Properties

Label 22.4.c.b.5.1
Level 22
Weight 4
Character 22.5
Analytic conductor 1.298
Analytic rank 0
Dimension 8
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 22 = 2 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 22.c (of order \(5\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(1.29804202013\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 5.1
Root \(-2.53202 - 7.79275i\)
Character \(\chi\) = 22.5
Dual form 22.4.c.b.9.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.618034 - 1.90211i) q^{2}\) \(+(-6.12891 - 4.45291i) q^{3}\) \(+(-3.23607 + 2.35114i) q^{4}\) \(+(1.67119 - 5.14341i) q^{5}\) \(+(-4.68207 + 14.4099i) q^{6}\) \(+(17.9196 - 13.0193i) q^{7}\) \(+(6.47214 + 4.70228i) q^{8}\) \(+(9.39163 + 28.9045i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.618034 - 1.90211i) q^{2}\) \(+(-6.12891 - 4.45291i) q^{3}\) \(+(-3.23607 + 2.35114i) q^{4}\) \(+(1.67119 - 5.14341i) q^{5}\) \(+(-4.68207 + 14.4099i) q^{6}\) \(+(17.9196 - 13.0193i) q^{7}\) \(+(6.47214 + 4.70228i) q^{8}\) \(+(9.39163 + 28.9045i) q^{9}\) \(-10.8162 q^{10}\) \(+(-11.0504 - 34.7691i) q^{11}\) \(+30.3030 q^{12}\) \(+(23.7408 + 73.0668i) q^{13}\) \(+(-35.8392 - 26.0387i) q^{14}\) \(+(-33.1458 + 24.0818i) q^{15}\) \(+(4.94427 - 15.2169i) q^{16}\) \(+(18.3211 - 56.3866i) q^{17}\) \(+(49.1752 - 35.7279i) q^{18}\) \(+(-77.0690 - 55.9939i) q^{19}\) \(+(6.68478 + 20.5736i) q^{20}\) \(-167.801 q^{21}\) \(+(-59.3052 + 42.5075i) q^{22}\) \(+142.484 q^{23}\) \(+(-18.7283 - 57.6397i) q^{24}\) \(+(77.4654 + 56.2819i) q^{25}\) \(+(124.309 - 90.3155i) q^{26}\) \(+(7.94067 - 24.4389i) q^{27}\) \(+(-27.3787 + 84.2629i) q^{28}\) \(+(16.5188 - 12.0016i) q^{29}\) \(+(66.2915 + 48.1636i) q^{30}\) \(+(65.9146 + 202.864i) q^{31}\) \(-32.0000 q^{32}\) \(+(-87.0970 + 262.303i) q^{33}\) \(-118.577 q^{34}\) \(+(-37.0167 - 113.926i) q^{35}\) \(+(-98.3504 - 71.4558i) q^{36}\) \(+(117.775 - 85.5683i) q^{37}\) \(+(-58.8755 + 181.200i) q^{38}\) \(+(179.855 - 553.535i) q^{39}\) \(+(35.0020 - 25.4304i) q^{40}\) \(+(-67.0130 - 48.6878i) q^{41}\) \(+(103.707 + 319.177i) q^{42}\) \(-151.373 q^{43}\) \(+(117.507 + 86.5342i) q^{44}\) \(+164.363 q^{45}\) \(+(-88.0599 - 271.020i) q^{46}\) \(+(-73.1063 - 53.1148i) q^{47}\) \(+(-98.0625 + 71.2466i) q^{48}\) \(+(45.6154 - 140.390i) q^{49}\) \(+(59.1783 - 182.132i) q^{50}\) \(+(-363.373 + 264.006i) q^{51}\) \(+(-248.617 - 180.631i) q^{52}\) \(+(-72.5723 - 223.355i) q^{53}\) \(-51.3931 q^{54}\) \(+(-197.299 - 1.26939i) q^{55}\) \(+177.199 q^{56}\) \(+(223.013 + 686.363i) q^{57}\) \(+(-33.0375 - 24.0032i) q^{58}\) \(+(-244.726 + 177.804i) q^{59}\) \(+(50.6422 - 155.861i) q^{60}\) \(+(-46.1299 + 141.973i) q^{61}\) \(+(345.133 - 250.754i) q^{62}\) \(+(544.611 + 395.683i) q^{63}\) \(+(19.7771 + 60.8676i) q^{64}\) \(+415.488 q^{65}\) \(+(552.759 + 3.55635i) q^{66}\) \(+826.236 q^{67}\) \(+(73.2844 + 225.546i) q^{68}\) \(+(-873.271 - 634.468i) q^{69}\) \(+(-193.822 + 140.820i) q^{70}\) \(+(-277.796 + 854.967i) q^{71}\) \(+(-75.1330 + 231.236i) q^{72}\) \(+(111.639 - 81.1105i) q^{73}\) \(+(-235.549 - 171.137i) q^{74}\) \(+(-224.160 - 689.893i) q^{75}\) \(+381.050 q^{76}\) \(+(-650.688 - 479.179i) q^{77}\) \(-1164.04 q^{78}\) \(+(-94.0829 - 289.557i) q^{79}\) \(+(-70.0039 - 50.8608i) q^{80}\) \(+(506.374 - 367.902i) q^{81}\) \(+(-51.1933 + 157.557i) q^{82}\) \(+(-236.180 + 726.886i) q^{83}\) \(+(543.017 - 394.525i) q^{84}\) \(+(-259.401 - 188.466i) q^{85}\) \(+(93.5536 + 287.928i) q^{86}\) \(-154.684 q^{87}\) \(+(91.9746 - 276.992i) q^{88}\) \(-313.100 q^{89}\) \(+(-101.582 - 312.636i) q^{90}\) \(+(1376.71 + 1000.24i) q^{91}\) \(+(-461.088 + 335.000i) q^{92}\) \(+(499.352 - 1536.85i) q^{93}\) \(+(-55.8482 + 171.883i) q^{94}\) \(+(-416.797 + 302.821i) q^{95}\) \(+(196.125 + 142.493i) q^{96}\) \(+(-180.004 - 553.996i) q^{97}\) \(-295.229 q^{98}\) \(+(901.201 - 645.943i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(8q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 16q^{8} \) \(\mathstrut -\mathstrut 21q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(8q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 16q^{8} \) \(\mathstrut -\mathstrut 21q^{9} \) \(\mathstrut -\mathstrut 100q^{10} \) \(\mathstrut -\mathstrut 155q^{11} \) \(\mathstrut +\mathstrut 32q^{12} \) \(\mathstrut +\mathstrut 7q^{13} \) \(\mathstrut +\mathstrut 2q^{14} \) \(\mathstrut +\mathstrut 211q^{15} \) \(\mathstrut -\mathstrut 32q^{16} \) \(\mathstrut +\mathstrut 161q^{17} \) \(\mathstrut +\mathstrut 162q^{18} \) \(\mathstrut -\mathstrut 272q^{19} \) \(\mathstrut +\mathstrut 20q^{20} \) \(\mathstrut -\mathstrut 50q^{21} \) \(\mathstrut +\mathstrut 628q^{23} \) \(\mathstrut +\mathstrut 56q^{24} \) \(\mathstrut -\mathstrut 17q^{25} \) \(\mathstrut +\mathstrut 96q^{26} \) \(\mathstrut -\mathstrut 528q^{27} \) \(\mathstrut +\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 33q^{29} \) \(\mathstrut -\mathstrut 422q^{30} \) \(\mathstrut +\mathstrut 323q^{31} \) \(\mathstrut -\mathstrut 256q^{32} \) \(\mathstrut -\mathstrut 1144q^{33} \) \(\mathstrut +\mathstrut 208q^{34} \) \(\mathstrut -\mathstrut 697q^{35} \) \(\mathstrut -\mathstrut 324q^{36} \) \(\mathstrut +\mathstrut 49q^{37} \) \(\mathstrut -\mathstrut 576q^{38} \) \(\mathstrut +\mathstrut 391q^{39} \) \(\mathstrut +\mathstrut 240q^{40} \) \(\mathstrut +\mathstrut 361q^{41} \) \(\mathstrut +\mathstrut 1430q^{42} \) \(\mathstrut +\mathstrut 1442q^{43} \) \(\mathstrut +\mathstrut 620q^{44} \) \(\mathstrut +\mathstrut 2652q^{45} \) \(\mathstrut -\mathstrut 416q^{46} \) \(\mathstrut -\mathstrut 1069q^{47} \) \(\mathstrut +\mathstrut 48q^{48} \) \(\mathstrut -\mathstrut 709q^{49} \) \(\mathstrut -\mathstrut 76q^{50} \) \(\mathstrut -\mathstrut 1332q^{51} \) \(\mathstrut -\mathstrut 192q^{52} \) \(\mathstrut -\mathstrut 281q^{53} \) \(\mathstrut -\mathstrut 1144q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut +\mathstrut 48q^{56} \) \(\mathstrut -\mathstrut 438q^{57} \) \(\mathstrut -\mathstrut 66q^{58} \) \(\mathstrut -\mathstrut 128q^{59} \) \(\mathstrut -\mathstrut 1116q^{60} \) \(\mathstrut -\mathstrut 617q^{61} \) \(\mathstrut +\mathstrut 1044q^{62} \) \(\mathstrut +\mathstrut 694q^{63} \) \(\mathstrut -\mathstrut 128q^{64} \) \(\mathstrut -\mathstrut 138q^{65} \) \(\mathstrut +\mathstrut 1248q^{66} \) \(\mathstrut +\mathstrut 578q^{67} \) \(\mathstrut +\mathstrut 644q^{68} \) \(\mathstrut -\mathstrut 310q^{69} \) \(\mathstrut +\mathstrut 34q^{70} \) \(\mathstrut +\mathstrut 115q^{71} \) \(\mathstrut +\mathstrut 168q^{72} \) \(\mathstrut -\mathstrut 1487q^{73} \) \(\mathstrut -\mathstrut 98q^{74} \) \(\mathstrut -\mathstrut 1852q^{75} \) \(\mathstrut -\mathstrut 128q^{76} \) \(\mathstrut +\mathstrut 553q^{77} \) \(\mathstrut -\mathstrut 4152q^{78} \) \(\mathstrut +\mathstrut 71q^{79} \) \(\mathstrut -\mathstrut 480q^{80} \) \(\mathstrut +\mathstrut 1630q^{81} \) \(\mathstrut +\mathstrut 658q^{82} \) \(\mathstrut +\mathstrut 1942q^{83} \) \(\mathstrut +\mathstrut 2960q^{84} \) \(\mathstrut -\mathstrut 329q^{85} \) \(\mathstrut +\mathstrut 2426q^{86} \) \(\mathstrut +\mathstrut 2122q^{87} \) \(\mathstrut +\mathstrut 560q^{88} \) \(\mathstrut -\mathstrut 2202q^{89} \) \(\mathstrut +\mathstrut 1286q^{90} \) \(\mathstrut +\mathstrut 4523q^{91} \) \(\mathstrut -\mathstrut 2088q^{92} \) \(\mathstrut +\mathstrut 6019q^{93} \) \(\mathstrut -\mathstrut 1332q^{94} \) \(\mathstrut -\mathstrut 793q^{95} \) \(\mathstrut -\mathstrut 96q^{96} \) \(\mathstrut -\mathstrut 5128q^{97} \) \(\mathstrut -\mathstrut 3292q^{98} \) \(\mathstrut -\mathstrut 2213q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/22\mathbb{Z}\right)^\times\).

