Properties

Label 22.4.c.b.3.2
Level 22
Weight 4
Character 22.3
Analytic conductor 1.298
Analytic rank 0
Dimension 8
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 22 = 2 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 22.c (of order \(5\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(1.29804202013\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 3.2
Root \(5.60402 - 4.07156i\)
Character \(\chi\) = 22.3
Dual form 22.4.c.b.15.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(1.61803 - 1.17557i) q^{2}\) \(+(2.64055 + 8.12677i) q^{3}\) \(+(1.23607 - 3.80423i) q^{4}\) \(+(-10.3036 - 7.48598i) q^{5}\) \(+(13.8261 + 10.0452i) q^{6}\) \(+(7.24988 - 22.3128i) q^{7}\) \(+(-2.47214 - 7.60845i) q^{8}\) \(+(-37.2284 + 27.0480i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(1.61803 - 1.17557i) q^{2}\) \(+(2.64055 + 8.12677i) q^{3}\) \(+(1.23607 - 3.80423i) q^{4}\) \(+(-10.3036 - 7.48598i) q^{5}\) \(+(13.8261 + 10.0452i) q^{6}\) \(+(7.24988 - 22.3128i) q^{7}\) \(+(-2.47214 - 7.60845i) q^{8}\) \(+(-37.2284 + 27.0480i) q^{9}\) \(-25.4718 q^{10}\) \(+(-3.69653 + 36.2951i) q^{11}\) \(+34.1799 q^{12}\) \(+(-9.27574 + 6.73922i) q^{13}\) \(+(-14.4998 - 44.6257i) q^{14}\) \(+(33.6298 - 103.502i) q^{15}\) \(+(-12.9443 - 9.40456i) q^{16}\) \(+(52.9924 + 38.5012i) q^{17}\) \(+(-28.4400 + 87.5292i) q^{18}\) \(+(-2.24041 - 6.89528i) q^{19}\) \(+(-41.2143 + 29.9439i) q^{20}\) \(+200.475 q^{21}\) \(+(36.6864 + 63.0723i) q^{22}\) \(-104.072 q^{23}\) \(+(55.3043 - 40.1809i) q^{24}\) \(+(11.4965 + 35.3825i) q^{25}\) \(+(-7.08604 + 21.8086i) q^{26}\) \(+(-131.464 - 95.5141i) q^{27}\) \(+(-75.9218 - 55.1604i) q^{28}\) \(+(-39.3536 + 121.118i) q^{29}\) \(+(-67.2595 - 207.004i) q^{30}\) \(+(233.653 - 169.759i) q^{31}\) \(-32.0000 q^{32}\) \(+(-304.723 + 65.7981i) q^{33}\) \(+131.004 q^{34}\) \(+(-241.733 + 175.629i) q^{35}\) \(+(56.8799 + 175.058i) q^{36}\) \(+(-26.3908 + 81.2224i) q^{37}\) \(+(-11.7310 - 8.52303i) q^{38}\) \(+(-79.2611 - 57.5866i) q^{39}\) \(+(-31.4849 + 96.9006i) q^{40}\) \(+(-41.8544 - 128.815i) q^{41}\) \(+(324.375 - 235.672i) q^{42}\) \(+353.691 q^{43}\) \(+(133.506 + 58.9257i) q^{44}\) \(+586.066 q^{45}\) \(+(-168.393 + 122.344i) q^{46}\) \(+(-41.5948 - 128.016i) q^{47}\) \(+(42.2487 - 130.028i) q^{48}\) \(+(-167.810 - 121.921i) q^{49}\) \(+(60.1964 + 43.7352i) q^{50}\) \(+(-172.962 + 532.321i) q^{51}\) \(+(14.1721 + 43.6171i) q^{52}\) \(+(-405.666 + 294.734i) q^{53}\) \(-324.997 q^{54}\) \(+(309.792 - 346.297i) q^{55}\) \(-187.689 q^{56}\) \(+(50.1204 - 36.4146i) q^{57}\) \(+(78.7073 + 242.236i) q^{58}\) \(+(201.373 - 619.763i) q^{59}\) \(+(-352.175 - 255.870i) q^{60}\) \(+(-295.928 - 215.004i) q^{61}\) \(+(178.495 - 549.352i) q^{62}\) \(+(333.616 + 1026.77i) q^{63}\) \(+(-51.7771 + 37.6183i) q^{64}\) \(+146.023 q^{65}\) \(+(-415.702 + 464.687i) q^{66}\) \(-294.576 q^{67}\) \(+(211.969 - 154.005i) q^{68}\) \(+(-274.808 - 845.772i) q^{69}\) \(+(-184.668 + 568.349i) q^{70}\) \(+(-107.151 - 77.8500i) q^{71}\) \(+(297.827 + 216.384i) q^{72}\) \(+(145.080 - 446.511i) q^{73}\) \(+(52.7815 + 162.445i) q^{74}\) \(+(-257.189 + 186.858i) q^{75}\) \(-29.0005 q^{76}\) \(+(783.048 + 345.616i) q^{77}\) \(-195.944 q^{78}\) \(+(-330.105 + 239.836i) q^{79}\) \(+(62.9698 + 193.801i) q^{80}\) \(+(45.1451 - 138.942i) q^{81}\) \(+(-219.152 - 159.224i) q^{82}\) \(+(1099.89 + 799.119i) q^{83}\) \(+(247.801 - 762.652i) q^{84}\) \(+(-257.791 - 793.400i) q^{85}\) \(+(572.283 - 415.788i) q^{86}\) \(-1088.21 q^{87}\) \(+(285.288 - 61.6016i) q^{88}\) \(-260.255 q^{89}\) \(+(948.275 - 688.962i) q^{90}\) \(+(83.1232 + 255.827i) q^{91}\) \(+(-128.641 + 395.915i) q^{92}\) \(+(1996.56 + 1450.59i) q^{93}\) \(+(-217.793 - 158.236i) q^{94}\) \(+(-28.5337 + 87.8177i) q^{95}\) \(+(-84.4975 - 260.057i) q^{96}\) \(+(-1144.38 + 831.440i) q^{97}\) \(-414.848 q^{98}\) \(+(-844.095 - 1451.19i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(8q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 16q^{8} \) \(\mathstrut -\mathstrut 21q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(8q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 16q^{8} \) \(\mathstrut -\mathstrut 21q^{9} \) \(\mathstrut -\mathstrut 100q^{10} \) \(\mathstrut -\mathstrut 155q^{11} \) \(\mathstrut +\mathstrut 32q^{12} \) \(\mathstrut +\mathstrut 7q^{13} \) \(\mathstrut +\mathstrut 2q^{14} \) \(\mathstrut +\mathstrut 211q^{15} \) \(\mathstrut -\mathstrut 32q^{16} \) \(\mathstrut +\mathstrut 161q^{17} \) \(\mathstrut +\mathstrut 162q^{18} \) \(\mathstrut -\mathstrut 272q^{19} \) \(\mathstrut +\mathstrut 20q^{20} \) \(\mathstrut -\mathstrut 50q^{21} \) \(\mathstrut +\mathstrut 628q^{23} \) \(\mathstrut +\mathstrut 56q^{24} \) \(\mathstrut -\mathstrut 17q^{25} \) \(\mathstrut +\mathstrut 96q^{26} \) \(\mathstrut -\mathstrut 528q^{27} \) \(\mathstrut +\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 33q^{29} \) \(\mathstrut -\mathstrut 422q^{30} \) \(\mathstrut +\mathstrut 323q^{31} \) \(\mathstrut -\mathstrut 256q^{32} \) \(\mathstrut -\mathstrut 1144q^{33} \) \(\mathstrut +\mathstrut 208q^{34} \) \(\mathstrut -\mathstrut 697q^{35} \) \(\mathstrut -\mathstrut 324q^{36} \) \(\mathstrut +\mathstrut 49q^{37} \) \(\mathstrut -\mathstrut 576q^{38} \) \(\mathstrut +\mathstrut 391q^{39} \) \(\mathstrut +\mathstrut 240q^{40} \) \(\mathstrut +\mathstrut 361q^{41} \) \(\mathstrut +\mathstrut 1430q^{42} \) \(\mathstrut +\mathstrut 1442q^{43} \) \(\mathstrut +\mathstrut 620q^{44} \) \(\mathstrut +\mathstrut 2652q^{45} \) \(\mathstrut -\mathstrut 416q^{46} \) \(\mathstrut -\mathstrut 1069q^{47} \) \(\mathstrut +\mathstrut 48q^{48} \) \(\mathstrut -\mathstrut 709q^{49} \) \(\mathstrut -\mathstrut 76q^{50} \) \(\mathstrut -\mathstrut 1332q^{51} \) \(\mathstrut -\mathstrut 192q^{52} \) \(\mathstrut -\mathstrut 281q^{53} \) \(\mathstrut -\mathstrut 1144q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut +\mathstrut 48q^{56} \) \(\mathstrut -\mathstrut 438q^{57} \) \(\mathstrut -\mathstrut 66q^{58} \) \(\mathstrut -\mathstrut 128q^{59} \) \(\mathstrut -\mathstrut 1116q^{60} \) \(\mathstrut -\mathstrut 617q^{61} \) \(\mathstrut +\mathstrut 1044q^{62} \) \(\mathstrut +\mathstrut 694q^{63} \) \(\mathstrut -\mathstrut 128q^{64} \) \(\mathstrut -\mathstrut 138q^{65} \) \(\mathstrut +\mathstrut 1248q^{66} \) \(\mathstrut +\mathstrut 578q^{67} \) \(\mathstrut +\mathstrut 644q^{68} \) \(\mathstrut -\mathstrut 310q^{69} \) \(\mathstrut +\mathstrut 34q^{70} \) \(\mathstrut +\mathstrut 115q^{71} \) \(\mathstrut +\mathstrut 168q^{72} \) \(\mathstrut -\mathstrut 1487q^{73} \) \(\mathstrut -\mathstrut 98q^{74} \) \(\mathstrut -\mathstrut 1852q^{75} \) \(\mathstrut -\mathstrut 128q^{76} \) \(\mathstrut +\mathstrut 553q^{77} \) \(\mathstrut -\mathstrut 4152q^{78} \) \(\mathstrut +\mathstrut 71q^{79} \) \(\mathstrut -\mathstrut 480q^{80} \) \(\mathstrut +\mathstrut 1630q^{81} \) \(\mathstrut +\mathstrut 658q^{82} \) \(\mathstrut +\mathstrut 1942q^{83} \) \(\mathstrut +\mathstrut 2960q^{84} \) \(\mathstrut -\mathstrut 329q^{85} \) \(\mathstrut +\mathstrut 2426q^{86} \) \(\mathstrut +\mathstrut 2122q^{87} \) \(\mathstrut +\mathstrut 560q^{88} \) \(\mathstrut -\mathstrut 2202q^{89} \) \(\mathstrut +\mathstrut 1286q^{90} \) \(\mathstrut +\mathstrut 4523q^{91} \) \(\mathstrut -\mathstrut 2088q^{92} \) \(\mathstrut +\mathstrut 6019q^{93} \) \(\mathstrut -\mathstrut 1332q^{94} \) \(\mathstrut -\mathstrut 793q^{95} \) \(\mathstrut -\mathstrut 96q^{96} \) \(\mathstrut -\mathstrut 5128q^{97} \) \(\mathstrut -\mathstrut 3292q^{98} \) \(\mathstrut -\mathstrut 2213q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/22\mathbb{Z}\right)^\times\).

