# Properties

 Label 22.4.c.b.3.1 Level $22$ Weight $4$ Character 22.3 Analytic conductor $1.298$ Analytic rank $0$ Dimension $8$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$22 = 2 \cdot 11$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 22.c (of order $$5$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.29804202013$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$2$$ over $$\Q(\zeta_{5})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{8} - \cdots)$$ Defining polynomial: $$x^{8} - x^{7} + 71 x^{6} - 141 x^{5} + 2911 x^{4} + 2710 x^{3} + 75340 x^{2} + 169400 x + 5856400$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

## Embedding invariants

 Embedding label 3.1 Root $$-4.79501 + 3.48378i$$ of defining polynomial Character $$\chi$$ $$=$$ 22.3 Dual form 22.4.c.b.15.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(1.61803 - 1.17557i) q^{2} +(-1.33153 - 4.09803i) q^{3} +(1.23607 - 3.80423i) q^{4} +(6.52241 + 4.73881i) q^{5} +(-6.97198 - 5.06544i) q^{6} +(-8.05890 + 24.8027i) q^{7} +(-2.47214 - 7.60845i) q^{8} +(6.82261 - 4.95692i) q^{9} +O(q^{10})$$ $$q+(1.61803 - 1.17557i) q^{2} +(-1.33153 - 4.09803i) q^{3} +(1.23607 - 3.80423i) q^{4} +(6.52241 + 4.73881i) q^{5} +(-6.97198 - 5.06544i) q^{6} +(-8.05890 + 24.8027i) q^{7} +(-2.47214 - 7.60845i) q^{8} +(6.82261 - 4.95692i) q^{9} +16.1243 q^{10} +(-33.3764 + 14.7314i) q^{11} -17.2357 q^{12} +(2.64049 - 1.91843i) q^{13} +(16.1178 + 49.6055i) q^{14} +(10.7350 - 33.0389i) q^{15} +(-12.9443 - 9.40456i) q^{16} +(16.8855 + 12.2681i) q^{17} +(5.21201 - 16.0409i) q^{18} +(-38.9268 - 119.804i) q^{19} +(26.0897 - 18.9552i) q^{20} +112.373 q^{21} +(-36.6864 + 63.0723i) q^{22} +97.8394 q^{23} +(-27.8879 + 20.2618i) q^{24} +(-18.5416 - 57.0651i) q^{25} +(2.01715 - 6.20815i) q^{26} +(-123.520 - 89.7424i) q^{27} +(84.3939 + 61.3158i) q^{28} +(-81.5293 + 250.921i) q^{29} +(-21.4700 - 66.0778i) q^{30} +(-161.288 + 117.183i) q^{31} -32.0000 q^{32} +(104.811 + 117.162i) q^{33} +41.7433 q^{34} +(-170.099 + 123.584i) q^{35} +(-10.4240 - 32.0819i) q^{36} +(112.990 - 347.748i) q^{37} +(-203.823 - 148.086i) q^{38} +(-11.3776 - 8.26634i) q^{39} +(19.9307 - 61.3405i) q^{40} +(84.5880 + 260.335i) q^{41} +(181.823 - 132.102i) q^{42} +388.059 q^{43} +(14.7861 + 145.180i) q^{44} +67.9898 q^{45} +(158.307 - 115.017i) q^{46} +(-16.0238 - 49.3162i) q^{47} +(-21.3045 + 65.5684i) q^{48} +(-272.737 - 198.155i) q^{49} +(-97.0849 - 70.5363i) q^{50} +(27.7912 - 85.5326i) q^{51} +(-4.03430 - 12.4163i) q^{52} +(333.739 - 242.476i) q^{53} -305.358 q^{54} +(-287.504 - 62.0801i) q^{55} +208.633 q^{56} +(-439.129 + 319.046i) q^{57} +(163.059 + 501.843i) q^{58} +(8.12202 - 24.9970i) q^{59} +(-112.418 - 81.6766i) q^{60} +(-132.799 - 96.4844i) q^{61} +(-123.213 + 379.212i) q^{62} +(67.9624 + 209.167i) q^{63} +(-51.7771 + 37.6183i) q^{64} +26.3134 q^{65} +(307.321 + 66.3591i) q^{66} +276.961 q^{67} +(67.5421 - 49.0722i) q^{68} +(-130.276 - 400.948i) q^{69} +(-129.944 + 399.927i) q^{70} +(418.205 + 303.844i) q^{71} +(-54.5809 - 39.6554i) q^{72} +(-74.6476 + 229.742i) q^{73} +(-225.980 - 695.495i) q^{74} +(-209.166 + 151.968i) q^{75} -503.879 q^{76} +(-96.4024 - 946.546i) q^{77} -28.1271 q^{78} +(220.959 - 160.536i) q^{79} +(-39.8615 - 122.681i) q^{80} +(-132.934 + 409.129i) q^{81} +(442.908 + 321.792i) q^{82} +(-58.7298 - 42.6697i) q^{83} +(138.901 - 427.492i) q^{84} +(51.9984 + 160.035i) q^{85} +(627.893 - 456.191i) q^{86} +1136.84 q^{87} +(194.594 + 217.525i) q^{88} -1194.73 q^{89} +(110.010 - 79.9268i) q^{90} +(26.3028 + 80.9517i) q^{91} +(120.936 - 372.203i) q^{92} +(694.979 + 504.932i) q^{93} +(-83.9018 - 60.9582i) q^{94} +(313.833 - 965.880i) q^{95} +(42.6089 + 131.137i) q^{96} +(-1184.10 + 860.299i) q^{97} -674.244 q^{98} +(-154.692 + 265.951i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8q + 4q^{2} + 3q^{3} - 8q^{4} + 5q^{5} + 14q^{6} - q^{7} + 16q^{8} - 21q^{9} + O(q^{10})$$ $$8q + 4q^{2} + 3q^{3} - 8q^{4} + 5q^{5} + 14q^{6} - q^{7} + 16q^{8} - 21q^{9} - 100q^{10} - 155q^{11} + 32q^{12} + 7q^{13} + 2q^{14} + 211q^{15} - 32q^{16} + 161q^{17} + 162q^{18} - 272q^{19} + 20q^{20} - 50q^{21} + 628q^{23} + 56q^{24} - 17q^{25} + 96q^{26} - 528q^{27} + 16q^{28} + 33q^{29} - 422q^{30} + 323q^{31} - 256q^{32} - 1144q^{33} + 208q^{34} - 697q^{35} - 324q^{36} + 49q^{37} - 576q^{38} + 391q^{39} + 240q^{40} + 361q^{41} + 1430q^{42} + 1442q^{43} + 620q^{44} + 2652q^{45} - 416q^{46} - 1069q^{47} + 48q^{48} - 709q^{49} - 76q^{50} - 1332q^{51} - 192q^{52} - 281q^{53} - 1144q^{54} - 7q^{55} + 48q^{56} - 438q^{57} - 66q^{58} - 128q^{59} - 1116q^{60} - 617q^{61} + 1044q^{62} + 694q^{63} - 128q^{64} - 138q^{65} + 1248q^{66} + 578q^{67} + 644q^{68} - 310q^{69} + 34q^{70} + 115q^{71} + 168q^{72} - 1487q^{73} - 98q^{74} - 1852q^{75} - 128q^{76} + 553q^{77} - 4152q^{78} + 71q^{79} - 480q^{80} + 1630q^{81} + 658q^{82} + 1942q^{83} + 2960q^{84} - 329q^{85} + 2426q^{86} + 2122q^{87} + 560q^{88} - 2202q^{89} + 1286q^{90} + 4523q^{91} - 2088q^{92} + 6019q^{93} - 1332q^{94} - 793q^{95} - 96q^{96} - 5128q^{97} - 3292q^{98} - 2213q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/22\mathbb{Z}\right)^\times$$.

