Properties

Label 22.4.c.b.15.2
Level 22
Weight 4
Character 22.15
Analytic conductor 1.298
Analytic rank 0
Dimension 8
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 22 = 2 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 22.c (of order \(5\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(1.29804202013\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 15.2
Root \(5.60402 + 4.07156i\)
Character \(\chi\) = 22.15
Dual form 22.4.c.b.3.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(1.61803 + 1.17557i) q^{2}\) \(+(2.64055 - 8.12677i) q^{3}\) \(+(1.23607 + 3.80423i) q^{4}\) \(+(-10.3036 + 7.48598i) q^{5}\) \(+(13.8261 - 10.0452i) q^{6}\) \(+(7.24988 + 22.3128i) q^{7}\) \(+(-2.47214 + 7.60845i) q^{8}\) \(+(-37.2284 - 27.0480i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(1.61803 + 1.17557i) q^{2}\) \(+(2.64055 - 8.12677i) q^{3}\) \(+(1.23607 + 3.80423i) q^{4}\) \(+(-10.3036 + 7.48598i) q^{5}\) \(+(13.8261 - 10.0452i) q^{6}\) \(+(7.24988 + 22.3128i) q^{7}\) \(+(-2.47214 + 7.60845i) q^{8}\) \(+(-37.2284 - 27.0480i) q^{9}\) \(-25.4718 q^{10}\) \(+(-3.69653 - 36.2951i) q^{11}\) \(+34.1799 q^{12}\) \(+(-9.27574 - 6.73922i) q^{13}\) \(+(-14.4998 + 44.6257i) q^{14}\) \(+(33.6298 + 103.502i) q^{15}\) \(+(-12.9443 + 9.40456i) q^{16}\) \(+(52.9924 - 38.5012i) q^{17}\) \(+(-28.4400 - 87.5292i) q^{18}\) \(+(-2.24041 + 6.89528i) q^{19}\) \(+(-41.2143 - 29.9439i) q^{20}\) \(+200.475 q^{21}\) \(+(36.6864 - 63.0723i) q^{22}\) \(-104.072 q^{23}\) \(+(55.3043 + 40.1809i) q^{24}\) \(+(11.4965 - 35.3825i) q^{25}\) \(+(-7.08604 - 21.8086i) q^{26}\) \(+(-131.464 + 95.5141i) q^{27}\) \(+(-75.9218 + 55.1604i) q^{28}\) \(+(-39.3536 - 121.118i) q^{29}\) \(+(-67.2595 + 207.004i) q^{30}\) \(+(233.653 + 169.759i) q^{31}\) \(-32.0000 q^{32}\) \(+(-304.723 - 65.7981i) q^{33}\) \(+131.004 q^{34}\) \(+(-241.733 - 175.629i) q^{35}\) \(+(56.8799 - 175.058i) q^{36}\) \(+(-26.3908 - 81.2224i) q^{37}\) \(+(-11.7310 + 8.52303i) q^{38}\) \(+(-79.2611 + 57.5866i) q^{39}\) \(+(-31.4849 - 96.9006i) q^{40}\) \(+(-41.8544 + 128.815i) q^{41}\) \(+(324.375 + 235.672i) q^{42}\) \(+353.691 q^{43}\) \(+(133.506 - 58.9257i) q^{44}\) \(+586.066 q^{45}\) \(+(-168.393 - 122.344i) q^{46}\) \(+(-41.5948 + 128.016i) q^{47}\) \(+(42.2487 + 130.028i) q^{48}\) \(+(-167.810 + 121.921i) q^{49}\) \(+(60.1964 - 43.7352i) q^{50}\) \(+(-172.962 - 532.321i) q^{51}\) \(+(14.1721 - 43.6171i) q^{52}\) \(+(-405.666 - 294.734i) q^{53}\) \(-324.997 q^{54}\) \(+(309.792 + 346.297i) q^{55}\) \(-187.689 q^{56}\) \(+(50.1204 + 36.4146i) q^{57}\) \(+(78.7073 - 242.236i) q^{58}\) \(+(201.373 + 619.763i) q^{59}\) \(+(-352.175 + 255.870i) q^{60}\) \(+(-295.928 + 215.004i) q^{61}\) \(+(178.495 + 549.352i) q^{62}\) \(+(333.616 - 1026.77i) q^{63}\) \(+(-51.7771 - 37.6183i) q^{64}\) \(+146.023 q^{65}\) \(+(-415.702 - 464.687i) q^{66}\) \(-294.576 q^{67}\) \(+(211.969 + 154.005i) q^{68}\) \(+(-274.808 + 845.772i) q^{69}\) \(+(-184.668 - 568.349i) q^{70}\) \(+(-107.151 + 77.8500i) q^{71}\) \(+(297.827 - 216.384i) q^{72}\) \(+(145.080 + 446.511i) q^{73}\) \(+(52.7815 - 162.445i) q^{74}\) \(+(-257.189 - 186.858i) q^{75}\) \(-29.0005 q^{76}\) \(+(783.048 - 345.616i) q^{77}\) \(-195.944 q^{78}\) \(+(-330.105 - 239.836i) q^{79}\) \(+(62.9698 - 193.801i) q^{80}\) \(+(45.1451 + 138.942i) q^{81}\) \(+(-219.152 + 159.224i) q^{82}\) \(+(1099.89 - 799.119i) q^{83}\) \(+(247.801 + 762.652i) q^{84}\) \(+(-257.791 + 793.400i) q^{85}\) \(+(572.283 + 415.788i) q^{86}\) \(-1088.21 q^{87}\) \(+(285.288 + 61.6016i) q^{88}\) \(-260.255 q^{89}\) \(+(948.275 + 688.962i) q^{90}\) \(+(83.1232 - 255.827i) q^{91}\) \(+(-128.641 - 395.915i) q^{92}\) \(+(1996.56 - 1450.59i) q^{93}\) \(+(-217.793 + 158.236i) q^{94}\) \(+(-28.5337 - 87.8177i) q^{95}\) \(+(-84.4975 + 260.057i) q^{96}\) \(+(-1144.38 - 831.440i) q^{97}\) \(-414.848 q^{98}\) \(+(-844.095 + 1451.19i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(8q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 16q^{8} \) \(\mathstrut -\mathstrut 21q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(8q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 16q^{8} \) \(\mathstrut -\mathstrut 21q^{9} \) \(\mathstrut -\mathstrut 100q^{10} \) \(\mathstrut -\mathstrut 155q^{11} \) \(\mathstrut +\mathstrut 32q^{12} \) \(\mathstrut +\mathstrut 7q^{13} \) \(\mathstrut +\mathstrut 2q^{14} \) \(\mathstrut +\mathstrut 211q^{15} \) \(\mathstrut -\mathstrut 32q^{16} \) \(\mathstrut +\mathstrut 161q^{17} \) \(\mathstrut +\mathstrut 162q^{18} \) \(\mathstrut -\mathstrut 272q^{19} \) \(\mathstrut +\mathstrut 20q^{20} \) \(\mathstrut -\mathstrut 50q^{21} \) \(\mathstrut +\mathstrut 628q^{23} \) \(\mathstrut +\mathstrut 56q^{24} \) \(\mathstrut -\mathstrut 