\(n\) \(13\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61803 1.17557i 0.572061 0.415627i
\(3\) 2.64055 + 8.12677i 0.508173 + 1.56400i 0.795369 + 0.606125i \(0.207277\pi\)
−0.287196 + 0.957872i \(0.592723\pi\)
\(4\) 1.23607 3.80423i 0.154508 0.475528i
\(5\) −10.3036 7.48598i −0.921579 0.669566i 0.0223375 0.999750i \(-0.492889\pi\)
−0.943917 + 0.330184i \(0.892889\pi\)
\(6\) 13.8261 + 10.0452i 0.940746 + 0.683492i
\(7\) 7.24988 22.3128i 0.391457 1.20478i −0.540230 0.841518i \(-0.681663\pi\)
0.931687 0.363263i \(-0.118337\pi\)
\(8\) −2.47214 7.60845i −0.109254 0.336249i
\(9\) −37.2284 + 27.0480i −1.37883 + 1.00178i
\(10\) −25.4718 −0.805490
\(11\) −3.69653 + 36.2951i −0.101322 + 0.994854i
\(12\) 34.1799 0.822242
\(13\) −9.27574 + 6.73922i −0.197894 + 0.143779i −0.682320 0.731054i \(-0.739029\pi\)
0.484425 + 0.874833i \(0.339029\pi\)
\(14\) −14.4998 44.6257i −0.276802 0.851908i
\(15\) 33.6298 103.502i 0.578878 1.78160i
\(16\) −12.9443 9.40456i −0.202254 0.146946i
\(17\) 52.9924 + 38.5012i 0.756032 + 0.549289i 0.897691 0.440626i \(-0.145244\pi\)
−0.141659 + 0.989916i \(0.545244\pi\)
\(18\) −28.4400 + 87.5292i −0.372409 + 1.14616i
\(19\) −2.24041 6.89528i −0.0270519 0.0832571i 0.936619 0.350349i \(-0.113937\pi\)
−0.963671 + 0.267092i \(0.913937\pi\)
\(20\) −41.2143 + 29.9439i −0.460790 + 0.334783i
\(21\) 200.475 2.08320
\(22\) 36.6864 + 63.0723i 0.355525 + 0.611230i
\(23\) −104.072 −0.943504 −0.471752 0.881731i \(-0.656378\pi\)
−0.471752 + 0.881731i \(0.656378\pi\)
\(24\) 55.3043 40.1809i 0.470373 0.341746i
\(25\) 11.4965 + 35.3825i 0.0919719 + 0.283060i
\(26\) −7.08604 + 21.8086i −0.0534495 + 0.164501i
\(27\) −131.464 95.5141i −0.937046 0.680804i
\(28\) −75.9218 55.1604i −0.512424 0.372298i
\(29\) −39.3536 + 121.118i −0.251993 + 0.775554i 0.742415 + 0.669941i \(0.233681\pi\)
−0.994407 + 0.105613i \(0.966319\pi\)
\(30\) −67.2595 207.004i −0.409328 1.25978i
\(31\) 233.653 169.759i 1.35372 0.983536i 0.354905 0.934903i \(-0.384513\pi\)
0.998817 0.0486336i \(-0.0154867\pi\)
\(32\) −32.0000 −0.176777
\(33\) −304.723 + 65.7981i −1.60744 + 0.347090i
\(34\) 131.004 0.660796
\(35\) −241.733 + 175.629i −1.16744 + 0.848194i
\(36\) 56.8799 + 175.058i 0.263333 + 0.810455i
\(37\) −26.3908 + 81.2224i −0.117260 + 0.360889i −0.992412 0.122960i \(-0.960761\pi\)
0.875152 + 0.483849i \(0.160761\pi\)
\(38\) −11.7310 8.52303i −0.0500792 0.0363847i
\(39\) −79.2611 57.5866i −0.325434 0.236442i
\(40\) −31.4849 + 96.9006i −0.124455 + 0.383033i
\(41\) −41.8544 128.815i −0.159428 0.490670i 0.839154 0.543893i \(-0.183050\pi\)
−0.998583 + 0.0532236i \(0.983050\pi\)
\(42\) 324.375 235.672i 1.19172 0.865834i
\(43\) 353.691 1.25436 0.627178 0.778876i \(-0.284210\pi\)
0.627178 + 0.778876i \(0.284210\pi\)
\(44\) 133.506 + 58.9257i 0.457426 + 0.201895i
\(45\) 586.066 1.94146
\(46\) −168.393 + 122.344i −0.539742 + 0.392146i
\(47\) −41.5948 128.016i −0.129090 0.397298i 0.865534 0.500850i \(-0.166979\pi\)
−0.994624 + 0.103552i \(0.966979\pi\)
\(48\) 42.2487 130.028i 0.127043 0.390999i
\(49\) −167.810 121.921i −0.489241 0.355454i
\(50\) 60.1964 + 43.7352i 0.170261 + 0.123702i
\(51\) −172.962 + 532.321i −0.474891 + 1.46157i
\(52\) 14.1721 + 43.6171i 0.0377945 + 0.116319i
\(53\) −405.666 + 294.734i −1.05137 + 0.763864i −0.972472 0.233019i \(-0.925140\pi\)
−0.0788966 + 0.996883i \(0.525140\pi\)
\(54\) −324.997 −0.819008
\(55\) 309.792 346.297i 0.759497 0.848994i
\(56\) −187.689 −0.447875
\(57\) 50.1204 36.4146i 0.116467 0.0846181i
\(58\) 78.7073 + 242.236i 0.178186 + 0.548399i
\(59\) 201.373 619.763i 0.444349 1.36756i −0.438848 0.898561i \(-0.644613\pi\)
0.883196 0.469003i \(-0.155387\pi\)
\(60\) −352.175 255.870i −0.757761 0.550545i
\(61\) −295.928 215.004i −0.621143 0.451287i 0.232178 0.972673i \(-0.425415\pi\)
−0.853320 + 0.521387i \(0.825415\pi\)
\(62\) 178.495 549.352i 0.365628 1.12529i
\(63\) 333.616 + 1026.77i 0.667170 + 2.05334i
\(64\) −51.7771 + 37.6183i −0.101127 + 0.0734732i
\(65\) 146.023 0.278645
\(66\) −415.702 + 464.687i −0.775293 + 0.866651i
\(67\) −294.576 −0.537136 −0.268568 0.963261i \(-0.586550\pi\)
−0.268568 + 0.963261i \(0.586550\pi\)
\(68\) 211.969 154.005i 0.378016 0.274645i
\(69\) −274.808 845.772i −0.479464 1.47564i
\(70\) −184.668 + 568.349i −0.315315 + 0.970438i
\(71\) −107.151 77.8500i −0.179106 0.130128i 0.494620 0.869109i \(-0.335307\pi\)
−0.673726 + 0.738981i \(0.735307\pi\)
\(72\) 297.827 + 216.384i 0.487490 + 0.354182i
\(73\) 145.080 446.511i 0.232607 0.715892i −0.764822 0.644241i \(-0.777173\pi\)
0.997430 0.0716507i \(-0.0228267\pi\)
\(74\) 52.7815 + 162.445i 0.0829153 + 0.255187i
\(75\) −257.189 + 186.858i −0.395968 + 0.287687i
\(76\) −29.0005 −0.0437709
\(77\) 783.048 + 345.616i 1.15892 + 0.511514i
\(78\) −195.944 −0.284440
\(79\) −330.105 + 239.836i −0.470124 + 0.341565i −0.797489 0.603333i \(-0.793839\pi\)
0.327366 + 0.944898i \(0.393839\pi\)
\(80\) 62.9698 + 193.801i 0.0880030 + 0.270845i
\(81\) 45.1451 138.942i 0.0619275 0.190593i
\(82\) −219.152 159.224i −0.295138 0.214431i
\(83\) 1099.89 + 799.119i 1.45457 + 1.05680i 0.984738 + 0.174045i \(0.0556839\pi\)
0.469827 + 0.882758i \(0.344316\pi\)
\(84\) 247.801 762.652i 0.321872 0.990621i
\(85\) −257.791 793.400i −0.328957 1.01243i
\(86\) 572.283 415.788i 0.717569 0.521344i
\(87\) −1088.21 −1.34102
\(88\) 285.288 61.6016i 0.345589 0.0746222i
\(89\) −260.255 −0.309966 −0.154983 0.987917i \(-0.549532\pi\)
−0.154983 + 0.987917i \(0.549532\pi\)
\(90\) 948.275 688.962i 1.11063 0.806922i
\(91\) 83.1232 + 255.827i 0.0957547 + 0.294703i
\(92\) −128.641 + 395.915i −0.145779 + 0.448663i
\(93\) 1996.56 + 1450.59i 2.22617 + 1.61741i
\(94\) −217.793 158.236i −0.238975 0.173626i
\(95\) −28.5337 + 87.8177i −0.0308157 + 0.0948411i
\(96\) −84.4975 260.057i −0.0898332 0.276478i
\(97\) −1144.38 + 831.440i −1.19788 + 0.870309i −0.994074 0.108703i \(-0.965330\pi\)
−0.203803 + 0.979012i \(0.565330\pi\)
\(98\) −414.848 −0.427612
\(99\) −844.095 1451.19i −0.856916 1.47324i
\(100\) 148.814 0.148814
\(101\) 150.976 109.691i 0.148740 0.108066i −0.510927 0.859624i \(-0.670698\pi\)
0.659666 + 0.751559i \(0.270698\pi\)
\(102\) 345.923 + 1064.64i 0.335799 + 1.03348i
\(103\) −362.450 + 1115.51i −0.346731 + 1.06713i 0.613919 + 0.789369i \(0.289592\pi\)
