 568.441 + 412.997i 0.0379167 + 0.0275481i
\(609\) −20552.5 + 14932.3i −1.36754 + 0.993574i
\(610\) −4963.48 + 15276.0i −0.329452 + 1.01395i
\(611\) −6790.45 + 20898.9i −0.449611 + 1.38376i
\(612\) 2743.22 1993.07i 0.181190 0.131642i
\(613\) 17009.8 + 12358.4i 1.12075 + 0.814274i 0.984323 0.176376i \(-0.0564374\pi\)
0.136429 + 0.990650i \(0.456437\pi\)
\(614\) −5149.25 15847.8i −0.338448 1.04163i
\(615\) 29498.2 1.93412
\(616\) 5115.74 3767.33i 0.334609 0.246412i
\(617\) 871.824 0.0568854 0.0284427 0.999595i \(-0.490945\pi\)
0.0284427 + 0.999595i \(0.490945\pi\)
\(618\) 6603.02 + 20322.0i 0.429793 + 1.32277i
\(619\) −7602.75 5523.72i −0.493668 0.358671i 0.312925 0.949778i \(-0.398691\pi\)
−0.806593 + 0.591107i \(0.798691\pi\)
\(620\) −3627.64 + 2635.64i −0.234983 + 0.170725i
\(621\) −3014.08 + 9276.38i −0.194768 + 0.599434i
\(622\) 3102.75 9549.28i 0.200014 0.615581i
\(623\) −11747.8 + 8535.29i −0.755484 + 0.548891i
\(624\) −4452.09 3234.63i −0.285619 0.207514i
\(625\) −5655.84 17406.9i −0.361974 1.11404i
\(626\) −6044.15 −0.385899
\(627\) 5086.19 + 3645.57i 0.323960 + 0.232201i
\(628\) 6895.44 0.438150
\(629\) −1711.77 5268.28i −0.108510 0.333959i
\(630\) 17877.6 + 12988.8i 1.13057 + 0.821409i
\(631\) 11759.8 8544.01i 0.741919 0.539036i −0.151393 0.988474i \(-0.548376\pi\)
0.893311 + 0.449438i \(0.148376\pi\)
\(632\) −1909.84 + 5877.88i −0.120205 + 0.369952i
\(633\) −6256.10 + 19254.3i −0.392824 + 1.20899i
\(634\) −17054.3 + 12390.7i −1.06832 + 0.776178i
\(635\) 8416.12 + 6114.67i 0.525958 + 0.382131i
\(636\) −124.968 384.612i −0.00779136 0.0239794i
\(637\) −5760.67 −0.358314
\(638\) 10900.6 70.1325i 0.676424 0.00435200i
\(639\) 2669.17 0.165244
\(640\) −590.075 1816.06i −0.0364449 0.112166i
\(641\) 9238.70 + 6712.31i 0.569277 + 0.413604i 0.834843 0.550489i \(-0.185559\pi\)
−0.265565 + 0.964093i \(0.585559\pi\)
\(642\) 4995.76 3629.63i 0.307113 0.223131i
\(643\) 7407.11 22796.7i 0.454289 1.39816i −0.417679 0.908595i \(-0.637156\pi\)
0.871968 0.489563i \(-0.162844\pi\)
\(644\) 4782.61 14719.4i 0.292642 0.900659i
\(645\) 12315.3 8947.58i 0.751805 0.546218i
\(646\) −885.152 643.100i −0.0539100 0.0391679i
\(647\) 2569.24 + 7907.32i 0.156117 + 0.480478i 0.998272 0.0587569i \(-0.0187137\pi\)
−0.842156 + 0.539234i \(0.818714\pi\)
\(648\) 3919.97 0.237641
\(649\) 392.966 1236.44i 0.0237677 0.0747833i
\(650\) 8590.04 0.518353
\(651\) −3948.59 12152.5i −0.237723 0.731635i
\(652\) −10738.0 7801.60i −0.644988 0.468611i
\(653\) 24334.7 17680.2i 1.45833 1.05954i 0.474536 0.880236i \(-0.342616\pi\)
0.983794 0.179303i \(-0.0573843\pi\)
\(654\) 2442.11 7516.05i 0.146016 0.449390i
\(655\) −1198.17 + 3687.60i −0.0714757 + 0.219980i
\(656\) 3276.47 2380.50i 0.195007 0.141681i
\(657\) −31492.1 22880.3i −1.87005 1.35867i
\(658\) −6714.44 20664.9i −0.397806 1.22432i
\(659\) −10041.6 −0.593572 −0.296786 0.954944i \(-0.595915\pi\)
−0.296786 + 0.954944i \(0.595915\pi\)
\(660\) −5359.26 16140.0i −0.316074 0.951893i
\(661\) 1402.50 0.0825281 0.0412640 0.999148i \(-0.486862\pi\)