17q^{25} \) \(\mathstrut +\mathstrut 96q^{26} \) \(\mathstrut -\mathstrut 528q^{27} \) \(\mathstrut +\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 33q^{29} \) \(\mathstrut -\mathstrut 422q^{30} \) \(\mathstrut +\mathstrut 323q^{31} \) \(\mathstrut -\mathstrut 256q^{32} \) \(\mathstrut -\mathstrut 1144q^{33} \) \(\mathstrut +\mathstrut 208q^{34} \) \(\mathstrut -\mathstrut 697q^{35} \) \(\mathstrut -\mathstrut 324q^{36} \) \(\mathstrut +\mathstrut 49q^{37} \) \(\mathstrut -\mathstrut 576q^{38} \) \(\mathstrut +\mathstrut 391q^{39} \) \(\mathstrut +\mathstrut 240q^{40} \) \(\mathstrut +\mathstrut 361q^{41} \) \(\mathstrut +\mathstrut 1430q^{42} \) \(\mathstrut +\mathstrut 1442q^{43} \) \(\mathstrut +\mathstrut 620q^{44} \) \(\mathstrut +\mathstrut 2652q^{45} \) \(\mathstrut -\mathstrut 416q^{46} \) \(\mathstrut -\mathstrut 1069q^{47} \) \(\mathstrut +\mathstrut 48q^{48} \) \(\mathstrut -\mathstrut 709q^{49} \) \(\mathstrut -\mathstrut 76q^{50} \) \(\mathstrut -\mathstrut 1332q^{51} \) \(\mathstrut -\mathstrut 192q^{52} \) \(\mathstrut -\mathstrut 281q^{53} \) \(\mathstrut -\mathstrut 1144q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut +\mathstrut 48q^{56} \) \(\mathstrut -\mathstrut 438q^{57} \) \(\mathstrut -\mathstrut 66q^{58} \) \(\mathstrut -\mathstrut 128q^{59} \) \(\mathstrut -\mathstrut 1116q^{60} \) \(\mathstrut -\mathstrut 617q^{61} \) \(\mathstrut +\mathstrut 1044q^{62} \) \(\mathstrut +\mathstrut 694q^{63} \) \(\mathstrut -\mathstrut 128q^{64} \) \(\mathstrut -\mathstrut 138q^{65} \) \(\mathstrut +\mathstrut 1248q^{66} \) \(\mathstrut +\mathstrut 578q^{67} \) \(\mathstrut +\mathstrut 644q^{68} \) \(\mathstrut -\mathstrut 310q^{69} \) \(\mathstrut +\mathstrut 34q^{70} \) \(\mathstrut +\mathstrut 115q^{71} \) \(\mathstrut +\mathstrut 168q^{72} \) \(\mathstrut -\mathstrut 1487q^{73} \) \(\mathstrut -\mathstrut 98q^{74} \) \(\mathstrut -\mathstrut 1852q^{75} \) \(\mathstrut -\mathstrut 128q^{76} \) \(\mathstrut +\mathstrut 553q^{77} \) \(\mathstrut -\mathstrut 4152q^{78} \) \(\mathstrut +\mathstrut 71q^{79} \) \(\mathstrut -\mathstrut 480q^{80} \) \(\mathstrut +\mathstrut 1630q^{81} \) \(\mathstrut +\mathstrut 658q^{82} \) \(\mathstrut +\mathstrut 1942q^{83} \) \(\mathstrut +\mathstrut 2960q^{84} \) \(\mathstrut -\mathstrut 329q^{85} \) \(\mathstrut +\mathstrut 2426q^{86} \) \(\mathstrut +\mathstrut 2122q^{87} \) \(\mathstrut +\mathstrut 560q^{88} \) \(\mathstrut -\mathstrut 2202q^{89} \) \(\mathstrut +\mathstrut 1286q^{90} \) \(\mathstrut +\mathstrut 4523q^{91} \) \(\mathstrut -\mathstrut 2088q^{92} \) \(\mathstrut +\mathstrut 6019q^{93} \) \(\mathstrut -\mathstrut 1332q^{94} \) \(\mathstrut -\mathstrut 793q^{95} \) \(\mathstrut -\mathstrut 96q^{96} \) \(\mathstrut -\mathstrut 5128q^{97} \) \(\mathstrut -\mathstrut 3292q^{98} \) \(\mathstrut -\mathstrut 2213q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/22\mathbb{Z}\right)^\times\).

\(n\) \(13\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61803 + 1.17557i 0.572061 + 0.415627i
\(3\) 2.64055 8.12677i 0.508173 1.56400i −0.287196 0.957872i \(-0.592723\pi\)
0.795369 0.606125i \(-0.207277\pi\)
\(4\) 1.23607 + 3.80423i 0.154508 + 0.475528i
\(5\) −10.3036 + 7.48598i −0.921579 + 0.669566i −0.943917 0.330184i \(-0.892889\pi\)
0.0223375 + 0.999750i \(0.492889\pi\)
\(6\) 13.8261 10.0452i 0.940746 0.683492i
\(7\) 7.24988 + 22.3128i 0.391457 + 1.20478i 0.931687 + 0.363263i \(0.118337\pi\)
−0.540230 + 0.841518i \(0.681663\pi\)
\(8\) −2.47214 + 7.60845i −0.109254 + 0.336249i
\(9\) −37.2284 27.0480i −1.37883 1.00178i
\(10\) −25.4718 −0.805490
\(11\) −3.69653 36.2951i −0.101322 0.994854i
\(12\) 34.1799 0.822242
\(13\) −9.27574 6.73922i −0.197894 0.143779i 0.484425 0.874833i \(-0.339029\pi\)
−0.682320 + 0.731054i \(0.739029\pi\)
\(14\) −14.4998 + 44.6257i −0.276802 + 0.851908i
\(15\) 33.6298 + 103.502i 0.578878 + 1.78160i
\(16\) −12.9443 + 9.40456i −0.202254 + 0.146946i
\(17\) 52.9924 38.5012i 0.756032 0.549289i −0.141659 0.989916i \(-0.545244\pi\)
0.897691 + 0.440626i \(0.145244\pi\)
\(18\) −28.4400 87.5292i −0.372409 1.14616i
\(19\) −2.24041 + 6.89528i −0.0270519 + 0.0832571i −0.963671 0.267092i \(-0.913937\pi\)
0.936619 + 0.350349i \(0.113937\pi\)
\(20\) −41.2143 29.9439i −0.460790 0.334783i
\(21\) 200.475 2.08320
\(22\) 36.6864 63.0723i 0.355525 0.611230i
\(23\) −104.072 −0.943504 −0.471752 0.881731i \(-0.656378\pi\)
−0.471752 + 0.881731i \(0.656378\pi\)
\(24\) 55.3043 + 40.1809i 0.470373 + 0.341746i
\(25\) 11.4965 35.3825i 0.0919719 0.283060i
\(26\) −7.08604 21.8086i −0.0534495 0.164501i
\(27\) −131.464 + 95.5141i −0.937046 + 0.680804i
\(28\) −75.9218 + 55.1604i −0.512424 + 0.372298i
\(29\) −39.3536 121.118i −0.251993 0.775554i −0.994407 0.105613i \(-0.966319\pi\)