−0.960651 + 0.277760i \(0.910408\pi\)
\(104\) 74.2059 + 53.9138i 0.0699662 + 0.0508335i
\(105\) −2065.61 1500.75i −1.91983 1.39484i
\(106\) −309.901 + 953.779i −0.283965 + 0.873954i
\(107\) −220.241 677.831i −0.198986 0.612415i −0.999907 0.0136452i \(-0.995656\pi\)
0.800921 0.598770i \(-0.204344\pi\)
\(108\) −525.856 + 382.057i −0.468523 + 0.340402i
\(109\) 1247.22 1.09598 0.547989 0.836486i \(-0.315394\pi\)
0.547989 + 0.836486i \(0.315394\pi\)
\(110\) 94.1574 924.503i 0.0816141 0.801344i
\(111\) −729.762 −0.624017
\(112\) −303.687 + 220.642i −0.256212 + 0.186149i
\(113\) −303.455 933.939i −0.252625 0.777501i −0.994288 0.106728i \(-0.965963\pi\)
0.741663 0.670773i \(-0.234037\pi\)
\(114\) 38.2886 117.840i 0.0314566 0.0968135i
\(115\) 1072.32 + 779.084i 0.869513 + 0.631739i
\(116\) 412.117 + 299.420i 0.329863 + 0.239659i
\(117\) 163.038 501.780i 0.128828 0.396492i
\(118\) −402.747 1239.53i −0.314202 0.967014i
\(119\) 1243.26 903.281i 0.957727 0.695829i
\(120\) −870.625 −0.662307
\(121\) −1303.67 268.332i −0.979468 0.201602i
\(122\) −731.574 −0.542899
\(123\) 936.328 680.282i 0.686389 0.498691i
\(124\) −356.990 1098.70i −0.258538 0.795697i
\(125\) −345.533 + 1063.44i −0.247244 + 0.760937i
\(126\) 1746.84 + 1269.15i 1.23509 + 0.897342i
\(127\) 1254.52 + 911.460i 0.876538 + 0.636842i 0.932333 0.361600i \(-0.117769\pi\)
−0.0557950 + 0.998442i \(0.517769\pi\)
\(128\) −39.5542 + 121.735i −0.0273135 + 0.0840623i
\(129\) 933.937 + 2874.36i 0.637430 + 1.96181i
\(130\) 236.270 171.660i 0.159402 0.115812i
\(131\) 742.114 0.494953 0.247476 0.968894i \(-0.420399\pi\)
0.247476 + 0.968894i \(0.420399\pi\)
\(132\) −126.347 + 1240.57i −0.0833115 + 0.818010i
\(133\) −170.096 −0.110896
\(134\) −476.633 + 346.294i −0.307275 + 0.223248i
\(135\) 639.531 + 1968.27i 0.407719 + 1.25483i
\(136\) 161.930 498.370i 0.102099 0.314227i
\(137\) −417.192 303.108i −0.260169 0.189024i 0.450053 0.893002i \(-0.351405\pi\)
−0.710222 + 0.703978i \(0.751405\pi\)
\(138\) −1438.91 1045.43i −0.887597 0.644877i
\(139\) 761.160 2342.61i 0.464466 1.42948i −0.395187 0.918601i \(-0.629320\pi\)
0.859653 0.510878i \(-0.170680\pi\)
\(140\) 369.335 + 1136.70i 0.222961 + 0.686203i
\(141\) 930.520 676.063i 0.555773 0.403793i
\(142\) −264.893 −0.156544
\(143\) −210.313 361.576i −0.122988 0.211444i
\(144\) 736.269 0.426082
\(145\) 1312.17 953.348i 0.751516 0.546008i
\(146\) −290.160 893.021i −0.164478 0.506212i
\(147\) 547.713 1685.69i 0.307310 0.945803i
\(148\) 276.368 + 200.793i 0.153495 + 0.111521i
\(149\) 351.726 + 255.544i 0.193386 + 0.140503i 0.680265 0.732966i \(-0.261865\pi\)
−0.486879 + 0.873469i \(0.661865\pi\)
\(150\) −196.475 + 604.687i −0.106947 + 0.329150i
\(151\) −241.340 742.768i −0.130066 0.400302i 0.864724 0.502247i \(-0.167493\pi\)
−0.994790 + 0.101945i \(0.967493\pi\)
\(152\) −46.9238 + 34.0921i −0.0250396 + 0.0181924i
\(153\) −3014.20 −1.59270
\(154\) 1673.29 361.311i 0.875570 0.189060i
\(155\) −3678.27 −1.90610
\(156\) −317.044 + 230.346i −0.162717 + 0.118221i
\(157\) 161.425 + 496.815i 0.0820580 + 0.252549i 0.983665 0.180007i \(-0.0576120\pi\)
−0.901607 + 0.432555i \(0.857612\pi\)
\(158\) −252.178 + 776.124i −0.126976 + 0.390792i
\(159\) −3466.41 2518.50i −1.72896 1.25616i
\(160\) 329.714 + 239.551i 0.162914 + 0.118364i
\(161\) −754.513 + 2322.15i −0.369341 + 1.13672i
\(162\) −90.2903 277.885i −0.0437893 0.134770i
\(163\) −2057.56 + 1494.91i −0.988716 + 0.718344i −0.959639 0.281233i \(-0.909257\pi\)
−0.0290761 + 0.999577i \(0.509257\pi\)
\(164\) −541.775 −0.257960
\(165\) 3632.30 + 1603.19i 1.71378 + 0.756415i
\(166\) 2719.08 1.27134
\(167\) −1120.85 + 814.342i −0.519363 + 0.377339i −0.816364 0.577538i \(-0.804014\pi\)
0.297001 + 0.954877i \(0.404014\pi\)
\(168\) −495.601 1525.30i −0.227598 0.700475i
\(169\) −638.288 + 1964.45i −0.290527 + 0.894150i
\(170\) −1349.81 980.696i −0.608976 0.442447i
\(171\) 269.910 + 196.101i 0.120705 + 0.0876974i
\(172\) 437.186 1345.52i 0.193809 0.596482i
\(173\) −137.052 421.804i −0.0602307 0.185371i 0.916414 0.400232i \(-0.131070\pi\)
−0.976645 + 0.214861i \(0.931070\pi\)
\(174\) −1760.77 + 1279.27i −0.767146 + 0.557364i
\(175\) 872.833 0.377029
\(176\) 389.189 435.050i 0.166683 0.186324i
\(177\) 5568.41 2.36467
\(178\) −421.101 + 305.948i −0.177319 + 0.128830i
\(179\) 116.388 + 358.205i 0.0485991 + 0.149573i 0.972411 0.233274i \(-0.0749439\pi\)
−0.923812 + 0.382846i \(0.874944\pi\)
\(180\) 724.417 2229.53i 0.299972 0.923217i
\(181\) −2664.71 1936.02i −1.09429 0.795047i −0.114170 0.993461i \(-0.536421\pi\)
−0.980118 + 0.198414i \(0.936421\pi\)
\(182\) 435.238 + 316.219i 0.177264 + 0.128790i
\(183\) 965.878 2972.67i 0.390163 1.20080i
\(184\) 257.281 + 791.830i 0.103082 + 0.317252i
\(185\) 879.949 639.320i 0.349703 0.254074i
\(186\) 4935.78 1.94575
\(187\) −1593.29 + 1781.04i −0.623065 + 0.696486i
\(188\) −538.415 −0.208872
\(189\) −3084.29 + 2240.87i −1.18703 + 0.862430i
\(190\) 57.0674 + 175.635i 0.0217900 + 0.0670628i
\(191\) 707.730 2178.17i 0.268113 0.825166i −0.722847 0.691008i \(-0.757167\pi\)
0.990960 0.134158i \(-0.0428331\pi\)
\(192\) −442.435 321.448i −0.166302 0.120825i
\(193\) 1863.49 + 1353.90i 0.695010 + 0.504954i 0.878303 0.478104i \(-0.158676\pi\)
−0.183293 + 0.983058i \(0.558676\pi\)
\(194\) −874.228 + 2690.60i −0.323536 + 0.995740i
\(195\) 385.580 + 1186.69i 0.141600 + 0.435800i
\(196\) −671.238 + 487.683i −0.244620 + 0.177727i
\(197\) −1041.86 −0.376801 −0.188400 0.982092i \(-0.560330\pi\)
−0.188400 + 0.982092i \(0.560330\pi\)
\(198\) −3071.75 1355.79i −1.10252 0.486624i
\(199\) 3463.83 1.23389 0.616946 0.787005i \(-0.288370\pi\)
0.616946 + 0.787005i \(0.288370\pi\)
\(200\) 240.785 174.941i 0.0851305 0.0618509i
\(201\) −777.840 2393.95i −0.272958 0.840079i
\(202\) 115.336 354.966i 0.0401732 0.123640i
\(203\) 2417.18 + 1756.18i 0.835728 + 0.607192i
\(204\) 1811.28 + 1315.97i 0.621641 + 0.451648i
\(205\) −533.054 + 1640.57i −0.181610 + 0.558939i
\(206\) 724.901 + 2231.02i 0.245176 + 0.754574i
\(207\) 3874.45 2814.95i 1.30093 0.945181i
\(208\) 183.447 0.0611527
\(209\) 258.547 55.8274i 0.0855696 0.0184769i
\(210\) −5106.46 −1.67800
\(211\) −1692.45 + 1229.63i −0.552193 + 0.401192i −0.828593 0.559851i \(-0.810858\pi\)
0.276400 + 0.961043i \(0.410858\pi\)