 $$n$$ $$13$$ $$\chi(n)$$ $$e\left(\frac{4}{5}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.61803 1.17557i 0.572061 0.415627i
$$3$$ −1.33153 4.09803i −0.256253 0.788665i −0.993580 0.113130i $$-0.963912\pi$$
0.737327 0.675536i $$-0.236088\pi$$
$$4$$ 1.23607 3.80423i 0.154508 0.475528i
$$5$$ 6.52241 + 4.73881i 0.583382 + 0.423852i 0.839942 0.542676i $$-0.182589\pi$$
−0.256559 + 0.966528i $$0.582589\pi$$
$$6$$ −6.97198 5.06544i −0.474383 0.344659i
$$7$$ −8.05890 + 24.8027i −0.435140 + 1.33922i 0.457804 + 0.889053i $$0.348636\pi$$
−0.892943 + 0.450169i $$0.851364\pi$$
$$8$$ −2.47214 7.60845i −0.109254 0.336249i
$$9$$ 6.82261 4.95692i 0.252689 0.183590i
$$10$$ 16.1243 0.509895
$$11$$ −33.3764 + 14.7314i −0.914852 + 0.403790i
$$12$$ −17.2357 −0.414626
$$13$$ 2.64049 1.91843i 0.0563338 0.0409289i −0.559262 0.828991i $$-0.688915\pi$$
0.615596 + 0.788062i $$0.288915\pi$$
$$14$$ 16.1178 + 49.6055i 0.307690 + 0.946973i
$$15$$ 10.7350 33.0389i 0.184784 0.568707i
$$16$$ −12.9443 9.40456i −0.202254 0.146946i
$$17$$ 16.8855 + 12.2681i 0.240902 + 0.175026i 0.701685 0.712487i $$-0.252431\pi$$
−0.460783 + 0.887513i $$0.652431\pi$$
$$18$$ 5.21201 16.0409i 0.0682491 0.210049i
$$19$$ −38.9268 119.804i −0.470022 1.44658i −0.852555 0.522637i $$-0.824948\pi$$
0.382534 0.923942i $$-0.375052\pi$$
$$20$$ 26.0897 18.9552i 0.291691 0.211926i
$$21$$ 112.373 1.16770
$$22$$ −36.6864 + 63.0723i −0.355525 + 0.611230i
$$23$$ 97.8394 0.886997 0.443498 0.896275i $$-0.353737\pi$$
0.443498 + 0.896275i $$0.353737\pi$$
$$24$$ −27.8879 + 20.2618i −0.237192 + 0.172330i
$$25$$ −18.5416 57.0651i −0.148333 0.456521i
$$26$$ 2.01715 6.20815i 0.0152152 0.0468277i
$$27$$ −123.520 89.7424i −0.880422 0.639664i
$$28$$ 84.3939 + 61.3158i 0.569605 + 0.413842i
$$29$$ −81.5293 + 250.921i −0.522055 + 1.60672i 0.248011 + 0.968757i $$0.420223\pi$$
−0.770066 + 0.637964i $$0.779777\pi$$
$$30$$ −21.4700 66.0778i −0.130662 0.402137i
$$31$$ −161.288 + 117.183i −0.934460 + 0.678925i −0.947081 0.320995i $$-0.895983\pi$$
0.0126205 + 0.999920i $$0.495983\pi$$
$$32$$ −32.0000 −0.176777
$$33$$ 104.811 + 117.162i 0.552889 + 0.618040i
$$34$$ 41.7433 0.210557
$$35$$ −170.099 + 123.584i −0.821485 + 0.596844i
$$36$$ −10.4240 32.0819i −0.0482594 0.148527i
$$37$$ 112.990 347.748i 0.502039 1.54512i −0.303653 0.952783i $$-0.598206\pi$$
0.805692 0.592335i $$-0.201794\pi$$
$$38$$ −203.823 148.086i −0.870118 0.632178i
$$39$$ −11.3776 8.26634i −0.0467149 0.0339404i
$$40$$ 19.9307 61.3405i 0.0787831 0.242469i
$$41$$ 84.5880 + 260.335i 0.322205 + 0.991646i 0.972686 + 0.232124i $$0.0745674\pi$$
−0.650481 + 0.759523i $$0.725433\pi$$
$$42$$ 181.823 132.102i 0.667999 0.485329i
$$43$$ 388.059 1.37624 0.688121 0.725596i $$-0.258436\pi$$
0.688121 + 0.725596i $$0.258436\pi$$
$$44$$ 14.7861 + 145.180i 0.0506612 + 0.497427i
$$45$$ 67.9898 0.225229
$$46$$ 158.307 115.017i 0.507417 0.368660i
$$47$$ −16.0238 49.3162i −0.0497301 0.153053i 0.923108 0.384542i $$-0.125641\pi$$
−0.972838 + 0.231488i $$0.925641\pi$$
$$48$$ −21.3045 + 65.5684i −0.0640632 + 0.197166i
$$49$$ −272.737 198.155i −0.795153 0.577712i
$$50$$ −97.0849 70.5363i −0.274598 0.199507i
$$51$$ 27.7912 85.5326i 0.0763049 0.234842i
$$52$$ −4.03430 12.4163i −0.0107588 0.0331122i
$$53$$ 333.739 242.476i 0.864955 0.628427i −0.0642735 0.997932i $$-0.520473\pi$$
0.929228 + 0.369506i $$0.120473\pi$$
$$54$$ −305.358 −0.769517
$$55$$ −287.504 62.0801i −0.704856 0.152198i
$$56$$ 208.633 0.497853
$$57$$ −439.129 + 319.046i −1.02042 + 0.741380i
$$58$$ 163.059 + 501.843i 0.369149 + 1.13612i
$$59$$ 8.12202 24.9970i 0.0179220 0.0551582i −0.941696 0.336466i $$-0.890768\pi$$
0.959618 + 0.281308i $$0.0907682\pi$$
$$60$$ −112.418 81.6766i −0.241886 0.175740i
$$61$$ −132.799 96.4844i −0.278741 0.202517i 0.439627 0.898180i $$-0.355111\pi$$
−0.718368 + 0.695663i $$0.755111\pi$$
$$62$$ −123.213 + 379.212i −0.252389 + 0.776774i
$$63$$ 67.9624 + 209.167i 0.135912 + 0.418294i
$$64$$ −51.7771 + 37.6183i −0.101127 + 0.0734732i
$$65$$ 26.3134 0.0502119
$$66$$ 307.321 + 66.3591i 0.573160 + 0.123761i
$$67$$ 276.961 0.505017 0.252508 0.967595i $$-0.418744\pi$$
0.252508 + 0.967595i $$0.418744\pi$$
$$68$$ 67.5421 49.0722i 0.120451 0.0875130i
$$69$$ −130.276 400.948i −0.227296 0.699544i
$$70$$ −129.944 + 399.927i −0.221876 + 0.682863i
$$71$$ 418.205 + 303.844i 0.699039 + 0.507882i 0.879619 0.475679i $$-0.157797\pi$$
−0.180580 + 0.983560i $$0.557797\pi$$
$$72$$ −54.5809 39.6554i −0.0893392 0.0649087i
$$73$$ −74.6476 + 229.742i −0.119683 + 0.368346i −0.992895 0.118995i $$-0.962033\pi$$
0.873212 + 0.487340i $$0.162033\pi$$
$$74$$ −225.980 695.495i −0.354995 1.09256i
$$75$$ −209.166 + 151.968i −0.322031 + 0.233969i
$$76$$ −503.879 −0.760511
$$77$$ −96.4024 946.546i −0.142676 1.40089i
$$78$$ −28.1271 −0.0408303
$$79$$ 220.959 160.536i 0.314681 0.228629i −0.419222 0.907884i $$-0.637697\pi$$
0.733902 + 0.679255i $$0.237697\pi$$
$$80$$ −39.8615 122.681i −0.0557081 0.171452i
$$81$$ −132.934 + 409.129i −0.182351 + 0.561220i
$$82$$ 442.908 + 321.792i 0.596476 + 0.433365i
$$83$$ −58.7298 42.6697i −0.0776678 0.0564290i 0.548274 0.836299i $$-0.315285\pi$$
−0.625942 + 0.779870i $$0.715285\pi$$
$$84$$ 138.901 427.492i 0.180420 0.555276i
$$85$$ 51.9984 + 160.035i 0.0663532 + 0.204214i
$$86$$ 627.893 456.191i 0.787295 0.572004i
$$87$$ 1136.84 1.40094
$$88$$ 194.594 + 217.525i 0.235725 + 0.263503i
$$89$$ −1194.73 −1.42294 −0.711470 0.702717i $$-0.751970\pi$$
−0.711470 + 0.702717i $$0.751970\pi$$
$$90$$ 110.010 79.9268i 0.128845 0.0936114i
$$91$$ 26.3028 + 80.9517i 0.0302998 + 0.0932532i
$$92$$ 120.936 372.203i 0.137049 0.421792i
$$93$$ 694.979 + 504.932i 0.774903 + 0.563000i
$$94$$ −83.9018 60.9582i −0.0920618 0.0668868i
$$95$$ 313.833 965.880i 0.338933 1.04313i
$$96$$ 42.6089 + 131.137i 0.0452995 + 0.139418i
$$97$$ −1184.10 + 860.299i −1.23946 + 0.900517i −0.997562 0.0697858i $$-0.977768\pi$$
−0.241893 + 0.970303i $$0.577768\pi$$
$$98$$ −674.244 −0.694989
$$99$$ −154.692 + 265.951i −0.157042 + 0.269991i
$$100$$ −240.007 −0.240007
$$101$$ 728.191 529.062i 0.717403 0.521224i −0.168151 0.985761i $$-0.553779\pi$$
0.885553 + 0.464538i $$0.153779\pi$$
$$102$$ −55.5825 171.065i −0.0539557 0.166059i
$$103$$ −128.899 + 396.710i −0.123309 + 0.379505i −0.993589 0.113052i $$-0.963937\pi$$
0.870281 + 0.492556i $$0.163937\pi$$