\(n\) \(13\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 1.90211i −0.218508 0.672499i
\(3\) −6.12891 4.45291i −1.17951 0.856963i −0.187393 0.982285i \(-0.560004\pi\)
−0.992116 + 0.125322i \(0.960004\pi\)
\(4\) −3.23607 + 2.35114i −0.404508 + 0.293893i
\(5\) 1.67119 5.14341i 0.149476 0.460041i −0.848083 0.529863i \(-0.822243\pi\)
0.997559 + 0.0698226i \(0.0222433\pi\)
\(6\) −4.68207 + 14.4099i −0.318574 + 0.980471i
\(7\) 17.9196 13.0193i 0.967566 0.702978i 0.0126708 0.999920i \(-0.495967\pi\)
0.954896 + 0.296942i \(0.0959667\pi\)
\(8\) 6.47214 + 4.70228i 0.286031 + 0.207813i
\(9\) 9.39163 + 28.9045i 0.347838 + 1.07054i
\(10\) −10.8162 −0.342038
\(11\) −11.0504 34.7691i −0.302892 0.953025i
\(12\) 30.3030 0.728977
\(13\) 23.7408 + 73.0668i 0.506502 + 1.55885i 0.798231 + 0.602351i \(0.205769\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(14\) −35.8392 26.0387i −0.684173 0.497081i
\(15\) −33.1458 + 24.0818i −0.570546 + 0.414526i
\(16\) 4.94427 15.2169i 0.0772542 0.237764i
\(17\) 18.3211 56.3866i 0.261384 0.804456i −0.731121 0.682248i \(-0.761003\pi\)
0.992505 0.122208i \(-0.0389975\pi\)
\(18\) 49.1752 35.7279i 0.643928 0.467841i
\(19\) −77.0690 55.9939i −0.930571 0.676099i 0.0155616 0.999879i \(-0.495046\pi\)
−0.946133 + 0.323780i \(0.895046\pi\)
\(20\) 6.68478 + 20.5736i 0.0747381 + 0.230020i
\(21\) −167.801 −1.74368
\(22\) −59.3052 + 42.5075i −0.574724 + 0.411938i
\(23\) 142.484 1.29174 0.645868 0.763449i \(-0.276495\pi\)
0.645868 + 0.763449i \(0.276495\pi\)
\(24\) −18.7283 57.6397i −0.159287 0.490236i
\(25\) 77.4654 + 56.2819i 0.619723 + 0.450255i
\(26\) 124.309 90.3155i 0.937651 0.681243i
\(27\) 7.94067 24.4389i 0.0565994 0.174195i
\(28\) −27.3787 + 84.2629i −0.184789 + 0.568721i
\(29\) 16.5188 12.0016i 0.105774 0.0768496i −0.533641 0.845711i \(-0.679177\pi\)
0.639415 + 0.768862i \(0.279177\pi\)
\(30\) 66.2915 + 48.1636i 0.403437 + 0.293114i
\(31\) 65.9146 + 202.864i 0.381891 + 1.17534i 0.938711 + 0.344706i \(0.112021\pi\)
−0.556820 + 0.830633i \(0.687979\pi\)
\(32\) −32.0000 −0.176777
\(33\) −87.0970 + 262.303i −0.459444 + 1.38367i
\(34\) −118.577 −0.598110
\(35\) −37.0167 113.926i −0.178770 0.550198i
\(36\) −98.3504 71.4558i −0.455326 0.330814i
\(37\) 117.775 85.5683i 0.523298 0.380199i −0.294547 0.955637i \(-0.595169\pi\)
0.817845 + 0.575439i \(0.195169\pi\)
\(38\) −58.8755 + 181.200i −0.251339 + 0.773541i
\(39\) 179.855 553.535i 0.738456 2.27273i
\(40\) 35.0020 25.4304i 0.138357 0.100523i
\(41\) −67.0130 48.6878i −0.255260 0.185457i 0.452795 0.891615i \(-0.350427\pi\)
−0.708055 + 0.706157i \(0.750427\pi\)
\(42\) 103.707 + 319.177i 0.381008 + 1.17262i
\(43\) −151.373 −0.536841 −0.268420 0.963302i \(-0.586502\pi\)
−0.268420 + 0.963302i \(0.586502\pi\)
\(44\) 117.507 + 86.5342i 0.402609 + 0.296489i
\(45\) 164.363 0.544483
\(46\) −88.0599 271.020i −0.282255 0.868691i
\(47\) −73.1063 53.1148i −0.226886 0.164842i 0.468535 0.883445i \(-0.344782\pi\)
−0.695421 + 0.718603i \(0.744782\pi\)
\(48\) −98.0625 + 71.2466i −0.294877 + 0.214241i
\(49\) 45.6154 140.390i 0.132989 0.409300i
\(50\) 59.1783 182.132i 0.167381 0.515147i
\(51\) −363.373 + 264.006i −0.997693 + 0.724867i
\(52\) −248.617 180.631i −0.663019 0.481712i
\(53\) −72.5723 223.355i −0.188086 0.578870i 0.811902 0.583794i \(-0.198433\pi\)
−0.999988 + 0.00492438i \(0.998433\pi\)
\(54\) −51.3931 −0.129513
\(55\) −197.299 1.26939i −0.483705 0.00311208i
\(56\) 177.199 0.422842
\(57\) 223.013 + 686.363i 0.518224 + 1.59493i
\(58\) −33.0375 24.0032i −0.0747937 0.0543408i
\(59\) −244.726 + 177.804i −0.540009 + 0.392340i −0.824089 0.566461i \(-0.808312\pi\)
0.284079 + 0.958801i \(0.408312\pi\)
\(60\) 50.6422 155.861i 0.108965 0.335359i
\(61\) −46.1299 + 141.973i −0.0968250 + 0.297997i −0.987725 0.156203i \(-0.950075\pi\)
0.890900 + 0.454200i \(0.150075\pi\)
\(62\) 345.133 250.754i 0.706967 0.513642i
\(63\) 544.611 + 395.683i 1.08912 + 0.791292i
\(64\) 19.7771 + 60.8676i 0.0386271 + 0.118882i
\(65\) 415.488 0.792845
\(66\) 552.759 + 3.55635i 1.03091 + 0.00663268i
\(67\) 826.236 1.50658 0.753290 0.657689i \(-0.228466\pi\)
0.753290 + 0.657689i \(0.228466\pi\)
\(68\) 73.2844 + 225.546i 0.130692 + 0.402228i
\(69\) −873.271 634.468i −1.52362 1.10697i
\(70\) −193.822 + 140.820i −0.330945 + 0.240445i
\(71\) −277.796 + 854.967i −0.464342 + 1.42910i 0.395467 + 0.918480i \(0.370583\pi\)
−0.859808 + 0.510617i \(0.829417\pi\)
\(72\) −75.1330 + 231.236i −0.122979 + 0.378491i
\(73\) 111.639 81.1105i 0.178991 0.130045i −0.494682 0.869074i \(-0.664716\pi\)
0.673673 + 0.739029i \(0.264716\pi\)
\(74\) −235.549 171.137i −0.370028 0.268841i
\(75\) −224.160 689.893i −0.345117 1.06216i
\(76\) 381.050 0.575124
\(77\) −650.688 479.179i −0.963024 0.709189i
\(78\) −1164.04 −1.68977
\(79\) −94.0829 289.557i −0.133989 0.412377i 0.861442 0.507856i \(-0.169562\pi\)
−0.995431 + 0.0954791i \(0.969562\pi\)
\(80\) −70.0039 50.8608i −0.0978335 0.0710802i
\(81\) 506.374 367.902i 0.694614 0.504667i
\(82\) −51.1933 + 157.557i −0.0689434 + 0.212186i
\(83\) −236.180 + 726.886i −0.312338 + 0.961279i 0.664498 + 0.747290i \(0.268646\pi\)
−0.976836 + 0.213989i \(0.931354\pi\)
\(84\) 543.017 394.525i 0.705333 0.512455i
\(85\) −259.401 188.466i −0.331012 0.240494i
\(86\) 93.5536 + 287.928i 0.117304 + 0.361024i
\(87\) −154.684 −0.190619
\(88\) 91.9746 276.992i 0.111415 0.335539i
\(89\) −313.100 −0.372905 −0.186452 0.982464i \(-0.559699\pi\)
−0.186452 + 0.982464i \(0.559699\pi\)
\(90\) −101.582 312.636i −0.118974 0.366164i
\(91\) 1376.71 + 1000.24i 1.58591 + 1.15223i
\(92\) −461.088 + 335.000i −0.522519 + 0.379632i
\(93\) 499.352 1536.85i 0.556779 1.71359i
\(94\) −55.8482 + 171.883i −0.0612798 + 0.188600i
\(95\) −416.797 + 302.821i −0.450131 + 0.327040i
\(96\) 196.125 + 142.493i 0.208510 + 0.151491i
\(97\) −180.004 553.996i −0.188419 0.579894i 0.811571 0.584253i \(-0.198612\pi\)
−0.999990 + 0.00435900i \(0.998612\pi\)
\(98\) −295.229 −0.304313
\(99\) 901.201 645.943i 0.914890 0.655755i
\(100\) −383.010 −0.383010
\(101\) −43.7427 134.626i −0.0430947 0.132632i 0.927194 0.374581i \(-0.122213\pi\)
−0.970289 + 0.241949i \(0.922213\pi\)
\(102\) 726.746 + 528.012i 0.705476 + 0.512558i
\(103\) −680.691 + 494.551i −0.651169 + 0.473102i −0.863669 0.504059i \(-0.831839\pi\)