0.742415 0.669941i \(-0.233681\pi\)
\(30\) −67.2595 + 207.004i −0.409328 + 1.25978i
\(31\) 233.653 + 169.759i 1.35372 + 0.983536i 0.998817 + 0.0486336i \(0.0154867\pi\)
0.354905 + 0.934903i \(0.384513\pi\)
\(32\) −32.0000 −0.176777
\(33\) −304.723 65.7981i −1.60744 0.347090i
\(34\) 131.004 0.660796
\(35\) −241.733 175.629i −1.16744 0.848194i
\(36\) 56.8799 175.058i 0.263333 0.810455i
\(37\) −26.3908 81.2224i −0.117260 0.360889i 0.875152 0.483849i \(-0.160761\pi\)
−0.992412 + 0.122960i \(0.960761\pi\)
\(38\) −11.7310 + 8.52303i −0.0500792 + 0.0363847i
\(39\) −79.2611 + 57.5866i −0.325434 + 0.236442i
\(40\) −31.4849 96.9006i −0.124455 0.383033i
\(41\) −41.8544 + 128.815i −0.159428 + 0.490670i −0.998583 0.0532236i \(-0.983050\pi\)
0.839154 + 0.543893i \(0.183050\pi\)
\(42\) 324.375 + 235.672i 1.19172 + 0.865834i
\(43\) 353.691 1.25436 0.627178 0.778876i \(-0.284210\pi\)
0.627178 + 0.778876i \(0.284210\pi\)
\(44\) 133.506 58.9257i 0.457426 0.201895i
\(45\) 586.066 1.94146
\(46\) −168.393 122.344i −0.539742 0.392146i
\(47\) −41.5948 + 128.016i −0.129090 + 0.397298i −0.994624 0.103552i \(-0.966979\pi\)
0.865534 + 0.500850i \(0.166979\pi\)
\(48\) 42.2487 + 130.028i 0.127043 + 0.390999i
\(49\) −167.810 + 121.921i −0.489241 + 0.355454i
\(50\) 60.1964 43.7352i 0.170261 0.123702i
\(51\) −172.962 532.321i −0.474891 1.46157i
\(52\) 14.1721 43.6171i 0.0377945 0.116319i
\(53\) −405.666 294.734i −1.05137 0.763864i −0.0788966 0.996883i \(-0.525140\pi\)
−0.972472 + 0.233019i \(0.925140\pi\)
\(54\) −324.997 −0.819008
\(55\) 309.792 + 346.297i 0.759497 + 0.848994i
\(56\) −187.689 −0.447875
\(57\) 50.1204 + 36.4146i 0.116467 + 0.0846181i
\(58\) 78.7073 242.236i 0.178186 0.548399i
\(59\) 201.373 + 619.763i 0.444349 + 1.36756i 0.883196 + 0.469003i \(0.155387\pi\)
−0.438848 + 0.898561i \(0.644613\pi\)
\(60\) −352.175 + 255.870i −0.757761 + 0.550545i
\(61\) −295.928 + 215.004i −0.621143 + 0.451287i −0.853320 0.521387i \(-0.825415\pi\)
0.232178 + 0.972673i \(0.425415\pi\)
\(62\) 178.495 + 549.352i 0.365628 + 1.12529i
\(63\) 333.616 1026.77i 0.667170 2.05334i
\(64\) −51.7771 37.6183i −0.101127 0.0734732i
\(65\) 146.023 0.278645
\(66\) −415.702 464.687i −0.775293 0.866651i
\(67\) −294.576 −0.537136 −0.268568 0.963261i \(-0.586550\pi\)
−0.268568 + 0.963261i \(0.586550\pi\)
\(68\) 211.969 + 154.005i 0.378016 + 0.274645i
\(69\) −274.808 + 845.772i −0.479464 + 1.47564i
\(70\) −184.668 568.349i −0.315315 0.970438i
\(71\) −107.151 + 77.8500i −0.179106 + 0.130128i −0.673726 0.738981i \(-0.735307\pi\)
0.494620 + 0.869109i \(0.335307\pi\)
\(72\) 297.827 216.384i 0.487490 0.354182i
\(73\) 145.080 + 446.511i 0.232607 + 0.715892i 0.997430 + 0.0716507i \(0.0228267\pi\)
−0.764822 + 0.644241i \(0.777173\pi\)
\(74\) 52.7815 162.445i 0.0829153 0.255187i
\(75\) −257.189 186.858i −0.395968 0.287687i
\(76\) −29.0005 −0.0437709
\(77\) 783.048 345.616i 1.15892 0.511514i
\(78\) −195.944 −0.284440
\(79\) −330.105 239.836i −0.470124 0.341565i 0.327366 0.944898i \(-0.393839\pi\)
−0.797489 + 0.603333i \(0.793839\pi\)
\(80\) 62.9698 193.801i 0.0880030 0.270845i
\(81\) 45.1451 + 138.942i 0.0619275 + 0.190593i
\(82\) −219.152 + 159.224i −0.295138 + 0.214431i
\(83\) 1099.89 799.119i 1.45457 1.05680i 0.469827 0.882758i \(-0.344316\pi\)
0.984738 0.174045i \(-0.0556839\pi\)
\(84\) 247.801 + 762.652i 0.321872 + 0.990621i
\(85\) −257.791 + 793.400i −0.328957 + 1.01243i
\(86\) 572.283 + 415.788i 0.717569 + 0.521344i
\(87\) −1088.21 −1.34102
\(88\) 285.288 + 61.6016i 0.345589 + 0.0746222i
\(89\) −260.255 −0.309966 −0.154983 0.987917i \(-0.549532\pi\)
−0.154983 + 0.987917i \(0.549532\pi\)
\(90\) 948.275 + 688.962i 1.11063 + 0.806922i
\(91\) 83.1232 255.827i 0.0957547 0.294703i
\(92\) −128.641 395.915i −0.145779 0.448663i
\(93\) 1996.56 1450.59i 2.22617 1.61741i
\(94\) −217.793 + 158.236i −0.238975 + 0.173626i
\(95\) −28.5337 87.8177i −0.0308157 0.0948411i
\(96\) −84.4975 + 260.057i −0.0898332 + 0.276478i
\(97\) −1144.38 831.440i −1.19788 0.870309i −0.203803 0.979012i \(-0.565330\pi\)
−0.994074 + 0.108703i \(0.965330\pi\)
\(98\) −414.848 −0.427612
\(99\) −844.095 + 1451.19i −0.856916 + 1.47324i
\(100\) 148.814 0.148814
\(101\) 150.976 + 109.691i 0.148740 + 0.108066i 0.659666 0.751559i \(-0.270698\pi\)
−0.510927 + 0.859624i \(0.670698\pi\)
\(102\) 345.923 1064.64i 0.335799 1.03348i
\(103\) −362.450 1115.51i −0.346731 1.06713i −0.960651 0.277760i \(-0.910408\pi\)
0.613919 0.789369i \(-0.289592\pi\)
\(104\) 74.2059 53.9138i 0.0699662 0.0508335i
\(105\) −2065.61 + 1500.75i −1.91983 + 1.39484i
\(106\) −309.901 953.779i −0.283965 0.873954i
\(107\) −220.241 + 677.831i −0.198986 + 0.612415i 0.800921 + 0.598770i \(0.204344\pi\)