$$104$$ −21.1239 15.3474i −0.0199170 0.0144705i
$$105$$ 732.943 + 532.514i 0.681218 + 0.494934i
$$106$$ 254.954 784.668i 0.233616 0.718997i
$$107$$ 333.858 + 1027.51i 0.301638 + 0.928346i 0.980911 + 0.194460i $$0.0622954\pi$$
−0.679273 + 0.733886i $$0.737705\pi$$
$$108$$ −494.079 + 358.970i −0.440211 + 0.319832i
$$109$$ −1472.08 −1.29358 −0.646789 0.762669i $$-0.723888\pi$$
−0.646789 + 0.762669i $$0.723888\pi$$
$$110$$ −538.171 + 237.534i −0.466478 + 0.205890i
$$111$$ −1575.53 −1.34723
$$112$$ 337.576 245.263i 0.284803 0.206921i
$$113$$ −39.0846 120.290i −0.0325378 0.100141i 0.933469 0.358659i $$-0.116766\pi$$
−0.966006 + 0.258518i $$0.916766\pi$$
$$114$$ −335.465 + 1032.45i −0.275607 + 0.848230i
$$115$$ 638.149 + 463.643i 0.517458 + 0.375956i
$$116$$ 853.786 + 620.312i 0.683379 + 0.496504i
$$117$$ 8.50554 26.1774i 0.00672083 0.0206846i
$$118$$ −16.2440 49.9940i −0.0126727 0.0390027i
$$119$$ −440.360 + 319.940i −0.339225 + 0.246461i
$$120$$ −277.913 −0.211416
$$121$$ 896.971 983.364i 0.673907 0.738816i
$$122$$ −328.298 −0.243629
$$123$$ 954.228 693.287i 0.699511 0.508224i
$$124$$ 246.427 + 758.424i 0.178466 + 0.549262i
$$125$$ 460.902 1418.51i 0.329795 1.01500i
$$126$$ 355.856 + 258.544i 0.251605 + 0.182801i
$$127$$ −860.426 625.136i −0.601185 0.436786i 0.245115 0.969494i $$-0.421174\pi$$
−0.846299 + 0.532708i $$0.821174\pi$$
$$128$$ −39.5542 + 121.735i −0.0273135 + 0.0840623i
$$129$$ −516.712 1590.28i −0.352666 1.08539i
$$130$$ 42.5760 30.9333i 0.0287243 0.0208694i
$$131$$ −1525.04 −1.01713 −0.508563 0.861025i $$-0.669823\pi$$
−0.508563 + 0.861025i $$0.669823\pi$$
$$132$$ 575.265 253.906i 0.379321 0.167422i
$$133$$ 3285.18 2.14182
$$134$$ 448.132 325.587i 0.288901 0.209899i
$$135$$ −380.375 1170.67i −0.242500 0.746338i
$$136$$ 51.5976 158.801i 0.0325328 0.100126i
$$137$$ 1681.81 + 1221.91i 1.04881 + 0.762004i 0.971985 0.235041i $$-0.0755225\pi$$
0.0768227 + 0.997045i $$0.475522\pi$$
$$138$$ −682.134 495.600i −0.420776 0.305712i
$$139$$ 465.826 1433.67i 0.284251 0.874834i −0.702371 0.711811i $$-0.747875\pi$$
0.986622 0.163023i $$-0.0521246\pi$$
$$140$$ 259.888 + 799.854i 0.156890 + 0.482857i
$$141$$ −180.763 + 131.332i −0.107964 + 0.0784408i
$$142$$ 1033.86 0.610983
$$143$$ −59.8688 + 102.928i −0.0350104 + 0.0601909i
$$144$$ −134.931 −0.0780853
$$145$$ −1720.84 + 1250.26i −0.985570 + 0.716059i
$$146$$ 149.295 + 459.484i 0.0846285 + 0.260460i
$$147$$ −448.888 + 1381.53i −0.251862 + 0.775150i
$$148$$ −1183.25 859.679i −0.657178 0.477468i
$$149$$ 347.754 + 252.658i 0.191202 + 0.138916i 0.679268 0.733890i $$-0.262297\pi$$
−0.488066 + 0.872807i $$0.662297\pi$$
$$150$$ −159.788 + 491.778i −0.0869777 + 0.267690i
$$151$$ 275.545 + 848.040i 0.148500 + 0.457036i 0.997444 0.0714459i $$-0.0227613\pi$$
−0.848944 + 0.528482i $$0.822761\pi$$
$$152$$ −815.293 + 592.345i −0.435059 + 0.316089i
$$153$$ 176.015 0.0930064
$$154$$ −1268.71 1418.22i −0.663869 0.742098i
$$155$$ −1607.30 −0.832912
$$156$$ −45.5106 + 33.0654i −0.0233574 + 0.0169702i
$$157$$ 167.188 + 514.551i 0.0849875 + 0.261565i 0.984515 0.175299i $$-0.0560892\pi$$
−0.899528 + 0.436864i $$0.856089\pi$$
$$158$$ 168.797 519.505i 0.0849924 0.261580i
$$159$$ −1438.06 1044.81i −0.717266 0.521124i
$$160$$ −208.717 151.642i −0.103128 0.0749272i
$$161$$ −788.478 + 2426.69i −0.385968 + 1.18789i
$$162$$ 265.868 + 818.259i 0.128942 + 0.396842i
$$163$$ 2368.47 1720.80i 1.13812 0.826891i 0.151261 0.988494i $$-0.451666\pi$$
0.986856 + 0.161603i $$0.0516665\pi$$
$$164$$ 1094.93 0.521339
$$165$$ 128.414 + 1260.86i 0.0605881 + 0.594897i
$$166$$ −145.188 −0.0678842
$$167$$ −1407.88 + 1022.88i −0.652364 + 0.473970i −0.864076 0.503362i $$-0.832096\pi$$
0.211712 + 0.977332i $$0.432096\pi$$
$$168$$ −277.801 854.984i −0.127576 0.392640i
$$169$$ −675.619 + 2079.34i −0.307519 + 0.946445i
$$170$$ 272.267 + 197.814i 0.122835 + 0.0892448i
$$171$$ −859.443 624.422i −0.384346 0.279244i
$$172$$ 479.667 1476.26i 0.212641 0.654442i
$$173$$ −89.8625 276.568i −0.0394920 0.121544i 0.929367 0.369157i $$-0.120354\pi$$
−0.968859 + 0.247613i $$0.920354\pi$$
$$174$$ 1839.45 1336.44i 0.801426 0.582270i
$$175$$ 1564.80 0.675928
$$176$$ 570.576 + 123.203i 0.244368 + 0.0527659i
$$177$$ −113.253 −0.0480939
$$178$$ −1933.12 + 1404.49i −0.814009 + 0.591412i
$$179$$ 803.545 + 2473.06i 0.335529 + 1.03265i 0.966461 + 0.256814i $$0.0826729\pi$$
−0.630932 + 0.775839i $$0.717327\pi$$
$$180$$ 84.0400 258.649i 0.0347999 0.107103i
$$181$$ −1501.40 1090.83i −0.616563 0.447959i 0.235156 0.971958i $$-0.424440\pi$$
−0.851719 + 0.523998i $$0.824440\pi$$
$$182$$ 137.723 + 100.062i 0.0560919 + 0.0407532i
$$183$$ −218.569 + 672.687i −0.0882902 + 0.271729i
$$184$$ −241.872 744.406i −0.0969080 0.298252i
$$185$$ 2384.88 1732.72i 0.947782 0.688604i
$$186$$ 1718.08 0.677290
$$187$$ −744.304 160.716i −0.291064 0.0628487i
$$188$$ −207.417 −0.0804649
$$189$$ 3221.29 2340.41i 1.23976 0.900738i
$$190$$ −627.667 1931.76i −0.239662 0.737603i
$$191$$ 473.462 1457.17i 0.179364 0.552026i −0.820442 0.571730i $$-0.806273\pi$$
0.999806 + 0.0197044i $$0.00627251\pi$$
$$192$$ 223.103 + 162.094i 0.0838599 + 0.0609278i
$$193$$ −850.742 618.100i −0.317294 0.230528i 0.417726 0.908573i $$-0.362827\pi$$
−0.735020 + 0.678045i $$0.762827\pi$$
$$194$$ −904.572 + 2783.99i −0.334765 + 1.03030i
$$195$$ −35.0371 107.833i −0.0128670 0.0396004i
$$196$$ −1090.95 + 792.622i −0.397577 + 0.288856i
$$197$$ −1577.77 −0.570616 −0.285308 0.958436i $$-0.592096\pi$$
−0.285308 + 0.958436i $$0.592096\pi$$
$$198$$ 62.3473 + 612.169i 0.0223779 + 0.219722i
$$199$$ 3760.53 1.33958 0.669791 0.742550i $$-0.266384\pi$$
0.669791 + 0.742550i $$0.266384\pi$$
$$200$$ −388.340 + 282.145i −0.137299 + 0.0997534i
$$201$$ −368.781 1134.99i −0.129412 0.398289i
$$202$$ 556.288 1712.08i 0.193764 0.596344i
$$203$$ −5566.50 4044.30i −1.92459 1.39830i
$$204$$ −291.034 211.448i −0.0998844 0.0725703i
$$205$$ −681.961 + 2098.86i −0.232342 + 0.715076i
$$206$$ 257.798 + 793.420i 0.0871923 + 0.268350i
$$207$$ 667.521 484.982i 0.224135 0.162843i
$$208$$ −52.2211 −0.0174081
$$209$$ 3064.12 + 3425.19i 1.01411 + 1.13361i
$$210$$ 1811.93 0.595407
$$211$$ −1149.27 + 834.996i −0.374973 + 0.272434i −0.759270 0.650776i $$-0.774444\pi$$
0.384297 + 0.923209i $$0.374444\pi$$
$$212$$ −509.908 1569.34i −0.165192 0.508408i
$$213$$ 688.307 2118.39i 0.221418 0.681454i