0.212500 + 0.977161i \(0.431839\pi\)
\(104\) −189.927 + 584.534i −0.179075 + 0.551137i
\(105\) −280.429 + 863.071i −0.260639 + 0.802163i
\(106\) −379.993 + 276.081i −0.348191 + 0.252975i
\(107\) 52.1265 + 37.8721i 0.0470959 + 0.0342172i 0.611084 0.791566i \(-0.290734\pi\)
−0.563988 + 0.825783i \(0.690734\pi\)
\(108\) 31.7627 + 97.7555i 0.0282997 + 0.0870974i
\(109\) 1559.04 1.36999 0.684995 0.728547i \(-0.259804\pi\)
0.684995 + 0.728547i \(0.259804\pi\)
\(110\) 119.523 + 376.069i 0.103601 + 0.325971i
\(111\) −1102.86 −0.943052
\(112\) −109.515 337.052i −0.0923944 0.284361i
\(113\) 1811.50 + 1316.13i 1.50807 + 1.09568i 0.967024 + 0.254684i \(0.0819714\pi\)
0.541046 + 0.840993i \(0.318029\pi\)
\(114\) 1167.71 848.392i 0.959352 0.697010i
\(115\) 238.118 732.853i 0.193084 0.594251i
\(116\) −25.2384 + 77.6758i −0.0202011 + 0.0621726i
\(117\) −1888.99 + 1372.43i −1.49263 + 1.08446i
\(118\) 489.451 + 355.607i 0.381844 + 0.277426i
\(119\) −405.809 1248.95i −0.312609 0.962111i
\(120\) −327.763 −0.249338
\(121\) −1086.78 + 768.422i −0.816513 + 0.577327i
\(122\) 298.559 0.221559
\(123\) 193.914 + 596.806i 0.142151 + 0.437497i
\(124\) −690.267 501.508i −0.499901 0.363200i
\(125\) 965.846 701.728i 0.691103 0.502116i
\(126\) 416.046 1280.46i 0.294161 0.905335i
\(127\) 337.896 1039.94i 0.236090 0.726611i −0.760885 0.648887i \(-0.775235\pi\)
0.996975 0.0777237i \(-0.0247652\pi\)
\(128\) 103.554 75.2365i 0.0715077 0.0519534i
\(129\) 927.750 + 674.050i 0.633208 + 0.460053i
\(130\) −256.786 790.305i −0.173243 0.533187i
\(131\) −2466.16 −1.64481 −0.822403 0.568906i \(-0.807367\pi\)
−0.822403 + 0.568906i \(0.807367\pi\)
\(132\) −334.859 1053.61i −0.220801 0.694733i
\(133\) −2110.05 −1.37567
\(134\) −510.642 1571.60i −0.329200 1.01317i
\(135\) −112.429 81.6842i −0.0716765 0.0520760i
\(136\) 383.722 278.790i 0.241940 0.175780i
\(137\) −300.762 + 925.650i −0.187561 + 0.577253i −0.999983 0.00581676i \(-0.998148\pi\)
0.812422 + 0.583069i \(0.198148\pi\)
\(138\) −667.120 + 2053.18i −0.411514 + 1.26651i
\(139\) 1021.82 742.396i 0.623523 0.453016i −0.230627 0.973042i \(-0.574078\pi\)
0.854150 + 0.520026i \(0.174078\pi\)
\(140\) 387.644 + 281.640i 0.234013 + 0.170021i
\(141\) 211.546 + 651.072i 0.126350 + 0.388866i
\(142\) 1797.93 1.06253
\(143\) 2278.12 1632.86i 1.33221 0.954872i
\(144\) 486.271 0.281407
\(145\) −34.1230 105.020i −0.0195432 0.0601477i
\(146\) −223.278 162.221i −0.126566 0.0919555i
\(147\) −904.716 + 657.314i −0.507617 + 0.368805i
\(148\) −179.944 + 553.810i −0.0999411 + 0.307587i
\(149\) −151.214 + 465.390i −0.0831407 + 0.255881i −0.983982 0.178268i \(-0.942951\pi\)
0.900841 + 0.434149i \(0.142951\pi\)
\(150\) −1173.72 + 852.755i −0.638890 + 0.464181i
\(151\) −1381.62 1003.80i −0.744600 0.540983i 0.149549 0.988754i \(-0.452218\pi\)
−0.894148 + 0.447771i \(0.852218\pi\)
\(152\) −235.502 724.801i −0.125669 0.386770i
\(153\) 1801.89 0.952118
\(154\) −509.305 + 1533.83i −0.266500 + 0.802595i
\(155\) 1153.57 0.597787
\(156\) 719.418 + 2214.14i 0.369228 + 1.13637i
\(157\) −2072.48 1505.75i −1.05352 0.765424i −0.0806377 0.996743i \(-0.525696\pi\)
−0.972878 + 0.231320i \(0.925696\pi\)
\(158\) −492.624 + 357.913i −0.248045 + 0.180215i
\(159\) −549.789 + 1692.08i −0.274221 + 0.843965i
\(160\) −53.4782 + 164.589i −0.0264239 + 0.0813244i
\(161\) 2553.25 1855.05i 1.24984 0.908063i
\(162\) −1012.75 735.804i −0.491166 0.356853i
\(163\) 561.202 + 1727.20i 0.269673 + 0.829969i 0.990580 + 0.136936i \(0.0437256\pi\)
−0.720907 + 0.693032i \(0.756274\pi\)
\(164\) 331.330 0.157759
\(165\) 1203.57 + 886.335i 0.567868 + 0.418188i
\(166\) 1528.59 0.714707
\(167\) 117.094 + 360.379i 0.0542576 + 0.166988i 0.974513 0.224330i \(-0.0720193\pi\)
−0.920256 + 0.391318i \(0.872019\pi\)
\(168\) −1086.03 789.050i −0.498746 0.362360i
\(169\) −2997.71 + 2177.97i −1.36446 + 0.991336i
\(170\) −198.165 + 609.888i −0.0894032 + 0.275155i
\(171\) 894.671 2753.51i 0.400100 1.23138i
\(172\) 489.853 355.899i 0.217157 0.157773i
\(173\) −41.0349 29.8136i −0.0180337 0.0131022i 0.578732 0.815518i \(-0.303548\pi\)
−0.596766 + 0.802416i \(0.703548\pi\)
\(174\) 95.5999 + 294.226i 0.0416518 + 0.128191i
\(175\) 2120.90 0.916142
\(176\) −583.714 3.75552i −0.249995 0.00160842i
\(177\) 2291.64 0.973167
\(178\) 193.506 + 595.551i 0.0814826 + 0.250778i
\(179\) −16.8824 12.2658i −0.00704944 0.00512172i 0.584255 0.811570i \(-0.301387\pi\)
−0.591304 + 0.806448i \(0.701387\pi\)
\(180\) −531.889 + 386.440i −0.220248 + 0.160020i
\(181\) −54.4344 + 167.532i −0.0223540 + 0.0687985i −0.961611 0.274416i \(-0.911516\pi\)
0.939257 + 0.343214i \(0.111516\pi\)
\(182\) 1051.71 3236.83i 0.428340 1.31830i
\(183\) 914.920 664.728i 0.369578 0.268514i
\(184\) 922.175 + 669.999i 0.369476 + 0.268440i
\(185\) −243.288 748.765i −0.0966861 0.297569i
\(186\) −3231.88 −1.27405
\(187\) −2162.96 13.9161i −0.845837 0.00544197i
\(188\) 361.457 0.140223
\(189\) −175.884 541.316i −0.0676916 0.208333i
\(190\) 833.594 + 605.642i 0.318291 + 0.231252i
\(191\) 937.829 681.372i 0.355282 0.258128i −0.395799 0.918337i \(-0.629532\pi\)
0.751082 + 0.660209i \(0.229532\pi\)
\(192\) 149.826 461.118i 0.0563165 0.173324i
\(193\) −397.068 + 1222.05i −0.148091 + 0.455777i −0.997396 0.0721261i \(-0.977022\pi\)
0.849305 + 0.527903i \(0.177022\pi\)
\(194\) −942.514 + 684.776i −0.348807 + 0.253423i
\(195\) −2546.49 1850.13i −0.935168 0.679439i
\(196\) 182.462 + 561.559i 0.0664947 + 0.204650i
\(197\) −2685.06 −0.971078 −0.485539 0.874215i \(-0.661377\pi\)
−0.485539 + 0.874215i \(0.661377\pi\)
\(198\) −1785.63 1314.97i −0.640905 0.471974i
\(199\) −1333.54 −0.475036 −0.237518 0.971383i \(-0.576334\pi\)
−0.237518 + 0.971383i \(0.576334\pi\)
\(200\) 236.713 + 728.528i 0.0836907 + 0.257574i
\(201\) −5063.93 3679.16i −1.77702 1.29108i
\(202\) −229.040 + 166.407i −0.0797781 + 0.0579622i
\(203\) 139.757 430.126i 0.0483201 0.148714i
\(204\) 555.184 1708.68i 0.190542 0.586429i
\(205\) −362.413 + 263.308i −0.123473 + 0.0897085i
\(206\) 1361.38 + 989.102i 0.460446 + 0.334534i
\(207\) 1338.16 + 4118.42i 0.449315 + 1.38285i
\(208\) 1229.23 0.409768
\(209\) −1095.22 + 3298.37i −0.362477 + 1.09164i
\(210\) 1814.97 0.596405
\(211\) −503.132 1548.48i −0.164156 0.505221i 0.834817 0.550528i \(-0.185574\pi\)