−0.999907 + 0.0136452i \(0.995656\pi\)
\(108\) −525.856 382.057i −0.468523 0.340402i
\(109\) 1247.22 1.09598 0.547989 0.836486i \(-0.315394\pi\)
0.547989 + 0.836486i \(0.315394\pi\)
\(110\) 94.1574 + 924.503i 0.0816141 + 0.801344i
\(111\) −729.762 −0.624017
\(112\) −303.687 220.642i −0.256212 0.186149i
\(113\) −303.455 + 933.939i −0.252625 + 0.777501i 0.741663 + 0.670773i \(0.234037\pi\)
−0.994288 + 0.106728i \(0.965963\pi\)
\(114\) 38.2886 + 117.840i 0.0314566 + 0.0968135i
\(115\) 1072.32 779.084i 0.869513 0.631739i
\(116\) 412.117 299.420i 0.329863 0.239659i
\(117\) 163.038 + 501.780i 0.128828 + 0.396492i
\(118\) −402.747 + 1239.53i −0.314202 + 0.967014i
\(119\) 1243.26 + 903.281i 0.957727 + 0.695829i
\(120\) −870.625 −0.662307
\(121\) −1303.67 + 268.332i −0.979468 + 0.201602i
\(122\) −731.574 −0.542899
\(123\) 936.328 + 680.282i 0.686389 + 0.498691i
\(124\) −356.990 + 1098.70i −0.258538 + 0.795697i
\(125\) −345.533 1063.44i −0.247244 0.760937i
\(126\) 1746.84 1269.15i 1.23509 0.897342i
\(127\) 1254.52 911.460i 0.876538 0.636842i −0.0557950 0.998442i \(-0.517769\pi\)
0.932333 + 0.361600i \(0.117769\pi\)
\(128\) −39.5542 121.735i −0.0273135 0.0840623i
\(129\) 933.937 2874.36i 0.637430 1.96181i
\(130\) 236.270 + 171.660i 0.159402 + 0.115812i
\(131\) 742.114 0.494953 0.247476 0.968894i \(-0.420399\pi\)
0.247476 + 0.968894i \(0.420399\pi\)
\(132\) −126.347 1240.57i −0.0833115 0.818010i
\(133\) −170.096 −0.110896
\(134\) −476.633 346.294i −0.307275 0.223248i
\(135\) 639.531 1968.27i 0.407719 1.25483i
\(136\) 161.930 + 498.370i 0.102099 + 0.314227i
\(137\) −417.192 + 303.108i −0.260169 + 0.189024i −0.710222 0.703978i \(-0.751405\pi\)
0.450053 + 0.893002i \(0.351405\pi\)
\(138\) −1438.91 + 1045.43i −0.887597 + 0.644877i
\(139\) 761.160 + 2342.61i 0.464466 + 1.42948i 0.859653 + 0.510878i \(0.170680\pi\)
−0.395187 + 0.918601i \(0.629320\pi\)
\(140\) 369.335 1136.70i 0.222961 0.686203i
\(141\) 930.520 + 676.063i 0.555773 + 0.403793i
\(142\) −264.893 −0.156544
\(143\) −210.313 + 361.576i −0.122988 + 0.211444i
\(144\) 736.269 0.426082
\(145\) 1312.17 + 953.348i 0.751516 + 0.546008i
\(146\) −290.160 + 893.021i −0.164478 + 0.506212i
\(147\) 547.713 + 1685.69i 0.307310 + 0.945803i
\(148\) 276.368 200.793i 0.153495 0.111521i
\(149\) 351.726 255.544i 0.193386 0.140503i −0.486879 0.873469i \(-0.661865\pi\)
0.680265 + 0.732966i \(0.261865\pi\)
\(150\) −196.475 604.687i −0.106947 0.329150i
\(151\) −241.340 + 742.768i −0.130066 + 0.400302i −0.994790 0.101945i \(-0.967493\pi\)
0.864724 + 0.502247i \(0.167493\pi\)
\(152\) −46.9238 34.0921i −0.0250396 0.0181924i
\(153\) −3014.20 −1.59270
\(154\) 1673.29 + 361.311i 0.875570 + 0.189060i
\(155\) −3678.27 −1.90610
\(156\) −317.044 230.346i −0.162717 0.118221i
\(157\) 161.425 496.815i 0.0820580 0.252549i −0.901607 0.432555i \(-0.857612\pi\)
0.983665 + 0.180007i \(0.0576120\pi\)
\(158\) −252.178 776.124i −0.126976 0.390792i
\(159\) −3466.41 + 2518.50i −1.72896 + 1.25616i
\(160\) 329.714 239.551i 0.162914 0.118364i
\(161\) −754.513 2322.15i −0.369341 1.13672i
\(162\) −90.2903 + 277.885i −0.0437893 + 0.134770i
\(163\) −2057.56 1494.91i −0.988716 0.718344i −0.0290761 0.999577i \(-0.509257\pi\)
−0.959639 + 0.281233i \(0.909257\pi\)
\(164\) −541.775 −0.257960
\(165\) 3632.30 1603.19i 1.71378 0.756415i
\(166\) 2719.08 1.27134
\(167\) −1120.85 814.342i −0.519363 0.377339i 0.297001 0.954877i \(-0.404014\pi\)
−0.816364 + 0.577538i \(0.804014\pi\)
\(168\) −495.601 + 1525.30i −0.227598 + 0.700475i
\(169\) −638.288 1964.45i −0.290527 0.894150i
\(170\) −1349.81 + 980.696i −0.608976 + 0.442447i
\(171\) 269.910 196.101i 0.120705 0.0876974i
\(172\) 437.186 + 1345.52i 0.193809 + 0.596482i
\(173\) −137.052 + 421.804i −0.0602307 + 0.185371i −0.976645 0.214861i \(-0.931070\pi\)
0.916414 + 0.400232i \(0.131070\pi\)
\(174\) −1760.77 1279.27i −0.767146 0.557364i
\(175\) 872.833 0.377029
\(176\) 389.189 + 435.050i 0.166683 + 0.186324i
\(177\) 5568.41 2.36467
\(178\) −421.101 305.948i −0.177319 0.128830i
\(179\) 116.388 358.205i 0.0485991 0.149573i −0.923812 0.382846i \(-0.874944\pi\)
0.972411 + 0.233274i \(0.0749439\pi\)
\(180\) 724.417 + 2229.53i 0.299972 + 0.923217i
\(181\) −2664.71 + 1936.02i −1.09429 + 0.795047i −0.980118 0.198414i \(-0.936421\pi\)
−0.114170 + 0.993461i \(0.536421\pi\)
\(182\) 435.238 316.219i 0.177264 0.128790i
\(183\) 965.878 + 2972.67i 0.390163 + 1.20080i
\(184\) 257.281 791.830i 0.103082 0.317252i
\(185\) 879.949 + 639.320i 0.349703 + 0.254074i
\(186\) 4935.78 1.94575
\(187\) −1593.29 1781.04i −0.623065 0.696486i
\(188\) −538.415 −0.208872
\(189\) −3084.29 2240.87i −1.18703 0.862430i
\(190\) 57.0674 175.635i 0.0217900 0.0670628i
\(191\) 707.730 + 2178.17i 0.268113 + 0.825166i 0.990960 + 0.134158i \(0.0428331\pi\)