$$214$$ 1748.10 + 1270.07i 0.558401 + 0.405702i
$$215$$ 2531.08 + 1838.94i 0.802876 + 0.583323i
$$216$$ −377.443 + 1161.65i −0.118897 + 0.365927i
$$217$$ −1606.65 4944.76i −0.502611 1.54688i
$$218$$ −2381.88 + 1730.54i −0.740006 + 0.537645i
$$219$$ 1040.88 0.321171
$$220$$ −591.542 + 1017.00i −0.181281 + 0.311663i
$$221$$ 68.1213 0.0207346
$$222$$ −2549.26 + 1852.14i −0.770698 + 0.559945i
$$223$$ 1624.34 + 4999.20i 0.487774 + 1.50121i 0.827922 + 0.560843i $$0.189523\pi$$
−0.340148 + 0.940372i $$0.610477\pi$$
$$224$$ 257.885 793.688i 0.0769226 0.236743i
$$225$$ −409.369 297.424i −0.121295 0.0881256i
$$226$$ −204.650 148.687i −0.0602350 0.0437633i
$$227$$ 861.007 2649.91i 0.251749 0.774804i −0.742704 0.669620i $$-0.766457\pi$$
0.994453 0.105184i $$-0.0335430\pi$$
$$228$$ 670.929 + 2064.91i 0.194883 + 0.599789i
$$229$$ −3626.49 + 2634.80i −1.04649 + 0.760316i −0.971541 0.236872i $$-0.923878\pi$$
−0.0749442 + 0.997188i $$0.523878\pi$$
$$230$$ 1577.59 0.452275
$$231$$ −3750.61 + 1655.41i −1.06828 + 0.471507i
$$232$$ 2110.67 0.597296
$$233$$ −255.337 + 185.513i −0.0717925 + 0.0521603i −0.623103 0.782140i $$-0.714128\pi$$
0.551310 + 0.834300i $$0.314128\pi$$
$$234$$ −17.0111 52.3547i −0.00475234 0.0146262i
$$235$$ 129.186 397.595i 0.0358604 0.110367i
$$236$$ −85.0549 61.7960i −0.0234602 0.0170448i
$$237$$ −952.093 691.736i −0.260950 0.189591i
$$238$$ −336.405 + 1035.35i −0.0916215 + 0.281982i
$$239$$ 249.186 + 766.915i 0.0674414 + 0.207563i 0.979098 0.203390i $$-0.0651959\pi$$
−0.911656 + 0.410953i $$0.865196\pi$$
$$240$$ −449.673 + 326.707i −0.120943 + 0.0878701i
$$241$$ −1009.91 −0.269935 −0.134967 0.990850i $$-0.543093\pi$$
−0.134967 + 0.990850i $$0.543093\pi$$
$$242$$ 295.315 2645.57i 0.0784446 0.702742i
$$243$$ −2268.70 −0.598919
$$244$$ −531.197 + 385.937i −0.139371 + 0.101259i
$$245$$ −839.886 2584.90i −0.219014 0.674055i
$$246$$ 728.965 2243.52i 0.188931 0.581471i
$$247$$ −332.621 241.663i −0.0856849 0.0622537i
$$248$$ 1290.31 + 937.464i 0.330382 + 0.240036i
$$249$$ −96.6610 + 297.492i −0.0246010 + 0.0757140i
$$250$$ −921.805 2837.02i −0.233200 0.717717i
$$251$$ 2578.54 1873.42i 0.648429 0.471111i −0.214307 0.976766i $$-0.568749\pi$$
0.862736 + 0.505655i $$0.168749\pi$$
$$252$$ 879.724 0.219910
$$253$$ −3265.53 + 1441.31i −0.811471 + 0.358160i
$$254$$ −2127.09 −0.525455
$$255$$ 586.589 426.182i 0.144053 0.104661i
$$256$$ 79.1084 + 243.470i 0.0193136 + 0.0594410i
$$257$$ 785.951 2418.91i 0.190764 0.587111i −0.809236 0.587484i $$-0.800119\pi$$
1.00000 0.000372917i $$0.000118703\pi$$
$$258$$ −2705.54 1965.69i −0.652866 0.474335i
$$259$$ 7714.52 + 5604.93i 1.85080 + 1.34468i
$$260$$ 32.5252 100.102i 0.00775817 0.0238772i
$$261$$ 687.554 + 2116.07i 0.163059 + 0.501845i
$$262$$ −2467.57 + 1792.80i −0.581859 + 0.422745i
$$263$$ 2992.29 0.701568 0.350784 0.936456i $$-0.385915\pi$$
0.350784 + 0.936456i $$0.385915\pi$$
$$264$$ 632.314 1087.09i 0.147410 0.253432i
$$265$$ 3325.83 0.770960
$$266$$ 5315.54 3861.96i 1.22525 0.890196i
$$267$$ 1590.82 + 4896.05i 0.364632 + 1.12222i
$$268$$ 342.342 1053.62i 0.0780294 0.240150i
$$269$$ 664.469 + 482.765i 0.150607 + 0.109423i 0.660537 0.750793i $$-0.270329\pi$$
−0.509930 + 0.860216i $$0.670329\pi$$
$$270$$ −1991.67 1447.03i −0.448923 0.326162i
$$271$$ 1989.99 6124.55i 0.446063 1.37284i −0.435250 0.900310i $$-0.643340\pi$$
0.881313 0.472532i $$-0.156660\pi$$
$$272$$ −103.195 317.602i −0.0230041 0.0707995i
$$273$$ 296.719 215.579i 0.0657812 0.0477928i
$$274$$ 4157.66 0.916692
$$275$$ 1459.50 + 1631.48i 0.320041 + 0.357753i
$$276$$ −1686.33 −0.367772
$$277$$ −416.212 + 302.395i −0.0902806 + 0.0655927i −0.632010 0.774960i $$-0.717770\pi$$
0.541729 + 0.840553i $$0.317770\pi$$
$$278$$ −931.652 2867.33i −0.200996 0.618601i
$$279$$ −519.543 + 1598.99i −0.111485 + 0.343114i
$$280$$ 1360.79 + 988.673i 0.290439 + 0.211016i
$$281$$ −6276.91 4560.44i −1.33256 0.968160i −0.999683 0.0251891i $$-0.991981\pi$$
−0.332875 0.942971i $$-0.608019\pi$$
$$282$$ −138.091 + 424.999i −0.0291602 + 0.0897459i
$$283$$ −1806.94 5561.18i −0.379545 1.16812i −0.940361 0.340178i $$-0.889513\pi$$
0.560816 0.827940i $$-0.310487\pi$$
$$284$$ 1672.82 1215.37i 0.349520 0.253941i
$$285$$ −4376.08 −0.909532
$$286$$ 24.1296 + 236.921i 0.00498886 + 0.0489841i
$$287$$ −7138.71 −1.46824
$$288$$ −218.324 + 158.621i −0.0446696 + 0.0324544i
$$289$$ −1383.58 4258.24i −0.281617 0.866728i
$$290$$ −1314.60 + 4045.93i −0.266193 + 0.819259i
$$291$$ 5102.19 + 3706.96i 1.02782 + 0.746755i
$$292$$ 781.720 + 567.953i 0.156667 + 0.113825i
$$293$$ −2495.16 + 7679.30i −0.497504 + 1.53116i 0.315515 + 0.948921i $$0.397823\pi$$
−0.813019 + 0.582238i $$0.802177\pi$$
$$294$$ 897.776 + 2763.07i 0.178093 + 0.548114i
$$295$$ 171.431 124.552i 0.0338343 0.0245820i
$$296$$ −2925.15 −0.574394
$$297$$ 5444.68 + 1175.66i 1.06375 + 0.229692i
$$298$$ 859.695 0.167117
$$299$$ 258.344 187.698i 0.0499679 0.0363038i
$$300$$ 319.576 + 983.555i 0.0615025 + 0.189285i
$$301$$ −3127.33 + 9624.93i −0.598858 + 1.84309i
$$302$$ 1442.77 + 1048.23i 0.274908 + 0.199732i
$$303$$ −3137.72 2279.68i −0.594908 0.432226i
$$304$$ −622.828 + 1916.87i −0.117505 + 0.361645i
$$305$$ −408.951 1258.62i −0.0767753 0.236290i
$$306$$ 284.799 206.918i 0.0532054 0.0386560i
$$307$$ −4210.64 −0.782781 −0.391391 0.920225i $$-0.628006\pi$$
−0.391391 + 0.920225i $$0.628006\pi$$
$$308$$ −3720.03 803.259i −0.688210 0.148604i
$$309$$ 1797.36 0.330900
$$310$$ −2600.66 + 1889.49i −0.476477 + 0.346181i
$$311$$ −407.549 1254.31i −0.0743086 0.228698i 0.907003 0.421124i $$-0.138364\pi$$
−0.981311 + 0.192426i $$0.938364\pi$$
$$312$$ −34.7670 + 107.002i −0.00630863 + 0.0194160i
$$313$$ 3402.85 + 2472.31i 0.614505 + 0.446464i 0.850998 0.525169i $$-0.175998\pi$$
−0.236493 + 0.971633i $$0.575998\pi$$
$$314$$ 875.407 + 636.020i 0.157331 + 0.114308i
$$315$$ −547.923 + 1686.33i −0.0980063 + 0.301632i
$$316$$ −337.595 1039.01i −0.0600987 0.184965i
$$317$$ 1992.69 1447.77i 0.353062 0.256515i −0.397090 0.917779i $$-0.629980\pi$$
0.750152 + 0.661265i $$0.229980\pi$$
$$318$$ −3555.07 −0.626913
$$319$$ −975.271 9575.90i −0.171175 1.68071i
$$320$$ −515.977 −0.0901376
$$321$$ 3766.21 2736.32i 0.654859 0.475783i
$$322$$ 1576.96 + 4853.37i 0.272920 + 0.839962i
$$323$$ 812.466 2500.51i 0.139959 0.430750i