0.0412640 + 0.999148i \(0.486862\pi\)
\(662\) −191.511 589.409i −0.0112436 0.0346043i
\(663\) 6932.60 + 5036.83i 0.406093 + 0.295044i
\(664\) 3477.10 2526.26i 0.203219 0.147648i
\(665\) 2203.39 6781.32i 0.128487 0.395441i
\(666\) −4675.35 + 14389.3i −0.272021 + 0.837196i
\(667\) 21483.5 15608.7i 1.24714 0.906102i
\(668\) 9758.68 + 7090.10i 0.565232 + 0.410665i
\(669\) −6366.17 19593.1i −0.367908 1.13230i
\(670\) 15503.6 0.893963
\(671\) 6189.24 + 18639.6i 0.356085 + 1.07239i
\(672\) 5441.49 0.312366
\(673\) 6299.43 + 19387.7i 0.360810 + 1.11046i 0.952563 + 0.304341i \(0.0984361\pi\)
−0.591753 + 0.806119i \(0.701564\pi\)
\(674\) 18064.8 + 13124.8i 1.03239 + 0.750074i
\(675\) 4330.65 3146.40i 0.246944 0.179415i
\(676\) −319.507 + 983.340i −0.0181786 + 0.0559479i
\(677\) −2282.09 + 7023.55i −0.129554 + 0.398725i −0.994703 0.102789i \(-0.967223\pi\)
0.865149 + 0.501514i \(0.167223\pi\)
\(678\) −19435.2 + 14120.5i −1.10089 + 0.799846i
\(679\) 3163.81 + 2298.64i 0.178815 + 0.129917i
\(680\) 918.838 + 2827.89i 0.0518174 + 0.159478i
\(681\) −1958.19 −0.110188
\(682\) −1660.73 + 5225.35i −0.0932442 + 0.293386i
\(683\) −25844.0 −1.44787 −0.723935 0.689868i \(-0.757668\pi\)
−0.723935 + 0.689868i \(0.757668\pi\)
\(684\) 923.446 + 2842.07i 0.0516211 + 0.158873i
\(685\) 25146.5 + 18270.0i 1.40263 + 1.01907i
\(686\) −7472.53 + 5429.11i −0.415893 + 0.302164i
\(687\) −4343.51 + 13368.0i −0.241216 + 0.742386i
\(688\) 645.837 1987.68i 0.0357882 0.110145i
\(689\) 460.996 334.933i 0.0254899 0.0185195i
\(690\) −33516.7 24351.3i −1.84922 1.34353i
\(691\) 2607.73 + 8025.78i 0.143564 + 0.441845i 0.996824 0.0796417i \(-0.0253776\pi\)
−0.853259 + 0.521487i \(0.825378\pi\)
\(692\) −8837.64 −0.485486
\(693\) 27020.1 173.843i 1.48111 0.00952920i
\(694\) −5030.97 −0.275177
\(695\) 799.499 + 2460.60i 0.0436356 + 0.134296i
\(696\) 7553.35 + 5487.83i 0.411363 + 0.298873i
\(697\) −5101.98 + 3706.80i −0.277261 + 0.201442i
\(698\) 7031.12 21639.6i 0.381278 1.17345i
\(699\) −7677.62 + 23629.3i −0.415442 + 1.27860i
\(700\) −6871.70 + 4992.58i −0.371037 + 0.269574i
\(701\) 10503.8 + 7631.43i 0.565937 + 0.411177i 0.833627 0.552328i \(-0.186260\pi\)
−0.267690 + 0.963505i \(0.586260\pi\)
\(702\) −1493.18 4595.53i −0.0802798 0.247076i
\(703\) 4881.90 0.261912
\(704\) −1897.77 1360.24i −0.101598 0.0728210i
\(705\) −58163.2 −3.10717
\(706\) −3838.04 11812.3i −0.204598 0.629689i
\(707\) 7233.28 + 5255.29i 0.384775 + 0.279555i
\(708\) 898.976 653.144i 0.0477197 0.0346704i
\(709\) −5537.15 + 17041.6i −0.293303 + 0.902695i 0.690483 + 0.723349i \(0.257398\pi\)
−0.983786 + 0.179346i \(0.942602\pi\)
\(710\) −723.290 + 2226.06i −0.0382318 + 0.117665i
\(711\) −21265.4 + 15450.2i −1.12168 + 0.814948i
\(712\) 4317.49 + 3136.84i 0.227254 + 0.165110i
\(713\) 4127.45 + 12703.0i 0.216794 + 0.667224i
\(714\) −8473.24 −0.444122
\(715\) 19295.3 14209.4i 1.00924 0.743220i
\(716\) −9087.33 −0.474315
\(717\) −12103.2 37250.0i −0.630410 1.94020i
\(718\) −4024.87 2924.24i −0.209202 0.151994i
\(719\) −2845.59 + 2067.45i −0.147598 + 0.107236i −0.659133 0.752026i \(-0.729077\pi\)