−0.722847 + 0.691008i \(0.757167\pi\)
\(192\) −442.435 + 321.448i −0.166302 + 0.120825i
\(193\) 1863.49 1353.90i 0.695010 0.504954i −0.183293 0.983058i \(-0.558676\pi\)
0.878303 + 0.478104i \(0.158676\pi\)
\(194\) −874.228 2690.60i −0.323536 0.995740i
\(195\) 385.580 1186.69i 0.141600 0.435800i
\(196\) −671.238 487.683i −0.244620 0.177727i
\(197\) −1041.86 −0.376801 −0.188400 0.982092i \(-0.560330\pi\)
−0.188400 + 0.982092i \(0.560330\pi\)
\(198\) −3071.75 + 1355.79i −1.10252 + 0.486624i
\(199\) 3463.83 1.23389 0.616946 0.787005i \(-0.288370\pi\)
0.616946 + 0.787005i \(0.288370\pi\)
\(200\) 240.785 + 174.941i 0.0851305 + 0.0618509i
\(201\) −777.840 + 2393.95i −0.272958 + 0.840079i
\(202\) 115.336 + 354.966i 0.0401732 + 0.123640i
\(203\) 2417.18 1756.18i 0.835728 0.607192i
\(204\) 1811.28 1315.97i 0.621641 0.451648i
\(205\) −533.054 1640.57i −0.181610 0.558939i
\(206\) 724.901 2231.02i 0.245176 0.754574i
\(207\) 3874.45 + 2814.95i 1.30093 + 0.945181i
\(208\) 183.447 0.0611527
\(209\) 258.547 + 55.8274i 0.0855696 + 0.0184769i
\(210\) −5106.46 −1.67800
\(211\) −1692.45 1229.63i −0.552193 0.401192i 0.276400 0.961043i \(-0.410858\pi\)
−0.828593 + 0.559851i \(0.810858\pi\)
\(212\) 619.803 1907.56i 0.200794 0.617979i
\(213\) 349.731 + 1076.36i 0.112503 + 0.346249i
\(214\) −1153.20 + 837.845i −0.368368 + 0.267635i
\(215\) −3644.28 + 2647.72i −1.15599 + 0.839875i
\(216\) −401.718 1236.36i −0.126544 0.389462i
\(217\) −2093.85 + 6444.20i −0.655022 + 2.01595i
\(218\) 2018.04 + 1466.19i 0.626967 + 0.455518i
\(219\) 4011.78 1.23786
\(220\) −934.468 + 1606.57i −0.286372 + 0.492339i
\(221\) −751.012 −0.228591
\(222\) −1180.78 857.887i −0.356976 0.259358i
\(223\) 1144.45 3522.26i 0.343669 1.05770i −0.618623 0.785688i \(-0.712309\pi\)
0.962292 0.272017i \(-0.0876906\pi\)
\(224\) −231.996 714.011i −0.0692005 0.212977i
\(225\) −1385.02 + 1006.28i −0.410377 + 0.298156i
\(226\) −1588.91 + 1154.41i −0.467667 + 0.339780i
\(227\) −1499.81 4615.95i −0.438529 1.34965i −0.889426 0.457079i \(-0.848896\pi\)
0.450897 0.892576i \(-0.351104\pi\)
\(228\) −76.5772 + 235.680i −0.0222432 + 0.0684575i
\(229\) 1081.53 + 785.778i 0.312094 + 0.226750i 0.732795 0.680450i \(-0.238216\pi\)
−0.420700 + 0.907200i \(0.638216\pi\)
\(230\) 2650.91 0.759983
\(231\) −741.062 7276.26i −0.211075 2.07248i
\(232\) 1018.81 0.288311
\(233\) 4776.36 + 3470.23i 1.34296 + 0.975718i 0.999330 + 0.0366132i \(0.0116569\pi\)
0.343631 + 0.939105i \(0.388343\pi\)
\(234\) −326.077 + 1003.56i −0.0910953 + 0.280363i
\(235\) −529.748 1630.40i −0.147051 0.452576i
\(236\) −2108.81 + 1532.14i −0.581660 + 0.422601i
\(237\) −2820.75 + 2049.39i −0.773110 + 0.561698i
\(238\) 949.766 + 2923.08i 0.258673 + 0.796114i
\(239\) −1025.87 + 3157.30i −0.277649 + 0.854515i 0.710858 + 0.703336i \(0.248307\pi\)
−0.988506 + 0.151179i \(0.951693\pi\)
\(240\) −1408.70 1023.48i −0.378880 0.275273i
\(241\) −5275.95 −1.41018 −0.705091 0.709116i \(-0.749094\pi\)
−0.705091 + 0.709116i \(0.749094\pi\)
\(242\) −2424.83 1098.39i −0.644107 0.291764i
\(243\) −3139.10 −0.828696
\(244\) −1183.71 860.017i −0.310571 0.225643i
\(245\) 816.340 2512.44i 0.212874 0.655158i
\(246\) 715.291 + 2201.44i 0.185387 + 0.570563i
\(247\) 67.2503 48.8602i 0.0173240 0.0125866i
\(248\) −1869.23 + 1358.07i −0.478613 + 0.347733i
\(249\) −3589.93 11048.7i −0.913666 2.81197i
\(250\) 691.067 2126.88i 0.174828 0.538064i
\(251\) 1587.17 + 1153.15i 0.399129 + 0.289984i 0.769186 0.639025i \(-0.220662\pi\)
−0.370057 + 0.929009i \(0.620662\pi\)
\(252\) 4318.42 1.07950
\(253\) 384.707 + 3777.32i 0.0955980 + 0.938648i
\(254\) 3101.34 0.766123
\(255\) 5767.06 + 4190.02i 1.41626 + 1.02898i
\(256\) 79.1084 243.470i 0.0193136 0.0594410i
\(257\) 1836.17 + 5651.15i 0.445669 + 1.37163i 0.881748 + 0.471721i \(0.156367\pi\)
−0.436078 + 0.899909i \(0.643633\pi\)
\(258\) 4890.16 3552.91i 1.18003 0.857342i
\(259\) 1620.97 1177.71i 0.388890 0.282545i
\(260\) 180.494 + 555.504i 0.0430530 + 0.132503i
\(261\) −1810.93 + 5573.47i −0.429478 + 1.32180i
\(262\) 1200.77 + 872.408i 0.283143 + 0.205716i
\(263\) −1704.11 −0.399544 −0.199772 0.979842i \(-0.564020\pi\)
−0.199772 + 0.979842i \(0.564020\pi\)
\(264\) 1253.94 2155.81i 0.292328 0.502579i
\(265\) 6386.18 1.48038
\(266\) −275.221 199.960i −0.0634395 0.0460915i
\(267\) −687.215 + 2115.03i −0.157516 + 0.484785i
\(268\) −364.115 1120.63i −0.0829921 0.255423i
\(269\) 4728.97 3435.80i 1.07186 0.778752i 0.0956148 0.995418i \(-0.469518\pi\)
0.976246 + 0.216666i \(0.0695183\pi\)
\(270\) 3348.63 2432.92i 0.754781 0.548381i
\(271\) 1825.00 + 5616.79i 0.409082 + 1.25902i 0.917439 + 0.397877i \(0.130253\pi\)
−0.508357 + 0.861146i \(0.669747\pi\)
\(272\) −323.861 + 996.740i −0.0721946 + 0.222192i