−0.998973 + 0.0453065i \(0.985574\pi\)
\(212\) 759.987 + 552.163i 0.246208 + 0.178881i
\(213\) 5509.68 4003.01i 1.77238 1.28771i
\(214\) 39.8211 122.557i 0.0127202 0.0391487i
\(215\) −252.974 + 778.573i −0.0802449 + 0.246968i
\(216\) 166.312 120.832i 0.0523892 0.0380630i
\(217\) 3822.32 + 2777.08i 1.19574 + 0.868757i
\(218\) −963.540 2965.47i −0.299354 0.921317i
\(219\) −1045.40 −0.322565
\(220\) 641.457 459.770i 0.196577 0.140899i
\(221\) 4554.94 1.38642
\(222\) 681.604 + 2097.76i 0.206064 + 0.634201i
\(223\) 2126.25 + 1544.81i 0.638495 + 0.463894i 0.859333 0.511416i \(-0.170879\pi\)
−0.220837 + 0.975311i \(0.570879\pi\)
\(224\) −573.427 + 416.619i −0.171043 + 0.124270i
\(225\) −899.271 + 2767.67i −0.266451 + 0.820051i
\(226\) 1383.87 4259.10i 0.407316 1.25359i
\(227\) −1377.40 + 1000.74i −0.402736 + 0.292605i −0.770654 0.637253i \(-0.780070\pi\)
0.367919 + 0.929858i \(0.380070\pi\)
\(228\) −2335.42 1696.78i −0.678364 0.492861i
\(229\) 1667.44 + 5131.85i 0.481168 + 1.48088i 0.837455 + 0.546506i \(0.184043\pi\)
−0.356287 + 0.934377i \(0.615957\pi\)
\(230\) −1541.13 −0.441823
\(231\) 1854.27 + 5834.30i 0.528146 + 1.66177i
\(232\) 163.346 0.0462251
\(233\) −1870.85 5757.87i −0.526022 1.61893i −0.762286 0.647241i \(-0.775923\pi\)
0.236264 0.971689i \(-0.424077\pi\)
\(234\) 3777.98 + 2744.86i 1.05545 + 0.766826i
\(235\) −395.366 + 287.250i −0.109748 + 0.0797368i
\(236\) 373.907 1150.77i 0.103133 0.317410i
\(237\) −712.748 + 2193.61i −0.195350 + 0.601226i
\(238\) −2124.84 + 1543.79i −0.578711 + 0.420458i
\(239\) −2537.56 1843.65i −0.686783 0.498977i 0.188818 0.982012i \(-0.439534\pi\)
−0.875601 + 0.483035i \(0.839534\pi\)
\(240\) 202.569 + 623.443i 0.0544823 + 0.167679i
\(241\) −6499.26 −1.73715 −0.868577 0.495555i \(-0.834965\pi\)
−0.868577 + 0.495555i \(0.834965\pi\)
\(242\) 2133.29 + 1592.27i 0.566666 + 0.422953i
\(243\) −5435.56 −1.43494
\(244\) −184.520 567.893i −0.0484125 0.148998i
\(245\) −645.850 469.237i −0.168416 0.122361i
\(246\) 1015.35 737.692i 0.263155 0.191193i
\(247\) 2261.61 6960.53i 0.582603 1.79307i
\(248\) −527.317 + 1622.91i −0.135019 + 0.415545i
\(249\) 4684.29 3403.33i 1.19219 0.866174i
\(250\) −1931.69 1403.46i −0.488684 0.355050i
\(251\) 1719.92 + 5293.38i 0.432512 + 1.33114i 0.895615 + 0.444831i \(0.146736\pi\)
−0.463102 + 0.886305i \(0.653264\pi\)
\(252\) −2692.70 −0.673113
\(253\) −1574.50 4954.04i −0.391256 1.23106i
\(254\) −2186.91 −0.540232
\(255\) 750.623 + 2310.18i 0.184337 + 0.567330i
\(256\) −207.108 150.473i −0.0505636 0.0367366i
\(257\) 4883.48 3548.05i 1.18530 0.861173i 0.192543 0.981289i \(-0.438327\pi\)
0.992760 + 0.120116i \(0.0383265\pi\)
\(258\) 708.738 2181.27i 0.171024 0.526357i
\(259\) 996.430 3066.70i 0.239055 0.735735i
\(260\) −1344.55 + 976.870i −0.320712 + 0.233011i
\(261\) 502.037 + 364.751i 0.119063 + 0.0865040i
\(262\) 1524.17 + 4690.92i 0.359403 + 1.10613i
\(263\) −708.442 −0.166100 −0.0830502 0.996545i \(-0.526466\pi\)
−0.0830502 + 0.996545i \(0.526466\pi\)
\(264\) −1797.13 + 1288.10i −0.418960 + 0.300293i
\(265\) −1270.09 −0.294418
\(266\) 1304.08 + 4013.55i 0.300595 + 0.925137i
\(267\) 1918.96 + 1394.21i 0.439844 + 0.319566i
\(268\) −2673.76 + 1942.60i −0.609424 + 0.442773i
\(269\) −1486.28 + 4574.30i −0.336878 + 1.03680i 0.628912 + 0.777477i \(0.283501\pi\)
−0.965790 + 0.259327i \(0.916499\pi\)
\(270\) −85.8879 + 264.336i −0.0193591 + 0.0595813i
\(271\) 4239.96 3080.51i 0.950404 0.690509i −0.000498618 1.00000i \(-0.500159\pi\)
0.950902 + 0.309491i \(0.100159\pi\)
\(272\) −767.444 557.581i −0.171078 0.124295i
\(273\) −3983.74 12260.7i −0.883177 2.71814i
\(274\) 1946.57 0.429185
\(275\) 1100.85 3315.34i 0.241395 0.726990i
\(276\) 4317.69 0.941646
\(277\) −1650.07 5078.40i −0.357918 1.10156i −0.954298 0.298856i \(-0.903395\pi\)
0.596380 0.802702i \(-0.296605\pi\)
\(278\) −2043.64 1484.79i −0.440897 0.320331i
\(279\) −5244.64 + 3810.45i −1.12541 + 0.817655i
\(280\) 296.133 911.405i 0.0632048 0.194524i
\(281\) −1013.57 + 3119.44i −0.215175 + 0.662242i 0.783966 + 0.620804i \(0.213194\pi\)
−0.999141 + 0.0414376i \(0.986806\pi\)
\(282\) 1107.67 804.769i 0.233903 0.169941i
\(283\) 3960.54 + 2877.50i 0.831906 + 0.604415i 0.920098 0.391688i \(-0.128109\pi\)
−0.0881920 + 0.996103i \(0.528109\pi\)
\(284\) −1111.18 3419.87i −0.232171 0.714549i
\(285\) 3902.95 0.811195
\(286\) −4513.84 3324.08i −0.933248 0.687262i
\(287\) −1834.73 −0.377354
\(288\) −300.532 924.943i −0.0614897 0.189246i
\(289\) 1130.92 + 821.661i 0.230189 + 0.167242i
\(290\) −178.670 + 129.811i −0.0361789 + 0.0262855i
\(291\) −1363.67 + 4196.93i −0.274706 + 0.845459i
\(292\) −170.569 + 524.958i −0.0341843 + 0.105208i
\(293\) −5425.10 + 3941.57i −1.08170 + 0.785901i −0.977978 0.208706i \(-0.933075\pi\)
−0.103721 + 0.994606i \(0.533075\pi\)
\(294\) 1809.43 + 1314.63i 0.358939 + 0.260785i
\(295\) 505.532 + 1555.87i 0.0997736 + 0.307072i
\(296\) 1164.62 0.228690
\(297\) −937.464 6.03149i −0.183156 0.00117839i
\(298\) 978.680 0.190246
\(299\) 3382.69 + 10410.8i 0.654267 + 2.01363i
\(300\) 2347.43 + 1705.51i 0.451763 + 0.328225i
\(301\) −2712.54 + 1970.77i −0.519429 + 0.377387i
\(302\) −1055.46 + 3248.38i −0.201109 + 0.618951i
\(303\) −331.384 + 1019.89i −0.0628300 + 0.193371i
\(304\) −1233.10 + 895.903i −0.232643 + 0.169025i
\(305\) 653.134 + 474.530i 0.122618 + 0.0890869i
\(306\) −1113.63 3427.39i −0.208045 0.640298i
\(307\) 9507.29 1.76746 0.883730 0.467998i \(-0.155025\pi\)
0.883730 + 0.467998i \(0.155025\pi\)
\(308\) 3232.29 + 20.7960i 0.597977 + 0.00384728i
\(309\) 6374.08 1.17349
\(310\) −712.946 2194.22i −0.130621 0.402011i
\(311\) −4666.47 3390.39i −0.850840 0.618171i 0.0745375 0.997218i \(-0.476252\pi\)
−0.925378 + 0.379047i \(0.876252\pi\)
\(312\) 3766.92 2736.83i 0.683525 0.496610i
\(313\) 1847.23 5685.18i 0.333583 1.02666i −0.633833 0.773470i \(-0.718519\pi\)
0.967416 0.253192i \(-0.0814806\pi\)
\(314\) −1583.23 + 4872.69i −0.284545 + 0.875739i
\(315\) 2945.31 2139.89i 0.526824 0.382760i
\(316\) 985.249 + 715.825i 0.175394 + 0.127431i
\(317\) 1616.76 + 4975.87i 0.286455 + 0.881617i 0.985959 + 0.166988i \(0.0534042\pi\)
−0.699504 + 0.714628i \(0.746596\pi\)
\(318\) 3558.31 0.627485
\(319\) −599.822 441.720i −0.105278 0.0775285i
\(320\) 346.118 0.0604644