\(212\) 619.803 + 1907.56i 0.200794 + 0.617979i
\(213\) 349.731 1076.36i 0.112503 0.346249i
\(214\) −1153.20 837.845i −0.368368 0.267635i
\(215\) −3644.28 2647.72i −1.15599 0.839875i
\(216\) −401.718 + 1236.36i −0.126544 + 0.389462i
\(217\) −2093.85 6444.20i −0.655022 2.01595i
\(218\) 2018.04 1466.19i 0.626967 0.455518i
\(219\) 4011.78 1.23786
\(220\) −934.468 1606.57i −0.286372 0.492339i
\(221\) −751.012 −0.228591
\(222\) −1180.78 + 857.887i −0.356976 + 0.259358i
\(223\) 1144.45 + 3522.26i 0.343669 + 1.05770i 0.962292 + 0.272017i \(0.0876906\pi\)
−0.618623 + 0.785688i \(0.712309\pi\)
\(224\) −231.996 + 714.011i −0.0692005 + 0.212977i
\(225\) −1385.02 1006.28i −0.410377 0.298156i
\(226\) −1588.91 1154.41i −0.467667 0.339780i
\(227\) −1499.81 + 4615.95i −0.438529 + 1.34965i 0.450897 + 0.892576i \(0.351104\pi\)
−0.889426 + 0.457079i \(0.848896\pi\)
\(228\) −76.5772 235.680i −0.0222432 0.0684575i
\(229\) 1081.53 785.778i 0.312094 0.226750i −0.420700 0.907200i \(-0.638216\pi\)
0.732795 + 0.680450i \(0.238216\pi\)
\(230\) 2650.91 0.759983
\(231\) −741.062 + 7276.26i −0.211075 + 2.07248i
\(232\) 1018.81 0.288311
\(233\) 4776.36 3470.23i 1.34296 0.975718i 0.343631 0.939105i \(-0.388343\pi\)
0.999330 0.0366132i \(-0.0116569\pi\)
\(234\) −326.077 1003.56i −0.0910953 0.280363i
\(235\) −529.748 + 1630.40i −0.147051 + 0.452576i
\(236\) −2108.81 1532.14i −0.581660 0.422601i
\(237\) −2820.75 2049.39i −0.773110 0.561698i
\(238\) 949.766 2923.08i 0.258673 0.796114i
\(239\) −1025.87 3157.30i −0.277649 0.854515i −0.988506 0.151179i \(-0.951693\pi\)
0.710858 0.703336i \(-0.248307\pi\)
\(240\) −1408.70 + 1023.48i −0.378880 + 0.275273i
\(241\) −5275.95 −1.41018 −0.705091 0.709116i \(-0.749094\pi\)
−0.705091 + 0.709116i \(0.749094\pi\)
\(242\) −2424.83 + 1098.39i −0.644107 + 0.291764i
\(243\) −3139.10 −0.828696
\(244\) −1183.71 + 860.017i −0.310571 + 0.225643i
\(245\) 816.340 + 2512.44i 0.212874 + 0.655158i
\(246\) 715.291 2201.44i 0.185387 0.570563i
\(247\) 67.2503 + 48.8602i 0.0173240 + 0.0125866i
\(248\) −1869.23 1358.07i −0.478613 0.347733i
\(249\) −3589.93 + 11048.7i −0.913666 + 2.81197i
\(250\) 691.067 + 2126.88i 0.174828 + 0.538064i
\(251\) 1587.17 1153.15i 0.399129 0.289984i −0.370057 0.929009i \(-0.620662\pi\)
0.769186 + 0.639025i \(0.220662\pi\)
\(252\) 4318.42 1.07950
\(253\) 384.707 3777.32i 0.0955980 0.938648i
\(254\) 3101.34 0.766123
\(255\) 5767.06 4190.02i 1.41626 1.02898i
\(256\) 79.1084 + 243.470i 0.0193136 + 0.0594410i
\(257\) 1836.17 5651.15i 0.445669 1.37163i −0.436078 0.899909i \(-0.643633\pi\)
0.881748 0.471721i \(-0.156367\pi\)
\(258\) 4890.16 + 3552.91i 1.18003 + 0.857342i
\(259\) 1620.97 + 1177.71i 0.388890 + 0.282545i
\(260\) 180.494 555.504i 0.0430530 0.132503i
\(261\) −1810.93 5573.47i −0.429478 1.32180i
\(262\) 1200.77 872.408i 0.283143 0.205716i
\(263\) −1704.11 −0.399544 −0.199772 0.979842i \(-0.564020\pi\)
−0.199772 + 0.979842i \(0.564020\pi\)
\(264\) 1253.94 + 2155.81i 0.292328 + 0.502579i
\(265\) 6386.18 1.48038
\(266\) −275.221 + 199.960i −0.0634395 + 0.0460915i
\(267\) −687.215 2115.03i −0.157516 0.484785i
\(268\) −364.115 + 1120.63i −0.0829921 + 0.255423i
\(269\) 4728.97 + 3435.80i 1.07186 + 0.778752i 0.976246 0.216666i \(-0.0695183\pi\)
0.0956148 + 0.995418i \(0.469518\pi\)
\(270\) 3348.63 + 2432.92i 0.754781 + 0.548381i
\(271\) 1825.00 5616.79i 0.409082 1.25902i −0.508357 0.861146i \(-0.669747\pi\)
0.917439 0.397877i \(-0.130253\pi\)
\(272\) −323.861 996.740i −0.0721946 0.222192i
\(273\) −1859.55 + 1351.04i −0.412254 + 0.299520i
\(274\) −1031.36 −0.227396
\(275\) −1326.71 + 286.474i −0.290922 + 0.0628182i
\(276\) −3557.19 −0.775788
\(277\) −7186.00 + 5220.93i −1.55872 + 1.13247i −0.621667 + 0.783281i \(0.713544\pi\)
−0.937051 + 0.349193i \(0.886456\pi\)
\(278\) −1522.32 4685.22i −0.328427 1.01079i
\(279\) −4106.89 + 12639.7i −0.881265 + 2.71226i
\(280\) 1933.87 + 1405.04i 0.412752 + 0.299882i
\(281\) 6594.92 + 4791.49i 1.40007 + 1.01721i 0.994674 + 0.103070i \(0.0328666\pi\)
0.405397 + 0.914141i \(0.367133\pi\)
\(282\) 710.854 2187.78i 0.150109 0.461988i
\(283\) 1812.06 + 5576.96i 0.380622 + 1.17143i 0.939607 + 0.342256i \(0.111191\pi\)
−0.558985 + 0.829178i \(0.688809\pi\)
\(284\) −428.605 + 311.400i −0.0895529 + 0.0650640i
\(285\) −789.018 −0.163991
\(286\) −765.351 337.805i −0.158238 0.0698420i
\(287\) −3177.66 −0.653559
\(288\) 1191.31 865.536i 0.243745 0.177091i
\(289\) −192.352 592.000i −0.0391517 0.120497i
\(290\) 1002.41 3085.10i 0.202978 0.624701i
\(291\) −9778.71 7104.65i −1.96989 1.43121i
\(292\) −1519.30 1103.83i −0.304487 0.221223i
\(293\) 2353.65 7243.79i 0.469289 1.44432i −0.384218 0.923242i \(-0.625529\pi\)
0.853507 0.521081i \(-0.174471\pi\)
\(294\) −1095.43 3371.37i −0.217301 0.668784i
\(295\) −6714.40 + 4878.30i −1.32518 + 0.962798i
\(296\) 683.219 0.134160
\(297\) 3952.66 4418.43i 0.772244 0.863243i
\(298\) 869.515 0.169026
\(299\) 965.348 701.367i 0.186714 0.135656i
\(300\) 392.949 + 1209.37i 0.0756231 + 0.232744i
\(301\) 2564.22 7891.85i 0.491026 1.51122i
\(302\) −1263.67 918.112i −0.240782 0.174938i
\(303\) 1290.09 + 937.305i 0.244600 + 0.177712i
\(304\) −35.8466 + 110.324i −0.00676297 + 0.0208143i
\(305\) 1439.60 + 4430.62i 0.270266 + 0.831792i
\(306\) −4877.08 + 3543.41i −0.911124 + 0.661971i
\(307\) 4100.68 0.762339 0.381170 0.924505i \(-0.375521\pi\)
0.381170 + 0.924505i \(0.375521\pi\)
\(308\) 2282.70 2551.69i 0.422302 0.472065i
\(309\) −10022.5 −1.84519
\(310\) −5951.57 + 4324.07i −1.09041 + 0.792228i
\(311\) 449.969 + 1384.86i 0.0820432 + 0.252503i 0.983661 0.180031i \(-0.0576197\pi\)
−0.901618 + 0.432534i \(0.857620\pi\)
\(312\) −242.200 + 745.416i −0.0439484 + 0.135259i
\(313\) 2800.56 + 2034.72i 0.505740 + 0.367442i 0.811205 0.584761i \(-0.198812\pi\)
−0.305465 + 0.952203i \(0.598812\pi\)
\(314\) 845.232 + 614.097i 0.151908 + 0.110368i
\(315\) 4248.91 13076.8i 0.759997 2.33903i
\(316\) 504.356 + 1552.25i 0.0897856 + 0.276332i
\(317\) −4038.86 + 2934.41i −0.715600 + 0.519914i −0.884975 0.465638i \(-0.845825\pi\)
0.169375 + 0.985552i \(0.445825\pi\)
\(318\) −8569.44 −1.51117
\(319\) −4250.52 1876.06i −0.746030 0.329277i
\(320\) 815.098 0.142392
\(321\) 4927.02 3579.69i 0.856696 0.622426i