\(273\) −1859.55 1351.04i −0.412254 0.299520i
\(274\) −1031.36 −0.227396
\(275\) −1326.71 286.474i −0.290922 0.0628182i
\(276\) −3557.19 −0.775788
\(277\) −7186.00 5220.93i −1.55872 1.13247i −0.937051 0.349193i \(-0.886456\pi\)
−0.621667 0.783281i \(-0.713544\pi\)
\(278\) −1522.32 + 4685.22i −0.328427 + 1.01079i
\(279\) −4106.89 12639.7i −0.881265 2.71226i
\(280\) 1933.87 1405.04i 0.412752 0.299882i
\(281\) 6594.92 4791.49i 1.40007 1.01721i 0.405397 0.914141i \(-0.367133\pi\)
0.994674 0.103070i \(-0.0328666\pi\)
\(282\) 710.854 + 2187.78i 0.150109 + 0.461988i
\(283\) 1812.06 5576.96i 0.380622 1.17143i −0.558985 0.829178i \(-0.688809\pi\)
0.939607 0.342256i \(-0.111191\pi\)
\(284\) −428.605 311.400i −0.0895529 0.0650640i
\(285\) −789.018 −0.163991
\(286\) −765.351 + 337.805i −0.158238 + 0.0698420i
\(287\) −3177.66 −0.653559
\(288\) 1191.31 + 865.536i 0.243745 + 0.177091i
\(289\) −192.352 + 592.000i −0.0391517 + 0.120497i
\(290\) 1002.41 + 3085.10i 0.202978 + 0.624701i
\(291\) −9778.71 + 7104.65i −1.96989 + 1.43121i
\(292\) −1519.30 + 1103.83i −0.304487 + 0.221223i
\(293\) 2353.65 + 7243.79i 0.469289 + 1.44432i 0.853507 + 0.521081i \(0.174471\pi\)
−0.384218 + 0.923242i \(0.625529\pi\)
\(294\) −1095.43 + 3371.37i −0.217301 + 0.668784i
\(295\) −6714.40 4878.30i −1.32518 0.962798i
\(296\) 683.219 0.134160
\(297\) 3952.66 + 4418.43i 0.772244 + 0.863243i
\(298\) 869.515 0.169026
\(299\) 965.348 + 701.367i 0.186714 + 0.135656i
\(300\) 392.949 1209.37i 0.0756231 0.232744i
\(301\) 2564.22 + 7891.85i 0.491026 + 1.51122i
\(302\) −1263.67 + 918.112i −0.240782 + 0.174938i
\(303\) 1290.09 937.305i 0.244600 0.177712i
\(304\) −35.8466 110.324i −0.00676297 0.0208143i
\(305\) 1439.60 4430.62i 0.270266 0.831792i
\(306\) −4877.08 3543.41i −0.911124 0.661971i
\(307\) 4100.68 0.762339 0.381170 0.924505i \(-0.375521\pi\)
0.381170 + 0.924505i \(0.375521\pi\)
\(308\) 2282.70 + 2551.69i 0.422302 + 0.472065i
\(309\) −10022.5 −1.84519
\(310\) −5951.57 4324.07i −1.09041 0.792228i
\(311\) 449.969 1384.86i 0.0820432 0.252503i −0.901618 0.432534i \(-0.857620\pi\)
0.983661 + 0.180031i \(0.0576197\pi\)
\(312\) −242.200 745.416i −0.0439484 0.135259i
\(313\) 2800.56 2034.72i 0.505740 0.367442i −0.305465 0.952203i \(-0.598812\pi\)
0.811205 + 0.584761i \(0.198812\pi\)
\(314\) 845.232 614.097i 0.151908 0.110368i
\(315\) 4248.91 + 13076.8i 0.759997 + 2.33903i
\(316\) 504.356 1552.25i 0.0897856 0.276332i
\(317\) −4038.86 2934.41i −0.715600 0.519914i 0.169375 0.985552i \(-0.445825\pi\)
−0.884975 + 0.465638i \(0.845825\pi\)
\(318\) −8569.44 −1.51117
\(319\) −4250.52 + 1876.06i −0.746030 + 0.329277i
\(320\) 815.098 0.142392
\(321\) 4927.02 + 3579.69i 0.856696 + 0.622426i
\(322\) 1509.03 4644.30i 0.261164 0.803779i
\(323\) 146.752 + 451.656i 0.0252802 + 0.0778043i
\(324\) −472.766 + 343.485i −0.0810641 + 0.0588965i
\(325\) −345.089 + 250.722i −0.0588988 + 0.0427925i
\(326\) −1571.84 4837.62i −0.267043 0.821874i
\(327\) 3293.33 10135.8i 0.556947 1.71411i
\(328\) −876.610 636.894i −0.147569 0.107215i
\(329\) −3157.95 −0.529190
\(330\) 7761.84 + 1676.00i 1.29477 + 0.279578i
\(331\) 10199.3 1.69366 0.846832 0.531861i \(-0.178507\pi\)
0.846832 + 0.531861i \(0.178507\pi\)
\(332\) 4399.57 + 3196.48i 0.727283 + 0.528402i
\(333\) −1214.42 + 3737.60i −0.199849 + 0.615072i
\(334\) −856.250 2635.27i −0.140275 0.431723i
\(335\) 3035.18 2205.19i 0.495014 0.359648i
\(336\) −2595.00 + 1885.38i −0.421336 + 0.306119i
\(337\) −519.376 1598.48i −0.0839532 0.258381i 0.900264 0.435343i \(-0.143373\pi\)
−0.984218 + 0.176962i \(0.943373\pi\)
\(338\) 1276.58 3928.90i 0.205434 0.632260i
\(339\) 6788.62 + 4932.22i 1.08763 + 0.790210i
\(340\) −3336.92 −0.532264
\(341\) 5297.72 9107.99i 0.841312 1.44641i
\(342\) 667.255 0.105500
\(343\) 2573.29 + 1869.61i 0.405087 + 0.294313i
\(344\) −874.371 + 2691.04i −0.137043 + 0.421776i
\(345\) −3499.93 10771.7i −0.546173 1.68095i
\(346\) −717.616 + 521.378i −0.111501 + 0.0810101i
\(347\) −8515.93 + 6187.19i −1.31746 + 0.957192i −0.317501 + 0.948258i \(0.602844\pi\)
−0.999960 + 0.00893386i \(0.997156\pi\)
\(348\) −1345.11 4139.81i −0.207199 0.637693i
\(349\) −1637.90 + 5040.94i −0.251217 + 0.773168i 0.743334 + 0.668920i \(0.233243\pi\)
−0.994551 + 0.104247i \(0.966757\pi\)
\(350\) 1412.27 + 1026.08i 0.215683 + 0.156703i
\(351\) 1863.12 0.283321
\(352\) 118.289 + 1161.44i 0.0179114 + 0.175867i
\(353\) −7438.40 −1.12155 −0.560773 0.827969i \(-0.689496\pi\)
−0.560773 + 0.827969i \(0.689496\pi\)
\(354\) 9009.87 + 6546.06i 1.35274 + 0.982822i
\(355\) 521.257 1604.26i 0.0779309 0.239847i
\(356\) −321.693 990.068i −0.0478923 0.147397i
\(357\) 10623.6 7718.53i 1.57497 1.14428i
\(358\) 609.414 442.765i 0.0899680 0.0653656i