\(321\) −150.837 464.230i −0.0262272 0.0807189i
\(322\) −5106.50 3710.09i −0.883771 0.642097i
\(323\) −4569.29 + 3319.79i −0.787128 + 0.571882i
\(324\) −773.670 + 2381.11i −0.132659 + 0.408284i
\(325\) −2273.24 + 6996.32i −0.387990 + 1.19411i
\(326\) 2938.49 2134.94i 0.499227 0.362710i
\(327\) −9555.22 6942.27i −1.61592 1.17403i
\(328\) −204.773 630.228i −0.0344717 0.106093i
\(329\) −2001.55 −0.335408
\(330\) 942.059 2837.12i 0.157147 0.473268i
\(331\) −3963.72 −0.658205 −0.329102 0.944294i \(-0.606746\pi\)
−0.329102 + 0.944294i \(0.606746\pi\)
\(332\) −944.719 2907.55i −0.156169 0.480639i
\(333\) 3579.40 + 2600.59i 0.589039 + 0.427962i
\(334\) 613.114 445.453i 0.100443 0.0729764i
\(335\) 1380.80 4249.67i 0.225198 0.693088i
\(336\) −829.656 + 2553.42i −0.134707 + 0.414585i
\(337\) −4131.33 + 3001.58i −0.667797 + 0.485183i −0.869287 0.494308i \(-0.835422\pi\)
0.201490 + 0.979491i \(0.435422\pi\)
\(338\) 5995.43 + 4355.93i 0.964817 + 0.700981i
\(339\) −5241.91 16132.9i −0.839827 2.58472i
\(340\) 1282.55 0.204576
\(341\) 6325.03 4533.51i 1.00446 0.719952i
\(342\) −5790.43 −0.915528
\(343\) 1337.35 + 4115.94i 0.210525 + 0.647929i
\(344\) −979.706 711.798i −0.153553 0.111563i
\(345\) −4722.74 + 3431.27i −0.736996 + 0.535459i
\(346\) −31.3479 + 96.4789i −0.00487073 + 0.0149906i
\(347\) 2331.77 7176.44i 0.360737 1.11023i −0.591871 0.806033i \(-0.701610\pi\)
0.952608 0.304201i \(-0.0983896\pi\)
\(348\) 500.568 363.684i 0.0771070 0.0560215i
\(349\) 2634.74 + 1914.25i 0.404109 + 0.293603i 0.771213 0.636578i \(-0.219650\pi\)
−0.367103 + 0.930180i \(0.619650\pi\)
\(350\) −1310.79 4034.19i −0.200184 0.616104i
\(351\) 1974.19 0.300212
\(352\) 353.612 + 1112.61i 0.0535442 + 0.168473i
\(353\) −6506.83 −0.981087 −0.490543 0.871417i \(-0.663202\pi\)
−0.490543 + 0.871417i \(0.663202\pi\)
\(354\) −1416.31 4358.97i −0.212645 0.654453i
\(355\) 3933.19 + 2857.63i 0.588034 + 0.427232i
\(356\) 1013.21 736.142i 0.150843 0.109594i
\(357\) −3074.31 + 9461.75i −0.455769 + 1.40271i
\(358\) −12.8970 + 39.6929i −0.00190399 + 0.00585988i
\(359\) −3289.63 + 2390.06i −0.483622 + 0.351372i −0.802726 0.596348i \(-0.796618\pi\)
0.319105 + 0.947720i \(0.396618\pi\)
\(360\) 1063.78 + 772.880i 0.155739 + 0.113151i
\(361\) 684.768 + 2107.50i 0.0998349 + 0.307260i
\(362\) 352.307 0.0511514
\(363\) 10082.5 + 129.743i 1.45783 + 0.0187597i
\(364\) −6806.81 −0.980148
\(365\) −230.614 709.756i −0.0330709 0.101782i
\(366\) −1829.84 1329.46i −0.261331 0.189868i
\(367\) 1126.37 818.358i 0.160208 0.116398i −0.504793 0.863240i \(-0.668431\pi\)
0.665001 + 0.746843i \(0.268431\pi\)
\(368\) 704.479 2168.16i 0.0997922 0.307129i
\(369\) 777.933 2394.23i 0.109749 0.337774i
\(370\) −1273.87 + 925.524i −0.178988 + 0.130042i
\(371\) −4208.39 3057.58i −0.588919 0.427875i
\(372\) 1997.41 + 6147.39i 0.278389 + 0.856794i
\(373\) 9440.30 1.31046 0.655228 0.755431i \(-0.272572\pi\)
0.655228 + 0.755431i \(0.272572\pi\)
\(374\) 1310.32 + 4122.80i 0.181163 + 0.570014i
\(375\) −9044.32 −1.24546
\(376\) −223.393 687.533i −0.0306399 0.0943000i
\(377\) 1269.09 + 922.044i 0.173372 + 0.125962i
\(378\) −920.943 + 669.104i −0.125313 + 0.0910450i
\(379\) 398.740 1227.20i 0.0540420 0.166324i −0.920393 0.390995i \(-0.872131\pi\)
0.974435 + 0.224671i \(0.0721308\pi\)
\(380\) 636.809 1959.90i 0.0859674 0.264581i
\(381\) −6701.69 + 4869.06i −0.901149 + 0.654723i
\(382\) −1875.66 1362.74i −0.251222 0.182524i
\(383\) −1746.84 5376.22i −0.233053 0.717264i −0.997374 0.0724273i \(-0.976925\pi\)
0.764321 0.644836i \(-0.223075\pi\)
\(384\) −969.696 −0.128866
\(385\) −3552.04 + 2545.95i −0.470205 + 0.337023i
\(386\) 2569.88 0.338868
\(387\) −1421.64 4375.35i −0.186734 0.574707i
\(388\) 1885.03 + 1369.55i 0.246644 + 0.179197i
\(389\) 10386.2 7545.99i 1.35373 0.983539i 0.354909 0.934901i \(-0.384512\pi\)
0.998816 0.0486380i \(-0.0154881\pi\)
\(390\) −1945.34 + 5987.15i −0.252580 + 0.777362i
\(391\) 2610.46 8034.18i 0.337639 1.03915i
\(392\) 955.381 694.125i 0.123097 0.0894352i
\(393\) 15114.9 + 10981.6i 1.94006 + 1.40954i
\(394\) 1659.46 + 5107.28i 0.212188 + 0.653049i
\(395\) −1646.54 −0.209738
\(396\) −1397.64 + 4209.17i −0.177359 + 0.534138i
\(397\) 7691.26 0.972326 0.486163 0.873868i \(-0.338396\pi\)
0.486163 + 0.873868i \(0.338396\pi\)
\(398\) 824.173 + 2536.54i 0.103799 + 0.319461i
\(399\) 12932.3 + 9395.86i 1.62262 + 1.17890i
\(400\) 1239.45 900.510i 0.154931 0.112564i
\(401\) 2406.06 7405.09i 0.299633 0.922176i −0.681993 0.731359i \(-0.738886\pi\)
0.981626 0.190817i \(-0.0611136\pi\)
\(402\) −3868.50 + 11906.0i −0.479958 + 1.47716i
\(403\) −13257.8 + 9632.33i −1.63875 + 1.19062i
\(404\) 458.080 + 332.814i 0.0564117 + 0.0409855i
\(405\) −1046.02 3219.32i −0.128339 0.394986i
\(406\) −904.523 −0.110568
\(407\) −4276.59 3149.36i −0.520842 0.383557i
\(408\) −3593.23 −0.436008
\(409\) −2737.85 8426.25i −0.330998 1.01871i −0.968660 0.248391i \(-0.920098\pi\)
0.637662 0.770316i \(-0.279902\pi\)
\(410\) 724.826 + 526.617i 0.0873087 + 0.0634335i
\(411\) 5965.18 4333.96i 0.715914 0.520142i
\(412\) 1040.00 3200.80i 0.124362 0.382748i
\(413\) −2070.50 + 6372.33i −0.246689 + 0.759230i
\(414\) 7006.68 5090.65i 0.831786 0.604328i
\(415\) 3343.97 + 2429.54i 0.395540 + 0.287377i
\(416\) −759.706 2338.14i −0.0895377 0.275569i
\(417\) −9568.47 −1.12367
\(418\) 6950.76 + 44.7200i 0.813332 + 0.00523284i
\(419\) 9469.08 1.10405 0.552023 0.833829i \(-0.313856\pi\)
0.552023 + 0.833829i \(0.313856\pi\)
\(420\) −1121.72 3452.29i −0.130319 0.401082i
\(421\) −4189.04 3043.52i −0.484944 0.352333i 0.318292 0.947993i \(-0.396891\pi\)
−0.803237 + 0.595660i \(0.796891\pi\)
\(422\) −2634.43 + 1914.03i −0.303891 + 0.220790i
\(423\) 848.668 2611.93i 0.0975500 0.300228i
\(424\) 580.578 1786.84i 0.0664985 0.204661i
\(425\) 4592.79 3336.86i 0.524196 0.380850i
\(426\) −11019.4 8006.03i −1.25326 0.910548i
\(427\) 1021.77 + 3144.68i 0.115801 + 0.356398i
\(428\) −257.728 −0.0291069
\(429\) −21233.4 136.612i −2.38964 0.0153746i
\(430\) 1637.28 0.183620
\(431\) 3233.42 + 9951.43i 0.361365 + 1.11217i 0.952226 + 0.305393i \(0.0987880\pi\)
−0.590862 + 0.806773i \(0.701212\pi\)
\(432\) −332.623 241.665i −0.0370448 0.0269146i
\(433\) −12813.4 + 9309.48i −1.42211 + 1.03322i −0.430688 + 0.902501i \(0.641729\pi\)