$$324$$ 1392.10 + 1011.42i 0.238701 + 0.173427i
$$325$$ −158.434 115.109i −0.0270410 0.0196464i
$$326$$ 1809.35 5568.61i 0.307395 0.946064i
$$327$$ 1960.12 + 6032.63i 0.331483 + 1.02020i
$$328$$ 1771.63 1287.17i 0.298238 0.216683i
$$329$$ 1352.31 0.226612
$$330$$ 1690.01 + 1889.16i 0.281915 + 0.315135i
$$331$$ −3332.42 −0.553373 −0.276687 0.960960i $$-0.589236\pi$$
−0.276687 + 0.960960i $$0.589236\pi$$
$$332$$ −234.919 + 170.679i −0.0388339 + 0.0282145i
$$333$$ −952.869 2932.63i −0.156808 0.482604i
$$334$$ −1075.52 + 3310.12i −0.176198 + 0.542280i
$$335$$ 1806.45 + 1312.46i 0.294618 + 0.214052i
$$336$$ −1454.59 1056.82i −0.236173 0.171590i
$$337$$ 2572.10 7916.10i 0.415760 1.27958i −0.495810 0.868431i $$-0.665129\pi$$
0.911569 0.411146i $$-0.134871\pi$$
$$338$$ 1351.24 + 4158.68i 0.217449 + 0.669238i
$$339$$ −440.910 + 320.340i −0.0706399 + 0.0513229i
$$340$$ 673.082 0.107362
$$341$$ 3656.96 6287.16i 0.580749 0.998442i
$$342$$ −2124.66 −0.335931
$$343$$ −124.015 + 90.1024i −0.0195224 + 0.0141839i
$$344$$ −959.334 2952.53i −0.150360 0.462761i
$$345$$ 1050.30 3232.51i 0.163903 0.504441i
$$346$$ −470.526 341.857i −0.0731088 0.0531167i
$$347$$ −2930.66 2129.25i −0.453390 0.329407i 0.337543 0.941310i $$-0.390404\pi$$
−0.790933 + 0.611903i $$0.790404\pi$$
$$348$$ 1405.21 4324.80i 0.216458 0.666188i
$$349$$ 644.814 + 1984.53i 0.0988999 + 0.304383i 0.988250 0.152843i $$-0.0488430\pi$$
−0.889350 + 0.457226i $$0.848843\pi$$
$$350$$ 2531.89 1839.53i 0.386672 0.280934i
$$351$$ −498.316 −0.0757782
$$352$$ 1068.05 471.405i 0.161724 0.0713807i
$$353$$ 7582.15 1.14322 0.571611 0.820525i $$-0.306319\pi$$
0.571611 + 0.820525i $$0.306319\pi$$
$$354$$ −183.247 + 133.137i −0.0275127 + 0.0199891i
$$355$$ 1287.85 + 3963.59i 0.192540 + 0.592579i
$$356$$ −1476.77 + 4545.04i −0.219856 + 0.676648i
$$357$$ 1897.48 + 1378.60i 0.281303 + 0.204378i
$$358$$ 4207.41 + 3056.87i 0.621142 + 0.451286i
$$359$$ 1400.77 4311.13i 0.205933 0.633796i −0.793741 0.608256i $$-0.791869\pi$$
0.999674 0.0255401i $$-0.00813054\pi$$
$$360$$ −168.080 517.297i −0.0246072 0.0757332i
$$361$$ −7288.73 + 5295.57i −1.06265 + 0.772061i
$$362$$ −3711.66 −0.538896
$$363$$ −5224.19 2366.43i −0.755369 0.342164i
$$364$$ 340.471 0.0490261
$$365$$ −1575.59 + 1144.73i −0.225945 + 0.164159i
$$366$$ 437.138 + 1345.37i 0.0624306 + 0.192142i
$$367$$ −894.003 + 2751.46i −0.127157 + 0.391349i −0.994288 0.106732i $$-0.965961\pi$$
0.867131 + 0.498080i $$0.165961\pi$$
$$368$$ −1266.46 920.137i −0.179399 0.130341i
$$369$$ 1867.57 + 1356.87i 0.263474 + 0.191425i
$$370$$ 1821.88 5607.18i 0.255987 0.787848i
$$371$$ 3324.49 + 10231.7i 0.465227 + 1.43182i
$$372$$ 2779.92 2019.73i 0.387451 0.281500i
$$373$$ −3389.46 −0.470508 −0.235254 0.971934i $$-0.575592\pi$$
−0.235254 + 0.971934i $$0.575592\pi$$
$$374$$ −1393.24 + 614.938i −0.192628 + 0.0850206i
$$375$$ −6426.80 −0.885010
$$376$$ −335.607 + 243.833i −0.0460309 + 0.0334434i
$$377$$ 266.097 + 818.962i 0.0363520 + 0.111880i
$$378$$ 2460.85 7573.71i 0.334847 1.03055i
$$379$$ −6523.45 4739.57i −0.884135 0.642362i 0.0502069 0.998739i $$-0.484012\pi$$
−0.934342 + 0.356377i $$0.884012\pi$$
$$380$$ −3286.51 2387.79i −0.443669 0.322344i
$$381$$ −1416.14 + 4358.43i −0.190423 + 0.586061i
$$382$$ −946.924 2914.33i −0.126829 0.390341i
$$383$$ −4250.99 + 3088.52i −0.567142 + 0.412053i −0.834066 0.551665i $$-0.813993\pi$$
0.266924 + 0.963718i $$0.413993\pi$$
$$384$$ 551.542 0.0732962
$$385$$ 3856.73 6630.60i 0.510538 0.877731i
$$386$$ −2103.15 −0.277325
$$387$$ 2647.58 1923.58i 0.347762 0.252664i
$$388$$ 1809.14 + 5567.97i 0.236715 + 0.728534i
$$389$$ −3502.56 + 10779.8i −0.456521 + 1.40503i 0.412819 + 0.910813i $$0.364544\pi$$
−0.869340 + 0.494214i $$0.835456\pi$$
$$390$$ −183.456 133.289i −0.0238197 0.0173060i
$$391$$ 1652.07 + 1200.30i 0.213680 + 0.155247i
$$392$$ −833.412 + 2564.98i −0.107382 + 0.330487i
$$393$$ 2030.64 + 6249.67i 0.260642 + 0.802173i
$$394$$ −2552.88 + 1854.78i −0.326427 + 0.237163i
$$395$$ 2201.93 0.280484
$$396$$ 820.528 + 917.217i 0.104124 + 0.116394i
$$397$$ 9896.10 1.25106 0.625530 0.780200i $$-0.284883\pi$$
0.625530 + 0.780200i $$0.284883\pi$$
$$398$$ 6084.66 4420.77i 0.766323 0.556766i
$$399$$ −4374.32 13462.8i −0.548846 1.68918i
$$400$$ −296.665 + 913.041i −0.0370831 + 0.114130i
$$401$$ 12016.9 + 8730.81i 1.49650 + 1.08727i 0.971749 + 0.236016i $$0.0758418\pi$$
0.524752 + 0.851255i $$0.324158\pi$$
$$402$$ −1930.96 1402.93i −0.239571 0.174059i
$$403$$ −201.073 + 618.840i −0.0248540 + 0.0764928i
$$404$$ −1112.58 3424.16i −0.137012 0.421679i
$$405$$ −2805.84 + 2038.56i −0.344255 + 0.250116i
$$406$$ −13761.1 −1.68215
$$407$$ 1351.61 + 13271.1i 0.164612 + 1.61627i
$$408$$ −719.474 −0.0873022
$$409$$ −6748.88 + 4903.35i −0.815919 + 0.592800i −0.915541 0.402226i $$-0.868237\pi$$
0.0996219 + 0.995025i $$0.468237\pi$$
$$410$$ 1363.92 + 4197.72i 0.164291 + 0.505635i
$$411$$ 2768.02 8519.10i 0.332206 1.02242i
$$412$$ 1349.85 + 980.721i 0.161413 + 0.117273i
$$413$$ 554.540 + 402.897i 0.0660705 + 0.0480030i
$$414$$ 509.940 1569.43i 0.0605367 0.186313i
$$415$$ −180.856 556.619i −0.0213925 0.0658394i
$$416$$ −84.4955 + 61.3896i −0.00995850 + 0.00723527i
$$417$$ −6495.46 −0.762791
$$418$$ 8984.41 + 1939.98i 1.05130 + 0.227004i
$$419$$ −13082.4 −1.52534 −0.762670 0.646788i $$-0.776112\pi$$
−0.762670 + 0.646788i $$0.776112\pi$$
$$420$$ 2931.77 2130.06i 0.340609 0.247467i
$$421$$ −1716.75 5283.61i −0.198739 0.611656i −0.999913 0.0132238i $$-0.995791\pi$$
0.801173 0.598432i $$-0.204209\pi$$
$$422$$ −877.967 + 2702.10i −0.101277 + 0.311698i
$$423$$ −353.781 257.037i −0.0406653 0.0295450i
$$424$$ −2669.91 1939.81i −0.305808 0.222182i
$$425$$ 386.993 1191.04i 0.0441693 0.135939i
$$426$$ −1376.61 4236.78i −0.156566 0.481861i
$$427$$ 3463.29 2516.23i 0.392507 0.285173i
$$428$$ 4321.55 0.488060
$$429$$ 501.520 + 108.292i 0.0564420 + 0.0121874i
$$430$$ 6257.18 0.701739
$$431$$ 291.099 211.496i 0.0325330 0.0236366i −0.571400 0.820672i $$-0.693599\pi$$
0.603933 + 0.797035i $$0.293599\pi$$
$$432$$ 754.886 + 2323.30i 0.0840728 + 0.258750i
$$433$$ 4625.45 14235.7i 0.513360 1.57996i −0.272886 0.962046i $$-0.587978\pi$$
0.786246 0.617913i $$-0.212022\pi$$
$$434$$ −8412.53 6112.06i −0.930448 0.676010i
$$435$$ 7414.95 + 5387.27i 0.817286 + 0.593793i
$$436$$ −1819.59 + 5600.13i −0.199869 + 0.615132i