0.511536 + 0.859262i \(0.329077\pi\)
\(720\) 2509.62 7723.82i 0.129900 0.399791i
\(721\) 9199.75 28313.9i 0.475196 1.46250i
\(722\) −10318.0 + 7496.47i −0.531851 + 0.386412i
\(723\) 38387.8 + 27890.4i 1.97463 + 1.43465i
\(724\) −771.844 2375.49i −0.0396207 0.121940i
\(725\) −14573.7 −0.746559
\(726\) −16979.4 12005.5i −0.867997 0.613729i
\(727\) −29438.9 −1.50183 −0.750913 0.660401i \(-0.770386\pi\)
−0.750913 + 0.660401i \(0.770386\pi\)
\(728\) 2369.31 + 7292.00i 0.120622 + 0.371235i
\(729\) 22851.3 + 16602.5i 1.16097 + 0.843492i
\(730\) 27615.6 20063.9i 1.40014 1.01726i
\(731\) −1005.67 + 3095.13i −0.0508837 + 0.156604i
\(732\) −5198.21 + 15998.4i −0.262474 + 0.807813i
\(733\) −2779.70 + 2019.57i −0.140069 + 0.101766i −0.655613 0.755097i \(-0.727590\pi\)
0.515544 + 0.856863i \(0.327590\pi\)
\(734\) 10872.4 + 7899.28i 0.546742 + 0.397231i
\(735\) −4711.81 14501.5i −0.236459 0.727747i
\(736\) −5687.97 −0.284866
\(737\) 15264.8 11241.3i 0.762937 0.561841i
\(738\) 17224.6 0.859143
\(739\) −10383.5 31957.2i −0.516866 1.59075i −0.779861 0.625953i \(-0.784710\pi\)
0.262995 0.964797i \(-0.415290\pi\)
\(740\) −10733.5 7798.37i −0.533206 0.387397i
\(741\) −6109.73 + 4438.98i −0.302897 + 0.220067i
\(742\) −174.114 + 535.867i −0.00861444 + 0.0265125i
\(743\) −368.875 + 1135.28i −0.0182136 + 0.0560557i −0.959750 0.280855i \(-0.909382\pi\)
0.941537 + 0.336911i \(0.109382\pi\)
\(744\) −3799.20 + 2760.28i −0.187211 + 0.136017i
\(745\) 5419.66 + 3937.61i 0.266525 + 0.193641i
\(746\) 5323.97 + 16385.5i 0.261293 + 0.804177i
\(747\) 18279.4 0.895324
\(748\) 2955.12 + 2118.11i 0.144452 + 0.103537i
\(749\) −8603.54 −0.419715
\(750\) −1977.01 6084.60i −0.0962535 0.296238i
\(751\) −19828.5 14406.2i −0.963451 0.699988i −0.00950152 0.999955i \(-0.503024\pi\)
−0.953950 + 0.299967i \(0.903024\pi\)
\(752\) −6460.40 + 4693.76i −0.313280 + 0.227611i
\(753\) 13445.1 41379.9i 0.650688 2.00261i
\(754\) −4065.25 + 12511.5i −0.196349 + 0.604302i
\(755\) −344.399 + 250.221i −0.0166013 + 0.0120615i
\(756\) 3865.43 + 2808.40i 0.185958 + 0.135107i
\(757\) 3338.57 + 10275.0i 0.160294 + 0.493333i 0.998659 0.0517762i \(-0.0164882\pi\)
−0.838365 + 0.545109i \(0.816488\pi\)
\(758\) 16018.2 0.767555
\(759\) −50657.0 + 325.918i −2.42257 + 0.0155864i
\(760\) −2620.49 −0.125073
\(761\) 2526.49 + 7775.75i 0.120349 + 0.370395i 0.993025 0.117904i \(-0.0376175\pi\)
−0.872676 + 0.488299i \(0.837617\pi\)
\(762\) 8814.12 + 6403.83i 0.419031 + 0.304444i
\(763\) −8907.88 + 6471.96i −0.422657 + 0.307078i
\(764\) −1661.52 + 5113.63i −0.0786802 + 0.242153i
\(765\) −3907.87 + 12027.2i −0.184692 + 0.568424i
\(766\) 12963.6 9418.61i 0.611481 0.444267i
\(767\) 1266.69 + 920.304i 0.0596317 + 0.0433250i
\(768\) −617.980 1901.95i −0.0290357 0.0893627i
\(769\) −28895.9 −1.35502 −0.677511 0.735513i \(-0.736941\pi\)
−0.677511 + 0.735513i \(0.736941\pi\)
\(770\) −7176.90 + 22581.5i −0.335893 + 1.05686i
\(771\) 46144.8 2.15547
\(772\) 5715.28 + 17589.8i 0.266448 + 0.820041i
\(773\) 14559.7