−0.991419 + 0.130721i \(0.958271\pi\)
\(434\) 2919.99 8986.81i 0.322959 0.993965i
\(435\) −258.507 + 795.603i −0.0284930 + 0.0876925i
\(436\) −5045.16 + 3665.52i −0.554173 + 0.402630i
\(437\) −10981.1 7978.23i −1.20205 0.873342i
\(438\) 646.095 + 1988.47i 0.0704831 + 0.216925i
\(439\) −4824.70 −0.524534 −0.262267 0.964995i \(-0.584470\pi\)
−0.262267 + 0.964995i \(0.584470\pi\)
\(440\) −1270.98 935.971i −0.137708 0.101411i
\(441\) 4486.29 0.484429
\(442\) −2815.11 8664.01i −0.302944 0.932364i
\(443\) −2899.02 2106.26i −0.310918 0.225895i 0.421372 0.906888i \(-0.361549\pi\)
−0.732290 + 0.680993i \(0.761549\pi\)
\(444\) 3568.93 2592.98i 0.381472 0.277156i
\(445\) −523.251 + 1610.40i −0.0557404 + 0.171551i
\(446\) 1624.31 4999.12i 0.172452 0.530752i
\(447\) 2999.12 2178.99i 0.317346 0.230565i
\(448\) 1146.85 + 833.238i 0.120946 + 0.0878723i
\(449\) −2409.09 7414.42i −0.253212 0.779306i −0.994177 0.107762i \(-0.965632\pi\)
0.740965 0.671544i \(-0.234368\pi\)
\(450\) 5820.21 0.609705
\(451\) −952.312 + 2868.00i −0.0994293 + 0.299443i
\(452\) −8956.57 −0.932039
\(453\) 3997.96 + 12304.5i 0.414659 + 1.27619i
\(454\) 2754.79 + 2001.47i 0.284777 + 0.206903i
\(455\) 7445.37 5409.38i 0.767130 0.557353i
\(456\) −1784.10 + 5490.91i −0.183220 + 0.563893i
\(457\) 1034.60 3184.16i 0.105900 0.325927i −0.884041 0.467410i \(-0.845187\pi\)
0.989941 + 0.141483i \(0.0451871\pi\)
\(458\) 8730.83 6343.32i 0.890753 0.647170i
\(459\) −1232.54 895.494i −0.125338 0.0910634i
\(460\) 952.474 + 2931.41i 0.0965420 + 0.297126i
\(461\) 7171.96 0.724580 0.362290 0.932065i \(-0.381995\pi\)
0.362290 + 0.932065i \(0.381995\pi\)
\(462\) 9951.50 7132.82i 1.00213 0.718288i
\(463\) 4034.74 0.404990 0.202495 0.979283i \(-0.435095\pi\)
0.202495 + 0.979283i \(0.435095\pi\)
\(464\) −100.954 310.703i −0.0101006 0.0310863i
\(465\) −7070.13 5136.75i −0.705095 0.512282i
\(466\) −9795.87 + 7117.12i −0.973788 + 0.707498i
\(467\) −3653.15 + 11243.2i −0.361986 + 1.11408i 0.589860 + 0.807505i \(0.299183\pi\)
−0.951847 + 0.306574i \(0.900817\pi\)
\(468\) 2886.12 8882.56i 0.285066 0.877343i
\(469\) 14805.8 10757.1i 1.45772 1.05909i
\(470\) 790.732 + 574.501i 0.0776037 + 0.0563824i
\(471\) 5997.09 + 18457.1i 0.586691 + 1.80565i
\(472\) −2419.98 −0.235993
\(473\) 1672.73 + 5263.10i 0.162605 + 0.511622i
\(474\) 4613.00 0.447009
\(475\) −2818.74 8675.18i −0.272279 0.837988i
\(476\) 4249.69 + 3087.58i 0.409210 + 0.297309i
\(477\) 5774.37 4195.33i 0.554277 0.402706i
\(478\) −1938.53 + 5966.17i −0.185494 + 0.570891i
\(479\) −2676.07 + 8236.09i −0.255267 + 0.785630i 0.738510 + 0.674242i \(0.235530\pi\)
−0.993777 + 0.111388i \(0.964470\pi\)
\(480\) 1060.66 770.618i 0.100859 0.0732786i
\(481\) 9048.27 + 6573.95i 0.857725 + 0.623173i
\(482\) 4016.76 + 12362.3i 0.379582 + 1.16823i
\(483\) −23909.0 −2.25238
\(484\) 1710.22 5041.84i 0.160614 0.473501i
\(485\) −3150.25 −0.294939
\(486\) 3359.36 + 10339.0i 0.313547 + 0.964997i
\(487\) −6009.10 4365.87i −0.559134 0.406235i 0.272008 0.962295i \(-0.412312\pi\)
−0.831142 + 0.556060i \(0.812312\pi\)
\(488\) −966.157 + 701.954i −0.0896227 + 0.0651147i
\(489\) 4251.52 13084.8i 0.393171 1.21006i
\(490\) −493.385 + 1518.48i −0.0454875 + 0.139996i
\(491\) 4485.10 3258.62i 0.412240 0.299510i −0.362268 0.932074i \(-0.617998\pi\)
0.774508 + 0.632564i \(0.217998\pi\)
\(492\) −2030.69 1475.38i −0.186079 0.135194i
\(493\) −374.086 1151.32i −0.0341744 0.105178i
\(494\) −14637.5 −1.33314
\(495\) −1816.27 5714.74i −0.164920 0.518906i
\(496\) 3412.87 0.308956
\(497\) 6153.12 + 18937.4i 0.555342 + 1.70917i
\(498\) −9368.57 6806.67i −0.843003 0.612478i
\(499\) −16513.7 + 11997.9i −1.48147 + 1.07635i −0.504391 + 0.863476i \(0.668283\pi\)
−0.977079 + 0.212875i \(0.931717\pi\)
\(500\) −1475.68 + 4541.68i −0.131989 + 0.406220i
\(501\) 887.077 2730.14i 0.0791051 0.243460i
\(502\) 9005.63 6542.98i 0.800680 0.581728i
\(503\) 147.841 + 107.413i 0.0131052 + 0.00952148i 0.594319 0.804230i \(-0.297422\pi\)
−0.581213 + 0.813751i \(0.697422\pi\)
\(504\) 1664.18 + 5121.83i 0.147081 + 0.452667i
\(505\) −765.540 −0.0674576
\(506\) −8450.04 + 6056.64i −0.742392 + 0.532115i
\(507\) 28071.0 2.45893
\(508\) 1351.58 + 4159.75i 0.118045 + 0.363305i
\(509\) −3847.11 2795.09i −0.335010 0.243399i 0.407543 0.913186i \(-0.366386\pi\)
−0.742554 + 0.669787i \(0.766386\pi\)
\(510\) 3930.31 2855.54i 0.341249 0.247932i
\(511\) 944.519 2906.93i 0.0817673 0.251654i
\(512\) −158.217 + 486.941i −0.0136568 + 0.0420312i
\(513\) −1980.41 + 1438.85i −0.170443 + 0.123834i
\(514\) −9766.95 7096.11i −0.838136 0.608941i
\(515\) 1406.11 + 4327.56i 0.120312 + 0.370282i
\(516\) −4587.05 −0.391344
\(517\) −1038.90 + 3128.78i −0.0883770 + 0.266158i
\(518\) −6449.03 −0.547016
\(519\) 118.742 + 365.450i 0.0100428 + 0.0309084i
\(520\) 2689.09 + 1953.74i 0.226778 + 0.164764i
\(521\) 9490.70 6895.40i 0.798071 0.579833i −0.112277 0.993677i \(-0.535814\pi\)
0.910348 + 0.413844i \(0.135814\pi\)
\(522\) 383.522 1180.36i 0.0321577 0.0989712i
\(523\) −106.252 + 327.011i −0.00888353 + 0.0273407i −0.955400 0.295315i \(-0.904575\pi\)
0.946517 + 0.322655i \(0.104575\pi\)
\(524\) 7980.67 5798.29i 0.665338 0.483396i
\(525\) −12998.8 9444.18i −1.08060 0.785101i
\(526\) 437.841 + 1347.54i 0.0362943 + 0.111702i
\(527\) 12646.4 1.04533
\(528\) 3560.81 + 2622.24i 0.293493 + 0.216134i
\(529\) 8134.66 0.668584
\(530\) 784.956 + 2415.85i 0.0643327 + 0.197996i
\(531\) −7437.69 5403.80i −0.607850 0.441629i
\(532\) 6828.26 4961.02i 0.556471 0.404300i
\(533\) 1966.51 6052.31i 0.159811 0.491847i
\(534\) 1465.95 4511.74i 0.118798 0.365622i
\(535\) 281.906 204.816i 0.0227810 0.0165514i
\(536\) 5347.51 + 3885.20i 0.430928 + 0.313088i
\(537\) 48.8522 + 150.352i 0.00392575 + 0.0120822i
\(538\) 9619.41 0.770859
\(539\) −5385.29 34.6480i −0.430354 0.00276882i
\(540\) 555.878 0.0442985
\(541\) −5328.62 16399.8i −0.423466 1.30329i −0.904455 0.426568i \(-0.859722\pi\)
0.480989 0.876726i \(-0.340278\pi\)
\(542\) −8479.93 6161.03i −0.672037 0.488263i
\(543\) 1079.63 784.395i 0.0853246 0.0619919i
\(544\) −586.275 + 1804.37i −0.0462065 + 0.142209i
\(545\) 2605.46 8018.78i 0.204781 0.630251i
\(546\) −20859.2 + 15155.1i −1.63496 + 1.18787i
\(547\) 6183.49 + 4492.57i 0.483340 + 0.351167i 0.802617 0.596494i \(-0.203440\pi\)