\(322\) 1509.03 + 4644.30i 0.261164 + 0.803779i
\(323\) 146.752 451.656i 0.0252802 0.0778043i
\(324\) −472.766 343.485i −0.0810641 0.0588965i
\(325\) −345.089 250.722i −0.0588988 0.0427925i
\(326\) −1571.84 + 4837.62i −0.267043 + 0.821874i
\(327\) 3293.33 + 10135.8i 0.556947 + 1.71411i
\(328\) −876.610 + 636.894i −0.147569 + 0.107215i
\(329\) −3157.95 −0.529190
\(330\) 7761.84 1676.00i 1.29477 0.279578i
\(331\) 10199.3 1.69366 0.846832 0.531861i \(-0.178507\pi\)
0.846832 + 0.531861i \(0.178507\pi\)
\(332\) 4399.57 3196.48i 0.727283 0.528402i
\(333\) −1214.42 3737.60i −0.199849 0.615072i
\(334\) −856.250 + 2635.27i −0.140275 + 0.431723i
\(335\) 3035.18 + 2205.19i 0.495014 + 0.359648i
\(336\) −2595.00 1885.38i −0.421336 0.306119i
\(337\) −519.376 + 1598.48i −0.0839532 + 0.258381i −0.984218 0.176962i \(-0.943373\pi\)
0.900264 + 0.435343i \(0.143373\pi\)
\(338\) 1276.58 + 3928.90i 0.205434 + 0.632260i
\(339\) 6788.62 4932.22i 1.08763 0.790210i
\(340\) −3336.92 −0.532264
\(341\) 5297.72 + 9107.99i 0.841312 + 1.44641i
\(342\) 667.255 0.105500
\(343\) 2573.29 1869.61i 0.405087 0.294313i
\(344\) −874.371 2691.04i −0.137043 0.421776i
\(345\) −3499.93 + 10771.7i −0.546173 + 1.68095i
\(346\) −717.616 521.378i −0.111501 0.0810101i
\(347\) −8515.93 6187.19i −1.31746 0.957192i −0.999960 0.00893386i \(-0.997156\pi\)
−0.317501 0.948258i \(-0.602844\pi\)
\(348\) −1345.11 + 4139.81i −0.207199 + 0.637693i
\(349\) −1637.90 5040.94i −0.251217 0.773168i −0.994551 0.104247i \(-0.966757\pi\)
0.743334 0.668920i \(-0.233243\pi\)
\(350\) 1412.27 1026.08i 0.215683 0.156703i
\(351\) 1863.12 0.283321
\(352\) 118.289 1161.44i 0.0179114 0.175867i
\(353\) −7438.40 −1.12155 −0.560773 0.827969i \(-0.689496\pi\)
−0.560773 + 0.827969i \(0.689496\pi\)
\(354\) 9009.87 6546.06i 1.35274 0.982822i
\(355\) 521.257 + 1604.26i 0.0779309 + 0.239847i
\(356\) −321.693 + 990.068i −0.0478923 + 0.147397i
\(357\) 10623.6 + 7718.53i 1.57497 + 1.14428i
\(358\) 609.414 + 442.765i 0.0899680 + 0.0653656i
\(359\) 3136.93 9654.47i 0.461172 1.41934i −0.402562 0.915393i \(-0.631880\pi\)
0.863734 0.503948i \(-0.168120\pi\)
\(360\) −1448.83 4459.05i −0.212112 0.652813i
\(361\) 5506.52 4000.72i 0.802817 0.583281i
\(362\) −6587.52 −0.956443
\(363\) −1261.73 11303.2i −0.182435 1.63433i
\(364\) 1075.97 0.154934
\(365\) −4837.41 + 3514.59i −0.693703 + 0.504005i
\(366\) −1931.76 5945.33i −0.275887 0.849092i
\(367\) 147.340 453.466i 0.0209567 0.0644980i −0.940031 0.341088i \(-0.889204\pi\)
0.960988 + 0.276590i \(0.0892045\pi\)
\(368\) 1347.14 + 978.755i 0.190828 + 0.138644i
\(369\) 5042.35 + 3663.48i 0.711366 + 0.516838i
\(370\) 672.221 2068.88i 0.0944516 0.290692i
\(371\) 3635.32 + 11188.4i 0.508723 + 1.56569i
\(372\) 7986.26 5802.35i 1.11309 0.808704i
\(373\) −12738.5 −1.76829 −0.884146 0.467210i \(-0.845259\pi\)
−0.884146 + 0.467210i \(0.845259\pi\)
\(374\) −484.262 + 4754.82i −0.0669534 + 0.657395i
\(375\) −9554.74 −1.31575
\(376\) −871.173 + 632.944i −0.119488 + 0.0868128i
\(377\) −451.207 1388.67i −0.0616402 0.189709i
\(378\) −2356.19 + 7251.60i −0.320607 + 0.986725i
\(379\) 1050.66 + 763.349i 0.142398 + 0.103458i 0.656704 0.754149i \(-0.271950\pi\)
−0.514306 + 0.857607i \(0.671950\pi\)
\(380\) 298.809 + 217.097i 0.0403383 + 0.0293075i
\(381\) −4094.61 + 12601.9i −0.550586 + 1.69453i
\(382\) −1415.46 4356.34i −0.189584 0.583481i
\(383\) 542.501 394.150i 0.0723772 0.0525851i −0.551008 0.834500i \(-0.685757\pi\)
0.623386 + 0.781915i \(0.285757\pi\)
\(384\) −1093.76 −0.145353
\(385\) −5480.92 9422.95i −0.725541 1.24737i
\(386\) 4606.80 0.607461
\(387\) −13167.3 + 9566.62i −1.72954 + 1.25659i
\(388\) 1748.46 + 5381.20i 0.228774 + 0.704095i
\(389\) 1617.98 4979.64i 0.210887 0.649043i −0.788533 0.614992i \(-0.789159\pi\)
0.999420 0.0340509i \(-0.0108408\pi\)
\(390\) 2018.92 + 1466.83i 0.262134 + 0.190451i
\(391\) −5515.04 4006.91i −0.713319 0.518256i
\(392\) −512.780 + 1578.18i −0.0660697 + 0.203342i
\(393\) 1959.59 + 6030.99i 0.251522 + 0.774105i
\(394\) −1685.77 + 1224.79i −0.215553 + 0.156609i
\(395\) 5196.67 0.661956
\(396\) −6564.02 + 1417.35i −0.832966 + 0.179860i
\(397\) 1751.64 0.221442 0.110721 0.993852i \(-0.464684\pi\)
0.110721 + 0.993852i \(0.464684\pi\)
\(398\) 5604.60 4071.98i 0.705862 0.512839i
\(399\) −449.147 1382.33i −0.0563545 0.173441i
\(400\) 183.944 566.121i 0.0229930 0.0707651i
\(401\) −2922.80 2123.54i −0.363984 0.264450i 0.390728 0.920506i \(-0.372223\pi\)
−0.754712 + 0.656056i \(0.772223\pi\)
\(402\) −4072.83 2959.08i −0.505309 0.367128i
\(403\) −1023.26 + 3149.28i −0.126482 + 0.389273i
\(404\) −230.671 709.933i −0.0284067 0.0874269i
\(405\) −1505.28 + 1093.65i −0.184686 + 0.134182i
\(406\) 5975.60 0.730453
\(407\) −2850.42 1258.10i −0.347151 0.153223i
\(408\) 4477.72 0.543334
\(409\) 9137.83 6639.02i 1.10473 0.802637i 0.122908 0.992418i \(-0.460778\pi\)
0.981826 + 0.189781i \(0.0607779\pi\)
\(410\) 1066.11 + 3281.14i 0.128418 + 0.395229i
\(411\) 1361.67 4190.79i 0.163422 0.502960i
\(412\) 3795.63 + 2757.69i 0.453877 + 0.329761i
\(413\) −12368.8 8986.42i −1.47367 1.07069i
\(414\) 2959.81 9109.37i 0.351369 1.08140i
\(415\) −5350.63 16467.5i −0.632897 1.94786i
\(416\) 296.824 215.655i 0.0349831 0.0254167i
\(417\) 21047.7 2.47173
\(418\) 352.708 394.271i 0.0412716 0.0461349i
\(419\) −3680.45 −0.429121 −0.214560 0.976711i \(-0.568832\pi\)
−0.214560 + 0.976711i \(0.568832\pi\)
\(420\) −8262.43 + 6003.01i −0.959917 + 0.697421i
\(421\) 2860.31 + 8803.14i 0.331124 + 1.01909i 0.968600 + 0.248625i \(0.0799786\pi\)
−0.637476 + 0.770470i \(0.720021\pi\)
\(422\) −1292.91 + 3979.18i −0.149142 + 0.459013i
\(423\) 5011.08 + 3640.76i 0.575997 + 0.418487i
\(424\) 3245.33 + 2357.87i 0.371715 + 0.270067i
\(425\) −753.045 + 2317.63i −0.0859483 + 0.264522i
\(426\) −699.461 2152.72i −0.0795516 0.244835i
\(427\) −6942.80 + 5044.24i −0.786852 + 0.571681i
\(428\) −2850.85 −0.321966
\(429\) 2383.10 2663.92i 0.268199 0.299803i
\(430\) −9009.14 −1.01037
\(431\) −2899.55 + 2106.64i −0.324052 + 0.235437i −0.737902 0.674907i \(-0.764184\pi\)
0.413851 + 0.910345i \(0.364184\pi\)
\(432\) 803.436 + 2472.72i 0.0894800 + 0.275391i
\(433\) −2566.94 + 7900.24i −0.284895 + 0.876816i 0.701535 + 0.712635i \(0.252498\pi\)
−0.986430 + 0.164181i \(0.947502\pi\)