$$437$$ −3808.57 11721.6i −0.416908 1.28311i
$$438$$ 1684.18 1223.63i 0.183729 0.133487i
$$439$$ 15893.9 1.72796 0.863979 0.503527i $$-0.167965\pi$$
0.863979 + 0.503527i $$0.167965\pi$$
$$440$$ 238.416 + 2340.93i 0.0258319 + 0.253635i
$$441$$ −2843.02 −0.306989
$$442$$ 110.223 80.0814i 0.0118614 0.00861784i
$$443$$ −812.238 2499.81i −0.0871119 0.268103i 0.898006 0.439983i $$-0.145016\pi$$
−0.985118 + 0.171881i $$0.945016\pi$$
$$444$$ −1947.46 + 5993.66i −0.208158 + 0.640646i
$$445$$ −7792.56 5661.62i −0.830118 0.603116i
$$446$$ 8505.14 + 6179.35i 0.902982 + 0.656055i
$$447$$ 572.355 1761.53i 0.0605625 0.186392i
$$448$$ −515.770 1587.38i −0.0543925 0.167403i
$$449$$ 1049.68 762.635i 0.110328 0.0801580i −0.531253 0.847213i $$-0.678279\pi$$
0.641581 + 0.767055i $$0.278279\pi$$
$$450$$ −1012.02 −0.106015
$$451$$ −6658.35 7442.95i −0.695187 0.777106i
$$452$$ −505.922 −0.0526473
$$453$$ 3108.39 2258.38i 0.322395 0.234234i
$$454$$ −1722.01 5299.81i −0.178013 0.547869i
$$455$$ −212.057 + 652.645i −0.0218492 + 0.0672449i
$$456$$ 3513.03 + 2552.37i 0.360774 + 0.262117i
$$457$$ −1821.87 1323.67i −0.186485 0.135489i 0.490626 0.871370i $$-0.336768\pi$$
−0.677111 + 0.735881i $$0.736768\pi$$
$$458$$ −2770.39 + 8526.39i −0.282646 + 0.869895i
$$459$$ −984.733 3030.70i −0.100138 0.308193i
$$460$$ 2552.60 1854.57i 0.258729 0.187978i
$$461$$ 16772.0 1.69447 0.847233 0.531222i $$-0.178267\pi$$
0.847233 + 0.531222i $$0.178267\pi$$
$$462$$ −4122.55 + 7087.62i −0.415148 + 0.713735i
$$463$$ 7726.06 0.775509 0.387754 0.921763i $$-0.373251\pi$$
0.387754 + 0.921763i $$0.373251\pi$$
$$464$$ 3415.14 2481.25i 0.341690 0.248252i
$$465$$ 2140.16 + 6586.75i 0.213436 + 0.656889i
$$466$$ −195.060 + 600.332i −0.0193905 + 0.0596778i
$$467$$ 6112.55 + 4441.03i 0.605685 + 0.440056i 0.847892 0.530169i $$-0.177871\pi$$
−0.242207 + 0.970225i $$0.577871\pi$$
$$468$$ −89.0711 64.7140i −0.00879768 0.00639189i
$$469$$ −2232.00 + 6869.38i −0.219753 + 0.676330i
$$470$$ −258.373 795.189i −0.0253571 0.0780412i
$$471$$ 1886.03 1370.28i 0.184509 0.134053i
$$472$$ −210.267 −0.0205049
$$473$$ −12952.0 + 5716.66i −1.25906 + 0.555713i
$$474$$ −2353.70 −0.228078
$$475$$ −6114.88 + 4442.72i −0.590673 + 0.429149i
$$476$$ 672.811 + 2070.70i 0.0647862 + 0.199391i
$$477$$ 1075.04 3308.64i 0.103192 0.317593i
$$478$$ 1304.75 + 947.959i 0.124849 + 0.0907085i
$$479$$ −10794.4 7842.59i −1.02966 0.748094i −0.0614218 0.998112i $$-0.519563\pi$$
−0.968241 + 0.250018i $$0.919563\pi$$
$$480$$ −343.520 + 1057.24i −0.0326655 + 0.100534i
$$481$$ −368.779 1134.99i −0.0349582 0.107590i
$$482$$ −1634.07 + 1187.22i −0.154419 + 0.112192i
$$483$$ 10994.5 1.03575
$$484$$ −2632.22 4627.78i −0.247203 0.434615i
$$485$$ −11800.0 −1.10476
$$486$$ −3670.83 + 2667.02i −0.342618 + 0.248927i
$$487$$ 5815.72 + 17898.9i 0.541141 + 1.66546i 0.729994 + 0.683454i $$0.239523\pi$$
−0.188853 + 0.982005i $$0.560477\pi$$
$$488$$ −405.799 + 1248.92i −0.0376427 + 0.115852i
$$489$$ −10205.6 7414.77i −0.943786 0.685701i
$$490$$ −4397.70 3195.12i −0.405445 0.294573i
$$491$$ 970.055 2985.52i 0.0891608 0.274409i −0.896527 0.442989i $$-0.853918\pi$$
0.985688 + 0.168580i $$0.0539182\pi$$
$$492$$ −1457.93 4487.05i −0.133595 0.411162i
$$493$$ −4454.98 + 3236.73i −0.406982 + 0.295690i
$$494$$ −822.285 −0.0748914
$$495$$ −2269.26 + 1001.59i −0.206052 + 0.0909454i
$$496$$ 3189.82 0.288764
$$497$$ −10906.4 + 7923.98i −0.984346 + 0.715169i
$$498$$ 193.322 + 594.984i 0.0173955 + 0.0535379i
$$499$$ −1722.86 + 5302.43i −0.154561 + 0.475690i −0.998116 0.0613526i $$-0.980459\pi$$
0.843555 + 0.537043i $$0.180459\pi$$
$$500$$ −4826.63 3506.75i −0.431707 0.313654i
$$501$$ 6066.43 + 4407.52i 0.540974 + 0.393041i
$$502$$ 1969.83 6062.50i 0.175135 0.539009i
$$503$$ 728.995 + 2243.62i 0.0646209 + 0.198883i 0.978154 0.207882i $$-0.0666570\pi$$
−0.913533 + 0.406764i $$0.866657\pi$$
$$504$$ 1423.42 1034.18i 0.125802 0.0914007i
$$505$$ 7256.68 0.639442
$$506$$ −3589.37 + 6170.95i −0.315350 + 0.542159i
$$507$$ 9420.79 0.825231
$$508$$ −3441.70 + 2500.54i −0.300592 + 0.218393i
$$509$$ −2355.68 7250.02i −0.205135 0.631339i −0.999708 0.0241710i $$-0.992305\pi$$
0.794573 0.607168i $$-0.207695\pi$$
$$510$$ 448.114 1379.15i 0.0389075 0.119745i
$$511$$ −5096.65 3702.93i −0.441218 0.320564i
$$512$$ 414.217 + 300.946i 0.0357538 + 0.0259767i
$$513$$ −5943.30 + 18291.6i −0.511507 + 1.57426i
$$514$$ −1571.90 4837.82i −0.134890 0.415150i
$$515$$ −2720.67 + 1976.68i −0.232790 + 0.169132i
$$516$$ −6688.46 −0.570626
$$517$$ 1261.32 + 1409.95i 0.107297 + 0.119941i
$$518$$ 19071.3 1.61766
$$519$$ −1013.73 + 736.518i −0.0857376 + 0.0622920i
$$520$$ −65.0503 200.204i −0.00548585 0.0168837i
$$521$$ 6472.30 19919.7i 0.544255 1.67504i −0.178500 0.983940i $$-0.557125\pi$$
0.722755 0.691104i $$-0.242875\pi$$
$$522$$ 3600.08 + 2615.61i 0.301861 + 0.219314i
$$523$$ 4837.79 + 3514.86i 0.404477 + 0.293870i 0.771362 0.636396i $$-0.219576\pi$$
−0.366885 + 0.930266i $$0.619576\pi$$
$$524$$ −1885.06 + 5801.61i −0.157155 + 0.483673i
$$525$$ −2083.57 6412.57i −0.173209 0.533081i
$$526$$ 4841.63 3517.65i 0.401340 0.291591i
$$527$$ −4161.05 −0.343943
$$528$$ −254.849 2502.28i −0.0210054 0.206246i
$$529$$ −2594.45 −0.213237
$$530$$ 5381.31 3909.75i 0.441036 0.320432i
$$531$$ −68.4947 210.805i −0.00559777 0.0172282i
$$532$$ 4060.71 12497.6i 0.330929 1.01849i
$$533$$ 722.786 + 525.135i 0.0587380 + 0.0426757i
$$534$$ 8329.66 + 6051.86i 0.675018 + 0.490430i
$$535$$ −2691.61 + 8283.92i −0.217511 + 0.669430i
$$536$$ −684.684 2107.24i −0.0551751 0.169812i
$$537$$ 9064.70 6585.89i 0.728437 0.529241i
$$538$$ 1642.66 0.131636
$$539$$ 12022.1 + 2595.91i 0.960722 + 0.207446i
$$540$$ −4923.68 −0.392373
$$541$$ 6838.05 4968.13i 0.543421 0.394818i −0.281933 0.959434i $$-0.590976\pi$$
0.825354 + 0.564616i $$0.190976\pi$$
$$542$$ −3979.98 12249.1i −0.315414 0.970746i
$$543$$ −2471.09 + 7605.23i −0.195294 + 0.601053i
$$544$$ −540.337 392.578i −0.0425859 0.0309405i
$$545$$ −9601.53 6975.92i −0.754650 0.548285i
$$546$$ 226.673 697.629i 0.0177669 0.0546809i
$$547$$ 375.960 + 1157.09i 0.0293874 + 0.0904450i 0.964674 0.263445i $$-0.0848587\pi$$
−0.935287 + 0.353890i $$0.884859\pi$$
$$548$$ 6727.24 4887.63i 0.524404 0.381002i
$$549$$ −1384.30 −0.107615
$$550$$ 4279.45 + 924.051i 0.331775 + 0.0716394i
$$551$$ 33235.1 2.56963