−0.319277 + 0.947661i \(0.603440\pi\)
\(548\) −1203.05 3702.60i −0.0937804 0.288626i
\(549\) −4536.89 −0.352696
\(550\) −6986.50 44.9500i −0.541646 0.00348486i
\(551\) −1945.10 −0.150388
\(552\) −2668.48 8212.73i −0.205757 0.633256i
\(553\) −5455.77 3963.85i −0.419535 0.304810i
\(554\) −8639.89 + 6277.25i −0.662588 + 0.481399i
\(555\) −1843.09 + 5672.45i −0.140964 + 0.433842i
\(556\) −1561.20 + 4804.89i −0.119082 + 0.366498i
\(557\) −21120.3 + 15344.8i −1.60664 + 1.16729i −0.733684 + 0.679491i \(0.762201\pi\)
−0.872955 + 0.487800i \(0.837799\pi\)
\(558\) 10489.3 + 7620.90i 0.795782 + 0.578170i
\(559\) −3593.72 11060.3i −0.271911 0.836855i
\(560\) −1916.62 −0.144628
\(561\) 13194.6 + 9716.78i 0.993009 + 0.731271i
\(562\) 6559.94 0.492374
\(563\) −5585.14 17189.3i −0.418092 1.28675i −0.909456 0.415800i \(-0.863502\pi\)
0.491364 0.870954i \(-0.336498\pi\)
\(564\) −2215.34 1609.54i −0.165395 0.120166i
\(565\) 9796.79 7117.79i 0.729476 0.529996i
\(566\) 3025.58 9311.78i 0.224690 0.691525i
\(567\) 4284.16 13185.3i 0.317316 0.976597i
\(568\) −5818.23 + 4227.19i −0.429802 + 0.312269i
\(569\) −6314.50 4587.76i −0.465233 0.338012i 0.330347 0.943859i \(-0.392834\pi\)
−0.795581 + 0.605848i \(0.792834\pi\)
\(570\) −2412.15 7423.84i −0.177253 0.545527i
\(571\) −13039.6 −0.955672 −0.477836 0.878449i \(-0.658579\pi\)
−0.477836 + 0.878449i \(0.658579\pi\)
\(572\) −3533.06 + 10640.2i −0.258260 + 0.777780i
\(573\) −8781.96 −0.640264
\(574\) 1133.92 + 3489.86i 0.0824548 + 0.253770i
\(575\) 11037.6 + 8019.26i 0.800519 + 0.581611i
\(576\) −1573.61 + 1143.29i −0.113831 + 0.0827034i
\(577\) −2957.12 + 9101.06i −0.213356 + 0.656642i 0.785910 + 0.618340i \(0.212195\pi\)
−0.999266 + 0.0383013i \(0.987805\pi\)
\(578\) 863.946 2658.95i 0.0621720 0.191346i
\(579\) 7875.26 5721.71i 0.565259 0.410685i
\(580\) 357.340 + 259.623i 0.0255823 + 0.0185866i
\(581\) 5231.34 + 16100.4i 0.373550 + 1.14967i
\(582\) 8825.83 0.628595
\(583\) −6963.88 + 4991.42i −0.494708 + 0.354586i
\(584\) 1103.95 0.0782220
\(585\) 3902.11 + 12009.4i 0.275782 + 0.848769i
\(586\) 10850.2 + 7883.14i 0.764877 + 0.555716i
\(587\) −7869.31 + 5717.39i −0.553324 + 0.402013i −0.829009 0.559235i \(-0.811095\pi\)
0.275686 + 0.961248i \(0.411095\pi\)
\(588\) 1382.28 4254.23i 0.0969462 0.298370i
\(589\) 6279.19 19325.4i 0.439269 1.35193i
\(590\) 2647.00 1923.16i 0.184704 0.134195i
\(591\) 16456.5 + 11956.3i 1.14540 + 0.832179i
\(592\) −719.775 2215.24i −0.0499706 0.153794i
\(593\) 6926.77 0.479677 0.239838 0.970813i \(-0.422906\pi\)
0.239838 + 0.970813i \(0.422906\pi\)
\(594\) 567.912 + 1786.89i 0.0392285 + 0.123429i
\(595\) −7102.06 −0.489338
\(596\) −604.858 1861.56i −0.0415704 0.127940i
\(597\) 8173.14 + 5938.13i 0.560309 + 0.407088i
\(598\) 17712.0 12868.5i 1.21120 0.879987i
\(599\) −6793.63 + 20908.7i −0.463406 + 1.42622i 0.397570 + 0.917572i \(0.369854\pi\)
−0.860976 + 0.508646i \(0.830146\pi\)
\(600\) 1793.28 5519.14i 0.122017 0.375530i
\(601\) 5957.01 4328.02i 0.404312 0.293750i −0.366983 0.930228i \(-0.619609\pi\)
0.771295 + 0.636478i \(0.219609\pi\)
\(602\) 5425.08 + 3941.55i 0.367292 + 0.266853i
\(603\) 7759.71 + 23881.9i 0.524046 + 1.61285i
\(604\) 6831.10 0.460188
\(605\) 2136.09 + 6873.93i 0.143544 + 0.461926i
\(606\) 2144.76 0.143771
\(607\) 3142.21 + 9670.72i 0.210113 + 0.646660i 0.999465 + 0.0327190i \(0.0104167\pi\)
−0.789352 + 0.613941i \(0.789583\pi\)
\(608\) 2466.21 + 1791.81i 0.164503 + 0.119519i
\(609\) −2771.87 + 2013.88i −0.184437 + 0.134001i
\(610\) 498.950 1535.61i 0.0331179 0.101926i
\(611\) 2145.32 6602.63i 0.142047 0.437175i
\(612\) −5831.03 + 4236.49i −0.385140 + 0.279820i
\(613\) −20293.8 14744.3i −1.33713 0.971479i −0.999544 0.0301824i \(-0.990391\pi\)
−0.337581 0.941296i \(-0.609609\pi\)
\(614\) −5875.83 18083.9i −0.386204 1.18861i
\(615\) 3393.68 0.222515
\(616\) −1958.11 6161.03i −0.128075 0.402979i
\(617\) −26335.5 −1.71836 −0.859178 0.511677i \(-0.829024\pi\)
−0.859178 + 0.511677i \(0.829024\pi\)
\(618\) −3939.40 12124.2i −0.256417 0.789171i
\(619\) 19936.7 + 14484.9i 1.29455 + 0.940544i 0.999887 0.0150577i \(-0.00479321\pi\)
0.294661 + 0.955602i \(0.404793\pi\)
\(620\) −3733.03 + 2712.21i −0.241810 + 0.175685i
\(621\) 1131.42 3482.15i 0.0731115 0.225014i
\(622\) −3564.87 + 10971.5i −0.229804 + 0.707264i
\(623\) −5610.62 + 4076.35i −0.360810 + 0.262144i
\(624\) −7533.84 5473.66i −0.483326 0.351157i
\(625\) 1703.48 + 5242.78i 0.109023 + 0.335538i
\(626\) −11955.5 −0.763319
\(627\) 21399.9 15338.5i 1.36304 0.976972i
\(628\) 10246.9 0.651108
\(629\) −2667.14 8208.62i −0.169071 0.520348i
\(630\) −5890.62 4279.79i −0.372521 0.270652i
\(631\) −6031.48 + 4382.13i −0.380522 + 0.276465i −0.761561 0.648094i \(-0.775567\pi\)
0.381039 + 0.924559i \(0.375567\pi\)
\(632\) 752.663 2316.46i 0.0473724 0.145797i
\(633\) −3811.60 + 11730.9i −0.239332 + 0.736589i
\(634\) 8465.45 6150.51i 0.530293 0.385281i
\(635\) −4784.13 3475.88i −0.298980 0.217222i
\(636\) −2199.16 6768.31i −0.137110 0.421983i
\(637\) 11340.8 0.705397
\(638\) −469.491 + 1413.93i −0.0291338 + 0.0877397i
\(639\) −27321.3 −1.69141
\(640\) −213.913 658.356i −0.0132120 0.0406622i
\(641\) 2247.99 + 1633.26i 0.138518 + 0.100639i 0.654887 0.755727i \(-0.272716\pi\)
−0.516368 + 0.856367i \(0.672716\pi\)
\(642\) −789.795 + 573.820i −0.0485525 + 0.0352755i
\(643\) 2335.46 7187.81i 0.143237 0.440839i −0.853543 0.521023i \(-0.825551\pi\)
0.996780 + 0.0801836i \(0.0255507\pi\)
\(644\) −3901.02 + 12006.1i −0.238698 + 0.734638i
\(645\) 5017.37 3645.33i 0.306292 0.222535i
\(646\) 9138.59 + 6639.57i 0.556584 + 0.404382i
\(647\) −8476.55 26088.1i −0.515066 1.58521i −0.783162 0.621817i \(-0.786395\pi\)
0.268096 0.963392i \(-0.413605\pi\)
\(648\) 5007.30 0.303557
\(649\) 8886.37 + 6544.09i 0.537474 + 0.395806i
\(650\) 14712.7 0.887817
\(651\) −11060.6 34040.9i −0.665895 2.04941i
\(652\) −5876.98 4269.88i −0.353007 0.256474i
\(653\) −230.350 + 167.359i −0.0138044 + 0.0100295i −0.594666 0.803973i \(-0.702716\pi\)
0.580862 + 0.814002i \(0.302716\pi\)
\(654\) −7299.54 + 22465.7i −0.436444 + 1.34324i
\(655\) −4121.44 + 12684.5i −0.245859 + 0.756677i
\(656\) −1072.21 + 779.004i −0.0638150 + 0.0463643i
\(657\) 3392.93 + 2465.11i 0.201477 + 0.146382i
\(658\) 1237.03 + 3807.18i 0.0732893 + 0.225561i