\(434\) −10963.5 7965.47i −1.21260 0.881002i
\(435\) 11212.5 + 8146.34i 1.23586 + 0.897902i
\(436\) 1541.64 4744.69i 0.169338 0.521168i
\(437\) 233.165 + 717.608i 0.0255236 + 0.0785534i
\(438\) 6491.19 4716.13i 0.708130 0.514487i
\(439\) 11932.4 1.29727 0.648634 0.761101i \(-0.275341\pi\)
0.648634 + 0.761101i \(0.275341\pi\)
\(440\) −3400.63 1500.94i −0.368452 0.162624i
\(441\) 9544.99 1.03067
\(442\) −1215.16 + 882.867i −0.130768 + 0.0950084i
\(443\) 333.374 + 1026.02i 0.0357541 + 0.110040i 0.967341 0.253480i \(-0.0815750\pi\)
−0.931587 + 0.363519i \(0.881575\pi\)
\(444\) −902.035 + 2776.18i −0.0964160 + 0.296738i
\(445\) 2681.55 + 1948.26i 0.285658 + 0.207543i
\(446\) 5992.43 + 4353.75i 0.636210 + 0.462234i
\(447\) −1148.00 + 3533.17i −0.121473 + 0.373855i
\(448\) 463.993 + 1428.02i 0.0489321 + 0.150598i
\(449\) −10327.9 + 7503.63i −1.08553 + 0.788682i −0.978638 0.205589i \(-0.934089\pi\)
−0.106889 + 0.994271i \(0.534089\pi\)
\(450\) −3423.96 −0.358683
\(451\) 4830.06 1042.94i 0.504298 0.108892i
\(452\) −3928.01 −0.408756
\(453\) 5399.03 3922.63i 0.559975 0.406846i
\(454\) 2999.63 + 9231.91i 0.310087 + 0.954350i
\(455\) 1058.65 3258.19i 0.109077 0.335706i
\(456\) −400.963 291.317i −0.0411773 0.0299170i
\(457\) 9082.69 + 6598.96i 0.929695 + 0.675463i 0.945918 0.324406i \(-0.105164\pi\)
−0.0162235 + 0.999868i \(0.505164\pi\)
\(458\) 826.216 2542.83i 0.0842938 0.259430i
\(459\) −3289.18 10123.0i −0.334478 1.02942i
\(460\) 4289.27 3116.33i 0.434757 0.315869i
\(461\) −2160.58 −0.218283 −0.109141 0.994026i \(-0.534810\pi\)
−0.109141 + 0.994026i \(0.534810\pi\)
\(462\) 7354.70 + 12644.4i 0.740631 + 1.27331i
\(463\) 11469.5 1.15125 0.575627 0.817712i \(-0.304758\pi\)
0.575627 + 0.817712i \(0.304758\pi\)
\(464\) 1648.47 1197.68i 0.164931 0.119830i
\(465\) −9712.65 29892.5i −0.968631 2.98114i
\(466\) 3648.81 11229.9i 0.362721 1.11634i
\(467\) −1632.91 1186.38i −0.161803 0.117557i 0.503937 0.863740i \(-0.331884\pi\)
−0.665741 + 0.746183i \(0.731884\pi\)
\(468\) −1707.36 1240.47i −0.168638 0.122523i
\(469\) −2135.64 + 6572.82i −0.210266 + 0.647131i
\(470\) 1059.50 + 3260.79i 0.103981 + 0.320019i
\(471\) −3611.25 + 2623.72i −0.353286 + 0.256677i
\(472\) −5213.26 −0.508389
\(473\) −1307.43 + 12837.2i −0.127094 + 1.24790i
\(474\) −6973.27 −0.675723
\(475\) 218.216 158.543i 0.0210788 0.0153146i
\(476\) −1899.53 5846.16i −0.182910 0.562938i
\(477\) 7130.34 21944.9i 0.684436 2.10648i
\(478\) −5371.53 3902.64i −0.513991 0.373437i
\(479\) 5927.67 + 4306.71i 0.565433 + 0.410811i 0.833443 0.552605i \(-0.186366\pi\)
−0.268011 + 0.963416i \(0.586366\pi\)
\(480\) −1076.15 + 3312.06i −0.102332 + 0.314946i
\(481\) −302.582 931.252i −0.0286831 0.0882774i
\(482\) −8536.67 + 6202.26i −0.806711 + 0.586110i
\(483\) −20863.9 −1.96551
\(484\) −2632.22 + 4627.78i −0.247203 + 0.434615i
\(485\) 18015.3 1.68667
\(486\) −5079.16 + 3690.23i −0.474065 + 0.344428i
\(487\) −1912.75 5886.85i −0.177978 0.547759i 0.821779 0.569806i \(-0.192982\pi\)
−0.999757 + 0.0220470i \(0.992982\pi\)
\(488\) −904.276 + 2783.07i −0.0838824 + 0.258164i
\(489\) −17581.8 12774.0i −1.62593 1.18130i
\(490\) 4274.41 + 3105.54i 0.394078 + 0.286315i
\(491\) −3127.54 + 9625.57i −0.287462 + 0.884717i 0.698188 + 0.715914i \(0.253990\pi\)
−0.985650 + 0.168802i \(0.946010\pi\)
\(492\) −1430.58 4402.88i −0.131089 0.403449i
\(493\) −6748.64 + 4903.17i −0.616518 + 0.447926i
\(494\) 166.252 0.0151418
\(495\) −2166.41 + 21271.3i −0.196713 + 1.93147i
\(496\) −4620.98 −0.418323
\(497\) −2513.89 + 1826.45i −0.226888 + 0.164844i
\(498\) 7179.87 + 22097.4i 0.646059 + 1.98837i
\(499\) 791.952 2437.38i 0.0710474 0.218661i −0.909228 0.416299i \(-0.863327\pi\)
0.980275 + 0.197638i \(0.0633269\pi\)
\(500\) 3618.47 + 2628.97i 0.323646 + 0.235143i
\(501\) −9577.61 6958.54i −0.854084 0.620528i
\(502\) 1212.49 3731.66i 0.107801 0.331777i
\(503\) 2658.01 + 8180.53i 0.235616 + 0.725152i 0.997039 + 0.0768967i \(0.0245012\pi\)
−0.761423 + 0.648256i \(0.775499\pi\)
\(504\) 6987.35 5076.61i 0.617543 0.448671i
\(505\) −2376.74 −0.209432
\(506\) −3818.04 6564.08i −0.335440 0.576698i
\(507\) −17650.0 −1.54609
\(508\) 5018.07 3645.84i 0.438269 0.318421i
\(509\) −4309.27 13262.6i −0.375255 1.15492i −0.943306 0.331924i \(-0.892302\pi\)
0.568051 0.822993i \(-0.307698\pi\)
\(510\) 4405.64 13559.2i 0.382520 1.17728i
\(511\) −8911.11 6474.30i −0.771437 0.560482i
\(512\) 414.217 + 300.946i 0.0357538 + 0.0259767i
\(513\) −364.063 + 1120.47i −0.0313329 + 0.0964328i
\(514\) −3672.34 11302.3i −0.315136 0.969889i
\(515\) 12085.2 8780.41i 1.03405 0.751284i
\(516\) 12089.1 1.03138
\(517\) 4800.10 1036.47i 0.408333 0.0881704i
\(518\) 4007.27 0.339902
\(519\) 3066.01 2227.59i 0.259312 0.188401i
\(520\) −360.988 1111.01i −0.0304431 0.0936941i
\(521\) −3736.89 + 11501.0i −0.314234 + 0.967113i 0.661834 + 0.749650i \(0.269778\pi\)
−0.976069 + 0.217463i \(0.930222\pi\)
\(522\) −9482.15 6889.18i −0.795062 0.577646i
\(523\) 13504.0 + 9811.21i 1.12904 + 0.820295i 0.985555 0.169358i \(-0.0541693\pi\)
0.143484 + 0.989653i \(0.454169\pi\)
\(524\) 917.304 2823.17i 0.0764744 0.235364i
\(525\) 2304.76 + 7093.31i 0.191596 + 0.589671i
\(526\) −2757.31 + 2003.30i −0.228564 + 0.166061i
\(527\) 18917.8 1.56370
\(528\) 4563.22 + 2014.08i 0.376115 + 0.166006i
\(529\) −1335.94 −0.109800
\(530\) 10333.1 7507.41i 0.846867 0.615285i
\(531\) 9266.56 + 28519.5i 0.757315 + 2.33078i
\(532\) −210.250 + 647.084i −0.0171344 + 0.0527343i
\(533\) 1256.34 + 912.785i 0.102098 + 0.0741784i
\(534\) −3598.30 2614.32i −0.291599 0.211859i
\(535\) −2804.97 + 8632.79i −0.226671 + 0.697623i
\(536\) 728.231 + 2241.26i 0.0586843 + 0.180612i
\(537\) −2603.72 + 1891.71i −0.209234 + 0.152018i
\(538\) 11690.7 0.936840
\(539\) 5045.44 5639.98i 0.403196 0.450707i
\(540\) 8278.26 0.659703
\(541\) −16725.1 + 12151.5i −1.32914 + 0.965679i −0.329374 + 0.944200i \(0.606838\pi\)
−0.999769 + 0.0214796i \(0.993162\pi\)
\(542\) −3650.01 11233.6i −0.289264 0.890264i
\(543\) 8697.33 26767.6i 0.687363 2.11548i
\(544\) −1695.76 1232.04i −0.133649 0.0971015i
\(545\) −12850.8 9336.63i −1.01003 0.733830i
\(546\) −1420.57 + 4372.07i −0.111346 + 0.342688i
\(547\) 2833.62 + 8721.00i 0.221494 + 0.681687i 0.998629 + 0.0523532i \(0.0166722\pi\)