$$552$$ −2728.54 + 1982.40i −0.210388 + 0.152856i
$$553$$ 2201.05 + 6774.12i 0.169255 + 0.520913i
$$554$$ −317.957 + 978.572i −0.0243840 + 0.0750461i
$$555$$ −10276.2 7466.13i −0.785950 0.571026i
$$556$$ −4878.19 3544.22i −0.372089 0.270339i
$$557$$ 2045.70 6296.01i 0.155618 0.478942i −0.842605 0.538532i $$-0.818979\pi$$
0.998223 + 0.0595897i $$0.0189792\pi$$
$$558$$ 1039.09 + 3197.98i 0.0788315 + 0.242619i
$$559$$ 1024.66 744.462i 0.0775289 0.0563281i
$$560$$ 3364.06 0.253853
$$561$$ 332.445 + 3264.18i 0.0250193 + 0.245657i
$$562$$ −15517.4 −1.16470
$$563$$ −785.836 + 570.943i −0.0588260 + 0.0427396i −0.616810 0.787112i $$-0.711575\pi$$
0.557984 + 0.829852i $$0.311575\pi$$
$$564$$ 276.181 + 849.998i 0.0206194 + 0.0634599i
$$565$$ 315.106 969.797i 0.0234630 0.0722118i
$$566$$ −9461.24 6873.99i −0.702625 0.510487i
$$567$$ −9076.23 6594.27i −0.672250 0.488418i
$$568$$ 1277.92 3933.03i 0.0944020 0.290540i
$$569$$ 1298.72 + 3997.04i 0.0956856 + 0.294490i 0.987432 0.158046i $$-0.0505194\pi$$
−0.891746 + 0.452536i $$0.850519\pi$$
$$570$$ −7080.64 + 5144.39i −0.520308 + 0.378026i
$$571$$ −11418.5 −0.836862 −0.418431 0.908248i $$-0.637420\pi$$
−0.418431 + 0.908248i $$0.637420\pi$$
$$572$$ 317.560 + 354.981i 0.0232131 + 0.0259484i
$$573$$ −6601.93 −0.481326
$$574$$ −11550.7 + 8392.05i −0.839923 + 0.610240i
$$575$$ −1814.10 5583.21i −0.131570 0.404932i
$$576$$ −166.784 + 513.310i −0.0120648 + 0.0371318i
$$577$$ 1176.28 + 854.620i 0.0848688 + 0.0616608i 0.629411 0.777073i $$-0.283296\pi$$
−0.544542 + 0.838734i $$0.683296\pi$$
$$578$$ −7244.54 5263.47i −0.521338 0.378774i
$$579$$ −1400.20 + 4309.38i −0.100502 + 0.309312i
$$580$$ 2629.20 + 8091.86i 0.188227 + 0.579304i
$$581$$ 1531.62 1112.79i 0.109367 0.0794600i
$$582$$ 12613.3 0.898348
$$583$$ −7567.01 + 13009.4i −0.537553 + 0.924177i
$$584$$ 1932.52 0.136932
$$585$$ 179.526 130.433i 0.0126880 0.00921839i
$$586$$ 4990.31 + 15358.6i 0.351788 + 1.08269i
$$587$$ 3014.31 9277.09i 0.211949 0.652311i −0.787408 0.616433i $$-0.788577\pi$$
0.999356 0.0358780i $$-0.0114228\pi$$
$$588$$ 4700.82 + 3415.34i 0.329691 + 0.239535i
$$589$$ 20317.5 + 14761.5i 1.42134 + 1.03266i
$$590$$ 130.962 403.059i 0.00913832 0.0281249i
$$591$$ 2100.85 + 6465.74i 0.146222 + 0.450025i
$$592$$ −4732.99 + 3438.72i −0.328589 + 0.238734i
$$593$$ −22963.3 −1.59020 −0.795102 0.606476i $$-0.792583\pi$$
−0.795102 + 0.606476i $$0.792583\pi$$
$$594$$ 10191.7 4498.35i 0.703994 0.310723i
$$595$$ −4388.35 −0.302361
$$596$$ 1391.02 1010.63i 0.0956011 0.0694582i
$$597$$ −5007.25 15410.7i −0.343272 1.05648i
$$598$$ 197.357 607.402i 0.0134959 0.0415360i
$$599$$ −8081.00 5871.19i −0.551220 0.400485i 0.277015 0.960866i $$-0.410655\pi$$
−0.828235 + 0.560381i $$0.810655\pi$$
$$600$$ 1673.32 + 1215.74i 0.113855 + 0.0827207i
$$601$$ −146.457 + 450.749i −0.00994030 + 0.0305931i −0.955904 0.293680i $$-0.905120\pi$$
0.945963 + 0.324274i $$0.105120\pi$$
$$602$$ 6254.66 + 19249.9i 0.423456 + 1.30326i
$$603$$ 1889.60 1372.87i 0.127612 0.0927158i
$$604$$ 3566.73 0.240278
$$605$$ 10510.4 2163.33i 0.706294 0.145375i
$$606$$ −7756.86 −0.519968
$$607$$ 3231.25 2347.64i 0.216067 0.156982i −0.474488 0.880262i $$-0.657367\pi$$
0.690554 + 0.723281i $$0.257367\pi$$
$$608$$ 1245.66 + 3833.74i 0.0830889 + 0.255721i
$$609$$ −9161.69 + 28196.8i −0.609606 + 1.87618i
$$610$$ −2141.30 1555.74i −0.142129 0.103263i
$$611$$ −136.920 99.4783i −0.00906579 0.00658668i
$$612$$ 217.567 669.602i 0.0143703 0.0442272i
$$613$$ 3260.82 + 10035.8i 0.214850 + 0.661241i 0.999164 + 0.0408768i $$0.0130151\pi$$
−0.784314 + 0.620364i $$0.786985\pi$$
$$614$$ −6812.96 + 4949.90i −0.447799 + 0.325345i
$$615$$ 9509.23 0.623494
$$616$$ −6963.43 + 3073.46i −0.455462 + 0.201028i
$$617$$ −14598.0 −0.952500 −0.476250 0.879310i $$-0.658004\pi$$
−0.476250 + 0.879310i $$0.658004\pi$$
$$618$$ 2908.19 2112.92i 0.189295 0.137531i
$$619$$ −4324.78 13310.3i −0.280820 0.864275i −0.987621 0.156862i $$-0.949862\pi$$
0.706801 0.707413i $$-0.250138\pi$$
$$620$$ −1986.73 + 6114.53i −0.128692 + 0.396073i
$$621$$ −12085.1 8780.34i −0.780932 0.567380i
$$622$$ −2133.95 1550.41i −0.137562 0.0999448i
$$623$$ 9628.25 29632.7i 0.619178 1.90563i
$$624$$ 69.5340 + 214.003i 0.00446087 + 0.0137292i
$$625$$ 3660.45 2659.47i 0.234269 0.170206i
$$626$$ 8412.30 0.537097
$$627$$ 9956.55 17117.6i 0.634173 1.09029i
$$628$$ 2164.12 0.137513
$$629$$ 6174.08 4485.73i 0.391378 0.284353i
$$630$$ 1095.85 + 3372.67i 0.0693009 + 0.213286i
$$631$$ −2522.70 + 7764.08i −0.159156 + 0.489830i −0.998558 0.0536797i $$-0.982905\pi$$
0.839403 + 0.543510i $$0.182905\pi$$
$$632$$ −1767.67 1284.29i −0.111256 0.0808325i
$$633$$ 4952.13 + 3597.93i 0.310947 + 0.225916i
$$634$$ 1522.28 4685.10i 0.0953588 0.293484i
$$635$$ −2649.65 8154.79i −0.165588 0.509627i
$$636$$ −5752.22 + 4179.23i −0.358633 + 0.260562i
$$637$$ −1100.31 −0.0684391
$$638$$ −12835.2 14347.6i −0.796472 0.890326i
$$639$$ 4359.38 0.269882
$$640$$ −834.869 + 606.568i −0.0515642 + 0.0374636i
$$641$$ 5457.36 + 16796.0i 0.336276 + 1.03495i 0.966090 + 0.258204i $$0.0831308\pi$$
−0.629815 + 0.776745i $$0.716869\pi$$
$$642$$ 2877.13 8854.90i 0.176871 0.544354i
$$643$$ 14586.7 + 10597.8i 0.894623 + 0.649981i 0.937079 0.349117i $$-0.113518\pi$$
−0.0424565 + 0.999098i $$0.513518\pi$$
$$644$$ 8257.05 + 5999.10i 0.505238 + 0.367077i
$$645$$ 4165.81 12821.0i 0.254308 0.782679i
$$646$$ −1624.93 5001.03i −0.0989661 0.304586i
$$647$$ −7986.43 + 5802.48i −0.485285 + 0.352580i −0.803368 0.595483i $$-0.796961\pi$$
0.318083 + 0.948063i $$0.396961\pi$$
$$648$$ 3441.47 0.208632
$$649$$ 97.1574 + 953.959i 0.00587636 + 0.0576983i
$$650$$ −391.670 −0.0236347
$$651$$ −18124.5 + 13168.2i −1.09117 + 0.792784i
$$652$$ −3618.70 11137.2i −0.217361 0.668969i
$$653$$ 3078.59 9474.92i 0.184494 0.567813i −0.815446 0.578834i $$-0.803508\pi$$
0.999939 + 0.0110205i $$0.00350799\pi$$
$$654$$ 10263.3 + 7456.74i 0.613651 + 0.445844i
$$655$$ −9946.96 7226.89i −0.593374 0.431111i
$$656$$ 1353.41 4165.36i 0.0805513 0.247912i
$$657$$ 629.519 + 1937.46i 0.0373819 + 0.115050i
$$658$$ 2188.09 1589.74i 0.129636 0.0941861i
$$659$$ −15778.5 −0.932692 −0.466346 0.884602i $$-0.654430\pi$$
−0.466346 + 0.884602i $$0.654430\pi$$
$$660$$ 4955.33 + 1069.99i 0.292251 + 0.0631052i
$$661$$ 9698.70 0.570704 0.285352 0.958423i $$-0.407889\pi$$