\(659\) 20747.0 1.22639 0.613193 0.789933i \(-0.289885\pi\)
0.613193 + 0.789933i \(0.289885\pi\)
\(660\) −5978.75 38.4662i −0.352610 0.00226863i
\(661\) −18908.8 −1.11266 −0.556328 0.830963i \(-0.687790\pi\)
−0.556328 + 0.830963i \(0.687790\pi\)
\(662\) 2449.71 + 7539.44i 0.143823 + 0.442642i
\(663\) −27916.8 20282.8i −1.63529 1.18811i
\(664\) −4946.61 + 3593.92i −0.289105 + 0.210047i
\(665\) −3526.30 + 10852.8i −0.205630 + 0.632865i
\(666\) 2734.42 8415.68i 0.159094 0.489641i
\(667\) 2353.66 1710.03i 0.136633 0.0992694i
\(668\) −1226.23 890.906i −0.0710242 0.0516021i
\(669\) −6152.69 18936.0i −0.355571 1.09433i
\(670\) −8936.74 −0.515308
\(671\) 5446.03 + 35.0388i 0.313326 + 0.00201589i
\(672\) 5369.65 0.308242
\(673\) 9229.07 + 28404.2i 0.528610 + 1.62689i 0.757065 + 0.653340i \(0.226633\pi\)
−0.228455 + 0.973554i \(0.573367\pi\)
\(674\) 8262.65 + 6003.17i 0.472204 + 0.343076i
\(675\) 1990.59 1446.25i 0.113508 0.0824684i
\(676\) 4580.10 14096.1i 0.260588 0.802008i
\(677\) −5340.04 + 16435.0i −0.303153 + 0.933009i 0.677207 + 0.735793i \(0.263190\pi\)
−0.980360 + 0.197216i \(0.936810\pi\)
\(678\) −27447.0 + 19941.4i −1.55471 + 1.12956i
\(679\) −10438.3 7583.84i −0.589961 0.428632i
\(680\) −792.659 2439.55i −0.0447016 0.137577i
\(681\) 12898.1 0.725782
\(682\) −12532.3 9229.05i −0.703648 0.518180i
\(683\) 25104.0 1.40641 0.703204 0.710988i \(-0.251752\pi\)
0.703204 + 0.710988i \(0.251752\pi\)
\(684\) 3578.68 + 11014.1i 0.200050 + 0.615691i
\(685\) 4258.37 + 3093.88i 0.237524 + 0.172571i
\(686\) 7002.45 5087.58i 0.389730 0.283156i
\(687\) 12632.1 38877.6i 0.701521 2.15906i
\(688\) −748.429 + 2303.43i −0.0414732 + 0.127641i
\(689\) 14596.9 10605.2i 0.807106 0.586397i
\(690\) 9445.47 + 6862.54i 0.521135 + 0.378627i
\(691\) −8085.06 24883.3i −0.445109 1.36990i −0.882364 0.470567i \(-0.844050\pi\)
0.437256 0.899337i \(-0.355950\pi\)
\(692\) 202.888 0.0111454
\(693\) 7739.39 23308.1i 0.424235 1.27763i
\(694\) −15091.5 −0.825455
\(695\) −2110.79 6496.33i −0.115204 0.354561i
\(696\) −1001.14 727.367i −0.0545229 0.0396132i
\(697\) −3973.09 + 2886.62i −0.215913 + 0.156870i
\(698\) 2012.76 6194.64i 0.109146 0.335917i
\(699\) −14173.1 + 43620.2i −0.766916 + 2.36032i
\(700\) −6863.37 + 4986.53i −0.370587 + 0.269248i
\(701\) 1229.26 + 893.108i 0.0662317 + 0.0481201i 0.620408 0.784279i \(-0.286967\pi\)
−0.554177 + 0.832399i \(0.686967\pi\)
\(702\) −1220.11 3755.13i −0.0655987 0.201892i
\(703\) −13868.1 −0.744018
\(704\) 1897.77 1360.24i 0.101598 0.0728210i
\(705\) 3702.26 0.197781
\(706\) 4021.44 + 12376.7i 0.214375 + 0.659779i
\(707\) −2536.59 1842.94i −0.134934 0.0980354i
\(708\) −7415.92 + 5387.98i −0.393654 + 0.286007i
\(709\) −6716.14 + 20670.2i −0.355755 + 1.09490i 0.599816 + 0.800138i \(0.295240\pi\)
−0.955571 + 0.294762i \(0.904760\pi\)
\(710\) 3004.69 9247.49i 0.158823 0.488806i
\(711\) 7485.91 5438.83i 0.394857 0.286881i
\(712\) −2026.42 1472.28i −0.106662 0.0774946i
\(713\) 9391.77 + 28904.9i 0.493302 + 1.51823i
\(714\) 19897.3 1.04291
\(715\) −4591.29 14446.1i −0.240146 0.755601i
\(716\) 83.4712 0.00435679
\(717\) 7342.89 + 22599.1i 0.382462 + 1.17710i
\(718\) 6579.26 + 4780.11i 0.341972 + 0.248457i
\(719\) 11384.4 8271.22i 0.590494 0.429019i −0.251998 0.967728i \(-0.581088\pi\)
0.842492 + 0.538709i \(0.181088\pi\)
\(720\) 812.654 2501.09i 0.0420636 0.129459i
\(721\) −5758.97 + 17724.3i −0.297469 + 0.915516i
\(722\) 3585.49 2605.01i 0.184817 0.134278i
\(723\) 39833.4 + 28940.6i 2.04899 + 1.48868i
\(724\) −217.737 670.127i −0.0111770 0.0343993i
\(725\) 1955.10 0.100153
\(726\) −5984.53 19258.2i −0.305932 0.984489i
\(727\) 10409.2 0.531027 0.265513 0.964107i \(-0.414459\pi\)
0.265513 + 0.964107i \(0.414459\pi\)
\(728\) 4206.84 + 12947.3i 0.214170 + 0.659148i
\(729\) 19642.0 + 14270.7i 0.997915 + 0.725027i
\(730\) −1207.51 + 877.307i −0.0612218 + 0.0444803i
\(731\) −2773.32 + 8535.39i −0.140321 + 0.431865i
\(732\) −1397.87 + 4302.21i −0.0705832 + 0.217233i
\(733\) 15690.8 11400.0i 0.790658 0.574447i −0.117501 0.993073i \(-0.537488\pi\)
0.908159 + 0.418626i \(0.137488\pi\)
\(734\) −2252.75 1636.72i −0.113284 0.0823056i
\(735\) 1868.88 + 5751.82i 0.0937887 + 0.288652i
\(736\) −4559.48 −0.228349
\(737\) −9130.21 28727.5i −0.456331 1.43581i
\(738\) −5034.89 −0.251134
\(739\) −2061.83 6345.68i −0.102633 0.315872i 0.886535 0.462662i \(-0.153106\pi\)
−0.989168 + 0.146790i \(0.953106\pi\)
\(740\) 2547.75 + 1851.05i 0.126564 + 0.0919539i
\(741\) −44855.8 + 32589.7i −2.22378 + 1.61567i
\(742\) −3214.93 + 9894.52i −0.159062 + 0.489541i
\(743\) 2028.75 6243.86i 0.100172 0.308297i −0.888395 0.459080i \(-0.848179\pi\)
0.988567 + 0.150782i \(0.0481792\pi\)
\(744\) 10458.6 7598.60i 0.515363 0.374433i
\(745\) 2140.98 + 1555.52i 0.105288 + 0.0764962i
\(746\) −5834.43 17956.5i −0.286345 0.881280i
\(747\) −23228.4 −1.13773
\(748\) 7032.22 5040.40i 0.343748 0.246384i
\(749\) 1427.16 0.0696223
\(750\) 5589.70 + 17203.3i 0.272142 + 0.837568i
\(751\) −15321.7 11131.9i −0.744470 0.540889i 0.149638 0.988741i \(-0.452189\pi\)
−0.894108 + 0.447852i \(0.852189\pi\)
\(752\) −1169.70 + 849.837i −0.0567215 + 0.0412106i
\(753\) 13029.7 40101.3i 0.630583 1.94073i
\(754\) 969.495 2983.80i 0.0468262 0.144116i
\(755\) −7471.93 + 5428.68i −0.360174 + 0.261682i
\(756\) 1841.89 + 1338.21i 0.0886094 + 0.0643785i
\(757\) −3386.32 10422.0i −0.162586 0.500389i 0.836264 0.548327i \(-0.184735\pi\)
−0.998850 + 0.0479377i \(0.984735\pi\)
\(758\) −2580.70 −0.123661
\(759\) −12409.9 + 37373.9i −0.593481 + 1.78734i
\(760\) −4121.52 −0.196715
\(761\) −10952.2 33707.5i −0.521706 1.60565i −0.770739 0.637151i \(-0.780113\pi\)
0.249033 0.968495i \(-0.419887\pi\)
\(762\) 13403.4 + 9738.12i 0.637209 + 0.462959i
\(763\) 27937.4 20297.7i 1.32556 0.963074i
\(764\) −1432.87 + 4409.93i −0.0678529 + 0.208830i
\(765\) 3011.31 9267.85i 0.142319 0.438013i
\(766\) −9146.57 + 6645.37i −0.431435 + 0.313456i
\(767\) −18801.5 13660.1i −0.885115 0.643074i
\(768\) 599.305 + 1844.47i 0.0281583 + 0.0866622i
\(769\) 4444.21 0.208404 0.104202 0.994556i \(-0.466771\pi\)
0.104202 + 0.994556i \(0.466771\pi\)
\(770\) 7037.98 + 5182.90i 0.329391 + 0.242570i
\(771\) −45729.5 −2.13607
\(772\) −1588.27 4888.19i −0.0740455 0.227888i
\(773\)