−0.777135 + 0.629334i \(0.783328\pi\)
\(548\) −1668.77 + 1212.43i −0.130084 + 0.0945119i
\(549\) 16832.4 1.30854
\(550\) −1809.89 + 2023.17i −0.140317 + 0.156851i
\(551\) 923.311 0.0713873
\(552\) −5755.65 + 4181.73i −0.443799 + 0.322439i
\(553\) 2958.19 + 9104.37i 0.227477 + 0.700104i
\(554\) −5489.62 + 16895.3i −0.420995 + 1.29569i
\(555\) 7519.15 + 5462.98i 0.575081 + 0.417821i
\(556\) −7970.97 5791.25i −0.607994 0.441733i
\(557\) 6276.38 19316.7i 0.477449 1.46944i −0.365178 0.930938i \(-0.618992\pi\)
0.842627 0.538498i \(-0.181008\pi\)
\(558\) 8213.78 + 25279.4i 0.623149 + 1.91785i
\(559\) −3280.74 + 2383.60i −0.248230 + 0.180350i
\(560\) 4780.78 0.360759
\(561\) −18681.3 8245.40i −1.40593 0.620537i
\(562\) 16303.5 1.22371
\(563\) −4500.68 + 3269.94i −0.336911 + 0.244780i −0.743357 0.668894i \(-0.766768\pi\)
0.406446 + 0.913675i \(0.366768\pi\)
\(564\) −1421.71 4375.57i −0.106143 0.326675i
\(565\) −3864.78 + 11894.6i −0.287774 + 0.885678i
\(566\) 9488.08 + 6893.50i 0.704618 + 0.511935i
\(567\) −2772.90 2014.63i −0.205381 0.149218i
\(568\) −327.425 + 1007.71i −0.0241874 + 0.0744412i
\(569\) −7041.09 21670.3i −0.518766 1.59660i −0.776323 0.630335i \(-0.782917\pi\)
0.257557 0.966263i \(-0.417083\pi\)
\(570\) −1276.66 + 927.546i −0.0938128 + 0.0681590i
\(571\) −11157.6 −0.817743 −0.408871 0.912592i \(-0.634078\pi\)
−0.408871 + 0.912592i \(0.634078\pi\)
\(572\) −1635.48 + 353.145i −0.119550 + 0.0258142i
\(573\) 19570.3 1.42681
\(574\) −5141.56 + 3735.56i −0.373876 + 0.271637i
\(575\) −1196.47 3682.34i −0.0867758 0.267068i
\(576\) 910.078 2800.93i 0.0658332 0.202614i
\(577\) −10055.4 7305.64i −0.725494 0.527102i 0.162641 0.986685i \(-0.447999\pi\)
−0.888135 + 0.459583i \(0.847999\pi\)
\(578\) −1007.17 731.752i −0.0724788 0.0526589i
\(579\) −6082.23 + 18719.2i −0.436561 + 1.34360i
\(580\) −2004.82 6170.20i −0.143527 0.441730i
\(581\) 25804.7 18748.2i 1.84262 1.33874i
\(582\) −24174.3 −1.72175
\(583\) −9197.84 15813.2i −0.653406 1.12335i
\(584\) −3755.91 −0.266131
\(585\) −5436.20 + 3949.63i −0.384203 + 0.279140i
\(586\) −4707.30 14487.6i −0.331837 1.02129i
\(587\) 1889.62 5815.66i 0.132867 0.408923i −0.862385 0.506253i \(-0.831030\pi\)
0.995252 + 0.0973299i \(0.0310302\pi\)
\(588\) −5735.72 4167.25i −0.402274 0.292269i
\(589\) −1694.02 1230.77i −0.118507 0.0861005i
\(590\) −5129.35 + 15786.5i −0.357918 + 1.10156i
\(591\) −2751.09 8466.99i −0.191480 0.589315i
\(592\) 1105.47 803.172i 0.0767476 0.0557604i
\(593\) 7188.32 0.497789 0.248894 0.968531i \(-0.419933\pi\)
0.248894 + 0.968531i \(0.419933\pi\)
\(594\) 1201.36 11795.8i 0.0829839 0.814794i
\(595\) −19572.0 −1.34852
\(596\) 1406.90 1022.18i 0.0966930 0.0702516i
\(597\) 9146.41 + 28149.8i 0.627031 + 1.92980i
\(598\) 737.461 2269.67i 0.0504298 0.155207i
\(599\) 818.874 + 594.947i 0.0558569 + 0.0405824i 0.615363 0.788244i \(-0.289009\pi\)
−0.559506 + 0.828826i \(0.689009\pi\)
\(600\) 2057.51 + 1494.87i 0.139996 + 0.101713i
\(601\) 4134.93 12726.0i 0.280644 0.863734i −0.707026 0.707187i \(-0.749964\pi\)
0.987671 0.156547i \(-0.0500362\pi\)
\(602\) −5128.43 15783.7i −0.347208 1.06860i
\(603\) 10966.6 7967.68i 0.740619 0.538091i
\(604\) −3123.97 −0.210451
\(605\) 11423.7 + 12524.0i 0.767671 + 0.841611i
\(606\) 3189.28 0.213788
\(607\) −442.493 + 321.490i −0.0295885 + 0.0214973i −0.602481 0.798133i \(-0.705821\pi\)
0.572893 + 0.819630i \(0.305821\pi\)
\(608\) 71.6932 + 220.649i 0.00478214 + 0.0147179i
\(609\) −7889.42 + 24281.1i −0.524951 + 1.61563i
\(610\) 7537.83 + 5476.55i 0.500324 + 0.363507i
\(611\) 1248.55 + 907.124i 0.0826692 + 0.0600627i
\(612\) −3725.76 + 11466.7i −0.246086 + 0.757376i
\(613\) 4247.62 + 13072.8i 0.279869 + 0.861349i 0.987890 + 0.155157i \(0.0495885\pi\)
−0.708020 + 0.706192i \(0.750412\pi\)
\(614\) 6635.04 4820.64i 0.436105 0.316849i
\(615\) −14740.1 −0.966468
\(616\) 693.798 6812.19i 0.0453797 0.445570i
\(617\) −3323.39 −0.216847 −0.108423 0.994105i \(-0.534580\pi\)
−0.108423 + 0.994105i \(0.534580\pi\)
\(618\) −16216.8 + 11782.2i −1.05556 + 0.766909i
\(619\) −6699.20 20618.0i −0.434998 1.33879i −0.893089 0.449881i \(-0.851467\pi\)
0.458091 0.888905i \(-0.348533\pi\)
\(620\) −4546.60 + 13993.0i −0.294509 + 0.906406i
\(621\) 13681.8 + 9940.38i 0.884107 + 0.642341i
\(622\) 2356.07 + 1711.79i 0.151881 + 0.110348i
\(623\) −1886.82 + 5807.03i −0.121338 + 0.373441i
\(624\) 484.401 + 1490.83i 0.0310762 + 0.0956427i
\(625\) 15283.4 11104.0i 0.978138 0.710659i
\(626\) 6923.35 0.442033
\(627\) 1136.40 + 1953.73i 0.0723820 + 0.124441i
\(628\) 2089.53 0.132773
\(629\) −4525.67 + 3288.09i −0.286885 + 0.208434i
\(630\) −8497.82 26153.6i −0.537399 1.65394i
\(631\) −9236.13 + 28425.9i −0.582702 + 1.79337i 0.0256092 + 0.999672i \(0.491847\pi\)
−0.608311 + 0.793699i \(0.708153\pi\)
\(632\) 2640.84 + 1918.68i 0.166214 + 0.120761i
\(633\) −14461.9 10507.2i −0.908073 0.659753i
\(634\) −3085.42 + 9495.94i −0.193277 + 0.594845i
\(635\) −6102.83 18782.6i −0.381391 1.17380i
\(636\) −13865.7 + 10074.0i −0.864479 + 0.628081i
\(637\) 2378.21 0.147925
\(638\) −9082.93 + 1961.26i −0.563631 + 0.121704i
\(639\) 6094.75 0.377316
\(640\) 1318.86 958.205i 0.0814569 0.0591819i
\(641\) 8398.45 + 25847.8i 0.517502 + 1.59271i 0.778683 + 0.627418i \(0.215888\pi\)
−0.261181 + 0.965290i \(0.584112\pi\)
\(642\) 3763.91 11584.1i 0.231386 0.712132i
\(643\) −13247.2 9624.69i −0.812474 0.590297i 0.102073 0.994777i \(-0.467452\pi\)
−0.914547 + 0.404480i \(0.867452\pi\)
\(644\) 7901.36 + 5740.67i 0.483474 + 0.351264i
\(645\) 11894.5 36607.6i 0.726119 2.23476i
\(646\) −293.504 903.312i −0.0178758 0.0550160i
\(647\) −1850.76 + 1344.66i −0.112459 + 0.0817062i −0.642593 0.766207i \(-0.722141\pi\)
0.530134 + 0.847914i \(0.322141\pi\)
\(648\) −1168.74 −0.0708526
\(649\) 21750.0 + 9599.84i 1.31550 + 0.580627i
\(650\) −853.107 −0.0514794
\(651\) 46841.6 34032.4i 2.82007 2.04890i
\(652\) 3143.67 + 9675.23i 0.188828 + 0.581152i
\(653\) −354.419 + 1090.79i −0.0212396 + 0.0653689i −0.961115 0.276150i \(-0.910941\pi\)
0.939875 + 0.341519i \(0.110941\pi\)
\(654\) 17244.1 + 12528.6i 1.03104 + 0.749092i
\(655\) −7646.43 5555.45i −0.456138 0.331404i
\(656\) −669.670 + 2061.03i −0.0398571 + 0.122667i
\(657\) 6676.12 + 20547.0i 0.396439 + 1.22011i