0.285352 + 0.958423i $$0.407889\pi$$
$$662$$ −5391.97 + 3917.50i −0.316563 + 0.229997i
$$663$$ −90.7056 279.163i −0.00531329 0.0163526i
$$664$$ −179.462 + 552.328i −0.0104887 + 0.0322808i
$$665$$ 21427.3 + 15567.9i 1.24950 + 0.907813i
$$666$$ −4989.29 3624.93i −0.290287 0.210906i
$$667$$ −7976.78 + 24550.0i −0.463062 + 1.42516i
$$668$$ 2151.05 + 6620.24i 0.124590 + 0.383450i
$$669$$ 18324.0 13313.1i 1.05896 0.769381i
$$670$$ 4465.79 0.257506
$$671$$ 5853.72 + 1263.98i 0.336781 + 0.0727204i
$$672$$ −3595.93 −0.206423
$$673$$ 21866.7 15887.1i 1.25245 0.909960i 0.254091 0.967180i $$-0.418224\pi$$
0.998362 + 0.0572204i $$0.0182238\pi$$
$$674$$ −5144.20 15832.2i −0.293987 0.904798i
$$675$$ −2830.91 + 8712.63i −0.161425 + 0.496814i
$$676$$ 7075.17 + 5140.41i 0.402547 + 0.292468i
$$677$$ −2811.85 2042.93i −0.159628 0.115976i 0.505104 0.863059i $$-0.331454\pi$$
−0.664732 + 0.747082i $$0.731454\pi$$
$$678$$ −336.825 + 1036.64i −0.0190792 + 0.0587197i
$$679$$ −11795.2 36302.0i −0.666656 2.05176i
$$680$$ 1089.07 791.255i 0.0614175 0.0446224i
$$681$$ −12005.8 −0.675572
$$682$$ −1473.91 14471.8i −0.0827548 0.812545i
$$683$$ −2691.57 −0.150790 −0.0753952 0.997154i $$-0.524022\pi$$
−0.0753952 + 0.997154i $$0.524022\pi$$
$$684$$ −3437.77 + 2497.69i −0.192173 + 0.139622i
$$685$$ 5179.08 + 15939.6i 0.288879 + 0.889079i
$$686$$ −94.7393 + 291.577i −0.00527283 + 0.0162281i
$$687$$ 15626.2 + 11353.1i 0.867800 + 0.630493i
$$688$$ −5023.14 3649.53i −0.278351 0.202234i
$$689$$ 416.062 1280.51i 0.0230054 0.0708033i
$$690$$ −2100.61 6465.01i −0.115897 0.356694i
$$691$$ −5807.64 + 4219.50i −0.319730 + 0.232297i −0.736060 0.676916i $$-0.763316\pi$$
0.416331 + 0.909213i $$0.363316\pi$$
$$692$$ −1163.21 −0.0638995
$$693$$ −5349.67 5980.06i −0.293243 0.327797i
$$694$$ −7244.99 −0.396277
$$695$$ 9832.18 7143.50i 0.536627 0.389882i
$$696$$ −2810.42 8649.60i −0.153059 0.471066i
$$697$$ −1765.49 + 5433.62i −0.0959437 + 0.295284i
$$698$$ 3376.29 + 2453.02i 0.183086 + 0.133020i
$$699$$ 1100.22 + 799.360i 0.0595341 + 0.0432540i
$$700$$ 1934.19 5952.83i 0.104437 0.321423i
$$701$$ 1269.83 + 3908.15i 0.0684180 + 0.210569i 0.979420 0.201833i $$-0.0646899\pi$$
−0.911002 + 0.412402i $$0.864690\pi$$
$$702$$ −806.293 + 585.806i −0.0433498 + 0.0314955i
$$703$$ −46060.0 −2.47110
$$704$$ 1173.96 2018.31i 0.0628486 0.108051i
$$705$$ −1801.37 −0.0962319
$$706$$ 12268.2 8913.35i 0.653993 0.475154i
$$707$$ 7253.76 + 22324.8i 0.385864 + 1.18757i
$$708$$ −139.988 + 430.840i −0.00743091 + 0.0228700i
$$709$$ 12973.8 + 9426.03i 0.687224 + 0.499298i 0.875746 0.482771i $$-0.160370\pi$$
−0.188522 + 0.982069i $$0.560370\pi$$
$$710$$ 6743.26 + 4899.26i 0.356437 + 0.258966i
$$711$$ 711.752 2190.55i 0.0375426 0.115544i
$$712$$ 2953.55 + 9090.08i 0.155462 + 0.478462i
$$713$$ −15780.4 + 11465.1i −0.828863 + 0.602204i
$$714$$ 4690.82 0.245868
$$715$$ −878.247 + 387.634i −0.0459365 + 0.0202751i
$$716$$ 10401.3 0.542898
$$717$$ 2811.04 2042.34i 0.146416 0.106377i
$$718$$ −2801.54 8622.26i −0.145616 0.448161i
$$719$$ −11376.1 + 35011.9i −0.590064 + 1.81603i −0.0121568 + 0.999926i $$0.503870\pi$$
−0.577907 + 0.816103i $$0.696130\pi$$
$$720$$ −880.079 639.415i −0.0455536 0.0330966i
$$721$$ −8800.71 6394.09i −0.454585 0.330275i
$$722$$ −5568.09 + 17136.8i −0.287012 + 0.883333i
$$723$$ 1344.73 + 4138.65i 0.0691716 + 0.212888i
$$724$$ −6005.59 + 4363.31i −0.308282 + 0.223980i
$$725$$ 15830.5 0.810939
$$726$$ −11234.8 + 2312.44i −0.574330 + 0.118213i
$$727$$ −21685.1 −1.10627 −0.553133 0.833093i $$-0.686568\pi$$
−0.553133 + 0.833093i $$0.686568\pi$$
$$728$$ 550.893 400.247i 0.0280460 0.0203766i
$$729$$ 6610.06 + 20343.7i 0.335826 + 1.03357i
$$730$$ −1203.64 + 3704.42i −0.0610257 + 0.187818i
$$731$$ 6552.58 + 4760.73i 0.331540 + 0.240878i
$$732$$ 2288.89 + 1662.97i 0.115573 + 0.0839689i
$$733$$ 7456.99 22950.2i 0.375757 1.15646i −0.567209 0.823574i $$-0.691977\pi$$
0.942966 0.332888i $$-0.108023\pi$$
$$734$$ 1788.01 + 5502.92i 0.0899135 + 0.276725i
$$735$$ −9474.67 + 6883.75i −0.475481 + 0.345457i
$$736$$ −3130.86 −0.156800
$$737$$ −9243.95 + 4080.02i −0.462015 + 0.203921i
$$738$$ 4616.89 0.230285
$$739$$ 29175.8 21197.4i 1.45230 1.05516i 0.467011 0.884252i $$-0.345331\pi$$
0.985287 0.170905i $$-0.0546691\pi$$
$$740$$ −3643.77 11214.4i −0.181010 0.557092i
$$741$$ −547.448 + 1684.87i −0.0271404 + 0.0835294i
$$742$$ 17407.3 + 12647.1i 0.861241 + 0.625728i
$$743$$ −11375.4 8264.73i −0.561674 0.408080i 0.270397 0.962749i $$-0.412845\pi$$
−0.832071 + 0.554669i $$0.812845\pi$$
$$744$$ 2123.67 6535.98i 0.104647 0.322071i
$$745$$ 1070.90 + 3295.88i 0.0526639 + 0.162083i
$$746$$ −5484.26 + 3984.55i −0.269159 + 0.195556i
$$747$$ −612.201 −0.0299856
$$748$$ −1531.41 + 2632.85i −0.0748582 + 0.128698i
$$749$$ −28175.6 −1.37452
$$750$$ −10398.8 + 7555.16i −0.506280 + 0.367834i
$$751$$ −8943.86 27526.4i −0.434575 1.33749i −0.893521 0.449021i $$-0.851773\pi$$
0.458946 0.888464i $$-0.348227\pi$$
$$752$$ −256.381 + 789.059i −0.0124325 + 0.0382633i
$$753$$ −11110.7 8072.40i −0.537711 0.390670i
$$754$$ 1393.30 + 1012.29i 0.0672958 + 0.0488933i
$$755$$ −2221.48 + 6837.02i −0.107084 + 0.329569i
$$756$$ −4921.70 15147.4i −0.236773 0.728712i
$$757$$ 17493.1 12709.5i 0.839893 0.610218i −0.0824476 0.996595i $$-0.526274\pi$$
0.922341 + 0.386377i $$0.126274\pi$$
$$758$$ −16126.9 −0.772763
$$759$$ 10254.7 + 11463.1i 0.490410 + 0.548199i
$$760$$ −8124.69 −0.387781
$$761$$ −17469.7 + 12692.5i −0.832163 + 0.604602i −0.920170 0.391518i $$-0.871950\pi$$
0.0880073 + 0.996120i $$0.471950\pi$$
$$762$$ 2832.28 + 8716.87i 0.134649 + 0.414408i
$$763$$ 11863.4 36511.7i 0.562887 1.73239i
$$764$$ −4958.16 3602.31i −0.234790 0.170585i
$$765$$ 1148.04 + 834.103i 0.0542583 + 0.0394210i
$$766$$ −3247.47 + 9994.67i −0.153180 + 0.471439i
$$767$$ −26.5088 81.5857i −0.00124795 0.00384079i
$$768$$ 892.413 648.376i 0.0419299 0.0304639i
$$769$$ 30161.8 1.41439 0.707194 0.707020i $$-0.249961\pi$$
0.707194 + 0.707020i $$0.249961\pi$$
$$770$$ −1554.42 15262.4i −0.0727499 0.714309i
$$771$$ −10959.3 −0.511918
$$772$$ −3402.97 + 2472.40i −0.158647 + 0.115264i
$$773$$ 9582.84 + 29493.0i 0.445887 + 1.37230i 0.881508 + 0.472170i $$0.156529\pi$$
−0.435620 + 0.900131i $$0.643471\pi$$
$$774$$ 2022.57 6224.83i 0.0939273 0.289078i
$$775$$ 9677.60 + 7031.18i 0.448554 + 0.325894i
$$776$$ 9472.80