\(359\) 3136.93 + 9654.47i 0.461172 + 1.41934i 0.863734 + 0.503948i \(0.168120\pi\)
−0.402562 + 0.915393i \(0.631880\pi\)
\(360\) −1448.83 + 4459.05i −0.212112 + 0.652813i
\(361\) 5506.52 + 4000.72i 0.802817 + 0.583281i
\(362\) −6587.52 −0.956443
\(363\) −1261.73 + 11303.2i −0.182435 + 1.63433i
\(364\) 1075.97 0.154934
\(365\) −4837.41 3514.59i −0.693703 0.504005i
\(366\) −1931.76 + 5945.33i −0.275887 + 0.849092i
\(367\) 147.340 + 453.466i 0.0209567 + 0.0644980i 0.960988 0.276590i \(-0.0892045\pi\)
−0.940031 + 0.341088i \(0.889204\pi\)
\(368\) 1347.14 978.755i 0.190828 0.138644i
\(369\) 5042.35 3663.48i 0.711366 0.516838i
\(370\) 672.221 + 2068.88i 0.0944516 + 0.290692i
\(371\) 3635.32 11188.4i 0.508723 1.56569i
\(372\) 7986.26 + 5802.35i 1.11309 + 0.808704i
\(373\) −12738.5 −1.76829 −0.884146 0.467210i \(-0.845259\pi\)
−0.884146 + 0.467210i \(0.845259\pi\)
\(374\) −484.262 4754.82i −0.0669534 0.657395i
\(375\) −9554.74 −1.31575
\(376\) −871.173 632.944i −0.119488 0.0868128i
\(377\) −451.207 + 1388.67i −0.0616402 + 0.189709i
\(378\) −2356.19 7251.60i −0.320607 0.986725i
\(379\) 1050.66 763.349i 0.142398 0.103458i −0.514306 0.857607i \(-0.671950\pi\)
0.656704 + 0.754149i \(0.271950\pi\)
\(380\) 298.809 217.097i 0.0403383 0.0293075i
\(381\) −4094.61 12601.9i −0.550586 1.69453i
\(382\) −1415.46 + 4356.34i −0.189584 + 0.583481i
\(383\) 542.501 + 394.150i 0.0723772 + 0.0525851i 0.623386 0.781915i \(-0.285757\pi\)
−0.551008 + 0.834500i \(0.685757\pi\)
\(384\) −1093.76 −0.145353
\(385\) −5480.92 + 9422.95i −0.725541 + 1.24737i
\(386\) 4606.80 0.607461
\(387\) −13167.3 9566.62i −1.72954 1.25659i
\(388\) 1748.46 5381.20i 0.228774 0.704095i
\(389\) 1617.98 + 4979.64i 0.210887 + 0.649043i 0.999420 + 0.0340509i \(0.0108408\pi\)
−0.788533 + 0.614992i \(0.789159\pi\)
\(390\) 2018.92 1466.83i 0.262134 0.190451i
\(391\) −5515.04 + 4006.91i −0.713319 + 0.518256i
\(392\) −512.780 1578.18i −0.0660697 0.203342i
\(393\) 1959.59 6030.99i 0.251522 0.774105i
\(394\) −1685.77 1224.79i −0.215553 0.156609i
\(395\) 5196.67 0.661956
\(396\) −6564.02 1417.35i −0.832966 0.179860i
\(397\) 1751.64 0.221442 0.110721 0.993852i \(-0.464684\pi\)
0.110721 + 0.993852i \(0.464684\pi\)
\(398\) 5604.60 + 4071.98i 0.705862 + 0.512839i
\(399\) −449.147 + 1382.33i −0.0563545 + 0.173441i
\(400\) 183.944 + 566.121i 0.0229930 + 0.0707651i
\(401\) −2922.80 + 2123.54i −0.363984 + 0.264450i −0.754712 0.656056i \(-0.772223\pi\)
0.390728 + 0.920506i \(0.372223\pi\)
\(402\) −4072.83 + 2959.08i −0.505309 + 0.367128i
\(403\) −1023.26 3149.28i −0.126482 0.389273i
\(404\) −230.671 + 709.933i −0.0284067 + 0.0874269i
\(405\) −1505.28 1093.65i −0.184686 0.134182i
\(406\) 5975.60 0.730453
\(407\) −2850.42 + 1258.10i −0.347151 + 0.153223i
\(408\) 4477.72 0.543334
\(409\) 9137.83 + 6639.02i 1.10473 + 0.802637i 0.981826 0.189781i \(-0.0607779\pi\)
0.122908 + 0.992418i \(0.460778\pi\)
\(410\) 1066.11 3281.14i 0.128418 0.395229i
\(411\) 1361.67 + 4190.79i 0.163422 + 0.502960i
\(412\) 3795.63 2757.69i 0.453877 0.329761i
\(413\) −12368.8 + 8986.42i −1.47367 + 1.07069i
\(414\) 2959.81 + 9109.37i 0.351369 + 1.08140i
\(415\) −5350.63 + 16467.5i −0.632897 + 1.94786i
\(416\) 296.824 + 215.655i 0.0349831 + 0.0254167i
\(417\) 21047.7 2.47173
\(418\) 352.708 + 394.271i 0.0412716 + 0.0461349i
\(419\) −3680.45 −0.429121 −0.214560 0.976711i \(-0.568832\pi\)
−0.214560 + 0.976711i \(0.568832\pi\)
\(420\) −8262.43 6003.01i −0.959917 0.697421i
\(421\) 2860.31 8803.14i 0.331124 1.01909i −0.637476 0.770470i \(-0.720021\pi\)
0.968600 0.248625i \(-0.0799786\pi\)
\(422\) −1292.91 3979.18i −0.149142 0.459013i
\(423\) 5011.08 3640.76i 0.575997 0.418487i
\(424\) 3245.33 2357.87i 0.371715 0.270067i
\(425\) −753.045 2317.63i −0.0859483 0.264522i
\(426\) −699.461 + 2152.72i −0.0795516 + 0.244835i
\(427\) −6942.80 5044.24i −0.786852 0.571681i
\(428\) −2850.85 −0.321966
\(429\) 2383.10 + 2663.92i 0.268199 + 0.299803i
\(430\) −9009.14 −1.01037
\(431\) −2899.55 2106.64i −0.324052 0.235437i 0.413851 0.910345i \(-0.364184\pi\)
−0.737902 + 0.674907i \(0.764184\pi\)
\(432\) 803.436 2472.72i 0.0894800 0.275391i
\(433\) −2566.94 7900.24i −0.284895 0.876816i −0.986430 0.164181i \(-0.947502\pi\)
0.701535 0.712635i \(-0.252498\pi\)
\(434\) −10963.5 + 7965.47i −1.21260 + 0.881002i
\(435\) 11212.5 8146.34i 1.23586 0.897902i
\(436\) 1541.64 + 4744.69i 0.169338 + 0.521168i
\(437\) 233.165 717.608i 0.0255236 0.0785534i
\(438\) 6491.19 + 4716.13i 0.708130 + 0.514487i
\(439\) 11932.4 1.29727 0.648634 0.761101i \(-0.275341\pi\)
0.648634 + 0.761101i \(0.275341\pi\)
\(440\) −3400.63 + 1500.94i −0.368452 + 0.162624i
\(441\) 9544.99 1.03067
\(442\) −1215.16 882.867i −0.130768 0.0950084i
\(443\) 333.374 1026.02i 0.0357541 0.110040i −0.931587 0.363519i \(-0.881575\pi\)