\(658\) −5109.67 + 3712.40i −0.302729 + 0.219946i
\(659\) −377.923 −0.0223396 −0.0111698 0.999938i \(-0.503556\pi\)
−0.0111698 + 0.999938i \(0.503556\pi\)
\(660\) 10588.7 11836.4i 0.624490 0.698079i
\(661\) −17500.4 −1.02978 −0.514892 0.857255i \(-0.672168\pi\)
−0.514892 + 0.857255i \(0.672168\pi\)
\(662\) 16502.8 11990.0i 0.968880 0.703932i
\(663\) −1983.08 6103.30i −0.116164 0.357515i
\(664\) 3360.97 10344.0i 0.196432 0.604556i
\(665\) 1752.60 + 1273.34i 0.102200 + 0.0742524i
\(666\) −6358.78 4619.92i −0.369967 0.268796i
\(667\) 4095.63 12605.0i 0.237756 0.731738i
\(668\) 1712.50 + 5270.53i 0.0991895 + 0.305274i
\(669\) −25602.6 + 18601.4i −1.47960 + 1.07499i
\(670\) 7503.38 0.432658
\(671\) 8897.51 9945.97i 0.511900 0.572221i
\(672\) −6415.20 −0.368261
\(673\) 11739.3 8529.08i 0.672386 0.488517i −0.198437 0.980114i \(-0.563587\pi\)
0.870823 + 0.491597i \(0.163587\pi\)
\(674\) 1038.75 + 3196.95i 0.0593639 + 0.182703i
\(675\) 1868.16 5749.60i 0.106527 0.327855i
\(676\) 6684.24 + 4856.38i 0.380305 + 0.276308i
\(677\) −379.518 275.736i −0.0215451 0.0156534i 0.576961 0.816772i \(-0.304239\pi\)
−0.598506 + 0.801119i \(0.704239\pi\)
\(678\) 5186.04 15961.0i 0.293759 0.904098i
\(679\) 10255.2 + 31562.2i 0.579614 + 1.78387i
\(680\) −5399.25 + 3922.78i −0.304488 + 0.221223i
\(681\) −41473.1 −2.33370
\(682\) 19279.0 + 8509.20i 1.08245 + 0.477763i
\(683\) −15892.3 −0.890342 −0.445171 0.895446i \(-0.646857\pi\)
−0.445171 + 0.895446i \(0.646857\pi\)
\(684\) 1079.64 784.406i 0.0603525 0.0438487i
\(685\) 2029.51 + 6246.19i 0.113202 + 0.348401i
\(686\) 1965.82 6050.17i 0.109410 0.336730i
\(687\) 9241.67 + 6714.46i 0.513234 + 0.372886i
\(688\) −4578.27 3326.31i −0.253699 0.184323i
\(689\) 1776.58 5467.75i 0.0982326 0.302329i
\(690\) 6999.86 + 21543.3i 0.386203 + 1.18861i
\(691\) 5020.47 3647.58i 0.276393 0.200811i −0.440950 0.897532i \(-0.645358\pi\)
0.717343 + 0.696721i \(0.245358\pi\)
\(692\) −1774.04 −0.0974553
\(693\) −38499.8 + 8313.18i −2.11037 + 0.455688i
\(694\) −21052.5 −1.15150
\(695\) −25379.4 + 18439.2i −1.38517 + 1.00639i
\(696\) 2690.21 + 8279.62i 0.146512 + 0.450917i
\(697\) 2741.55 8437.64i 0.148987 0.458534i
\(698\) −8576.16 6230.95i −0.465061 0.337887i
\(699\) 40813.9 + 29653.1i 2.20848 + 1.60455i
\(700\) 1078.88 3320.46i 0.0582541 0.179288i
\(701\) 578.646 + 1780.89i 0.0311771 + 0.0959533i 0.965434 0.260647i \(-0.0839358\pi\)
−0.934257 + 0.356600i \(0.883936\pi\)
\(702\) 3014.59 2190.22i 0.162077 0.117756i
\(703\) 619.178 0.0332187
\(704\) −1173.96 2018.31i −0.0628486 0.108051i
\(705\) −14648.7 −0.782554
\(706\) −12035.6 + 8744.36i −0.641594 + 0.466145i
\(707\) −1352.95 4163.95i −0.0719702 0.221502i
\(708\) 6882.93 21183.5i 0.365362 1.12447i
\(709\) −4236.02 3077.65i −0.224383 0.163023i 0.469915 0.882712i \(-0.344285\pi\)
−0.694297 + 0.719688i \(0.744285\pi\)
\(710\) 2729.34 + 1982.98i 0.144268 + 0.104817i
\(711\) 5802.22 17857.4i 0.306048 0.941919i
\(712\) 643.385 + 1980.14i 0.0338650 + 0.104226i
\(713\) −24316.8 + 17667.2i −1.27724 + 0.927970i
\(714\) 26263.1 1.37657
\(715\) −539.778 + 5299.92i −0.0282329 + 0.277211i
\(716\) 1506.56 0.0786349
\(717\) 22949.8 16674.0i 1.19536 0.868483i
\(718\) −6273.85 19308.9i −0.326098 1.00363i
\(719\) −5338.20 + 16429.3i −0.276886 + 0.852169i 0.711828 + 0.702354i \(0.247868\pi\)
−0.988714 + 0.149814i \(0.952132\pi\)
\(720\) −7586.20 5511.69i −0.392668 0.285290i
\(721\) 22262.4 + 16174.6i 1.14993 + 0.835470i
\(722\) 4206.61 12946.6i 0.216833 0.667345i
\(723\) −13931.4 42876.4i −0.716617 2.20552i
\(724\) −10658.8 + 7744.09i −0.547144 + 0.397523i
\(725\) −4737.89 −0.242705
\(726\) −15329.2 16805.7i −0.783637 0.859114i
\(727\) 17292.7 0.882190 0.441095 0.897461i \(-0.354590\pi\)
0.441095 + 0.897461i \(0.354590\pi\)
\(728\) 1740.95 1264.88i 0.0886319 0.0643949i
\(729\) −9507.85 29262.1i −0.483049 1.48667i
\(730\) −3695.45 + 11373.4i −0.187363 + 0.576644i
\(731\) 18742.9 + 13617.5i 0.948333 + 0.689004i
\(732\) −10114.8 7348.84i −0.510729 0.371067i
\(733\) −4289.57 + 13201.9i −0.216151 + 0.665245i 0.782919 + 0.622124i \(0.213730\pi\)
−0.999070 + 0.0431210i \(0.986270\pi\)
\(734\) −294.680 906.933i −0.0148186 0.0456069i
\(735\) −18262.4 + 13268.4i −0.916488 + 0.665868i
\(736\) 3330.32 0.166790
\(737\) 1088.91 10691.7i 0.0544239 0.534372i
\(738\) 12465.4 0.621757
\(739\) −5160.93 + 3749.64i −0.256898 + 0.186648i −0.708779 0.705431i \(-0.750753\pi\)
0.451880 + 0.892079i \(0.350753\pi\)
\(740\) −1344.44 4137.77i −0.0667874 0.205550i
\(741\) −219.498 + 675.545i −0.0108819 + 0.0334909i
\(742\) 19034.8 + 13829.6i 0.941763 + 0.684231i
\(743\) −18641.9 13544.2i −0.920467 0.668758i 0.0231734 0.999731i \(-0.492623\pi\)
−0.943640 + 0.330973i \(0.892623\pi\)
\(744\) 6100.96 18776.8i 0.300634 0.925257i
\(745\) −1711.04 5266.03i −0.0841443 0.258970i
\(746\) −20611.3 + 14975.0i −1.01157 + 0.734950i
\(747\) −62561.8 −3.06428
\(748\) 4806.07 + 8262.74i 0.234930 + 0.403898i
\(749\) −16721.1 −0.815720
\(750\) −15459.9 + 11232.3i −0.752688 + 0.546860i
\(751\) −6429.44 19787.8i −0.312401 0.961473i −0.976811 0.214104i \(-0.931317\pi\)
0.664409 0.747369i \(-0.268683\pi\)
\(752\) −665.517 + 2048.25i −0.0322725 + 0.0993245i
\(753\) 13562.4 + 9853.63i 0.656361 + 0.476874i
\(754\) −2362.55 1716.49i −0.114110 0.0829059i
\(755\) −3073.68 + 9459.83i −0.148163 + 0.455998i
\(756\) 4712.38 + 14503.2i 0.226703 + 0.697720i
\(757\) 17667.1 12835.9i 0.848246 0.616287i −0.0764161 0.997076i \(-0.524348\pi\)
0.924662 + 0.380789i \(0.124348\pi\)
\(758\) 2597.38 0.124460
\(759\) 31713.2 6847.77i 1.51662 0.327481i
\(760\) 738.696 0.0352570
\(761\) 5775.94 4196.47i 0.275135 0.199897i −0.441658 0.897184i \(-0.645609\pi\)
0.716793 + 0.697286i \(0.245609\pi\)
\(762\) 8189.22 + 25203.8i 0.389323 + 1.19821i
\(763\) 9042.17 27828.9i 0.429028 1.32041i
\(764\) −7411.45 5384.73i −0.350964 0.254990i
\(765\) 31057.0 + 22564.2i 1.46780 + 1.06642i
\(766\) 414.434 1275.50i 0.0195484 0.0601639i
\(767\) 2308.84 + 7105.86i 0.108693 + 0.334521i
\(768\) −1769.74 + 1285.79i −0.0831509 + 0.0604127i
\(769\) 15473.8 0.725618 0.362809 0.931864i \(-0.381818\pi\)
0.362809 + 0.931864i \(0.381818\pi\)
\(770\) −19945.7 8803.46i −0.933496 0.412019i
\(771\) 50774.0 2.37170
\(772\) 7453.96 5415.62i 0.347505 0.252477i
\(773\)