0.967341 + 0.253480i \(0.0815750\pi\)
\(444\) −902.035 2776.18i −0.0964160 0.296738i
\(445\) 2681.55 1948.26i 0.285658 0.207543i
\(446\) 5992.43 4353.75i 0.636210 0.462234i
\(447\) −1148.00 3533.17i −0.121473 0.373855i
\(448\) 463.993 1428.02i 0.0489321 0.150598i
\(449\) −10327.9 7503.63i −1.08553 0.788682i −0.106889 0.994271i \(-0.534089\pi\)
−0.978638 + 0.205589i \(0.934089\pi\)
\(450\) −3423.96 −0.358683
\(451\) 4830.06 + 1042.94i 0.504298 + 0.108892i
\(452\) −3928.01 −0.408756
\(453\) 5399.03 + 3922.63i 0.559975 + 0.406846i
\(454\) 2999.63 9231.91i 0.310087 0.954350i
\(455\) 1058.65 + 3258.19i 0.109077 + 0.335706i
\(456\) −400.963 + 291.317i −0.0411773 + 0.0299170i
\(457\) 9082.69 6598.96i 0.929695 0.675463i −0.0162235 0.999868i \(-0.505164\pi\)
0.945918 + 0.324406i \(0.105164\pi\)
\(458\) 826.216 + 2542.83i 0.0842938 + 0.259430i
\(459\) −3289.18 + 10123.0i −0.334478 + 1.02942i
\(460\) 4289.27 + 3116.33i 0.434757 + 0.315869i
\(461\) −2160.58 −0.218283 −0.109141 0.994026i \(-0.534810\pi\)
−0.109141 + 0.994026i \(0.534810\pi\)
\(462\) 7354.70 12644.4i 0.740631 1.27331i
\(463\) 11469.5 1.15125 0.575627 0.817712i \(-0.304758\pi\)
0.575627 + 0.817712i \(0.304758\pi\)
\(464\) 1648.47 + 1197.68i 0.164931 + 0.119830i
\(465\) −9712.65 + 29892.5i −0.968631 + 2.98114i
\(466\) 3648.81 + 11229.9i 0.362721 + 1.11634i
\(467\) −1632.91 + 1186.38i −0.161803 + 0.117557i −0.665741 0.746183i \(-0.731884\pi\)
0.503937 + 0.863740i \(0.331884\pi\)
\(468\) −1707.36 + 1240.47i −0.168638 + 0.122523i
\(469\) −2135.64 6572.82i −0.210266 0.647131i
\(470\) 1059.50 3260.79i 0.103981 0.320019i
\(471\) −3611.25 2623.72i −0.353286 0.256677i
\(472\) −5213.26 −0.508389
\(473\) −1307.43 12837.2i −0.127094 1.24790i
\(474\) −6973.27 −0.675723
\(475\) 218.216 + 158.543i 0.0210788 + 0.0153146i
\(476\) −1899.53 + 5846.16i −0.182910 + 0.562938i
\(477\) 7130.34 + 21944.9i 0.684436 + 2.10648i
\(478\) −5371.53 + 3902.64i −0.513991 + 0.373437i
\(479\) 5927.67 4306.71i 0.565433 0.410811i −0.268011 0.963416i \(-0.586366\pi\)
0.833443 + 0.552605i \(0.186366\pi\)
\(480\) −1076.15 3312.06i −0.102332 0.314946i
\(481\) −302.582 + 931.252i −0.0286831 + 0.0882774i
\(482\) −8536.67 6202.26i −0.806711 0.586110i
\(483\) −20863.9 −1.96551
\(484\) −2632.22 4627.78i −0.247203 0.434615i
\(485\) 18015.3 1.68667
\(486\) −5079.16 3690.23i −0.474065 0.344428i
\(487\) −1912.75 + 5886.85i −0.177978 + 0.547759i −0.999757 0.0220470i \(-0.992982\pi\)
0.821779 + 0.569806i \(0.192982\pi\)
\(488\) −904.276 2783.07i −0.0838824 0.258164i
\(489\) −17581.8 + 12774.0i −1.62593 + 1.18130i
\(490\) 4274.41 3105.54i 0.394078 0.286315i
\(491\) −3127.54 9625.57i −0.287462 0.884717i −0.985650 0.168802i \(-0.946010\pi\)
0.698188 0.715914i \(-0.253990\pi\)
\(492\) −1430.58 + 4402.88i −0.131089 + 0.403449i
\(493\) −6748.64 4903.17i −0.616518 0.447926i
\(494\) 166.252 0.0151418
\(495\) −2166.41 21271.3i −0.196713 1.93147i
\(496\) −4620.98 −0.418323
\(497\) −2513.89 1826.45i −0.226888 0.164844i
\(498\) 7179.87 22097.4i 0.646059 1.98837i
\(499\) 791.952 + 2437.38i 0.0710474 + 0.218661i 0.980275 0.197638i \(-0.0633269\pi\)
−0.909228 + 0.416299i \(0.863327\pi\)
\(500\) 3618.47 2628.97i 0.323646 0.235143i
\(501\) −9577.61 + 6958.54i −0.854084 + 0.620528i
\(502\) 1212.49 + 3731.66i 0.107801 + 0.331777i
\(503\) 2658.01 8180.53i 0.235616 0.725152i −0.761423 0.648256i \(-0.775499\pi\)
0.997039 0.0768967i \(-0.0245012\pi\)
\(504\) 6987.35 + 5076.61i 0.617543 + 0.448671i
\(505\) −2376.74 −0.209432
\(506\) −3818.04 + 6564.08i −0.335440 + 0.576698i
\(507\) −17650.0 −1.54609
\(508\) 5018.07 + 3645.84i 0.438269 + 0.318421i
\(509\) −4309.27 + 13262.6i −0.375255 + 1.15492i 0.568051 + 0.822993i \(0.307698\pi\)
−0.943306 + 0.331924i \(0.892302\pi\)
\(510\) 4405.64 + 13559.2i 0.382520 + 1.17728i
\(511\) −8911.11 + 6474.30i −0.771437 + 0.560482i
\(512\) 414.217 300.946i 0.0357538 0.0259767i
\(513\) −364.063 1120.47i −0.0313329 0.0964328i
\(514\) −3672.34 + 11302.3i −0.315136 + 0.969889i
\(515\) 12085.2 + 8780.41i 1.03405 + 0.751284i
\(516\) 12089.1 1.03138
\(517\) 4800.10 + 1036.47i 0.408333 + 0.0881704i
\(518\) 4007.27 0.339902
\(519\) 3066.01 + 2227.59i 0.259312 + 0.188401i
\(520\) −360.988 + 1111.01i −0.0304431 + 0.0936941i
\(521\) −3736.89 11501.0i −0.314234 0.967113i −0.976069 0.217463i \(-0.930222\pi\)
0.661834 0.749650i \(-0.269778\pi\)
\(522\) −9482.15 + 6889.18i −0.795062 + 0.577646i
\(523\) 13504.0 9811.21i 1.12904 0.820295i 0.143484 0.989653i \(-0.454169\pi\)
0.985555 + 0.169358i \(0.0541693\pi\)
\(524\) 917.304 + 2823.17i 0.0764744 + 0.235364i
\(525\) 2304.76 7093.31i 0.191596 0.589671i
\(526\) −2757.31 2003.30i −0.228564 0.166061i
\(527\) 18917.8 1.56370
\(528\) 4563.22 2014.08i 0.376115 0.166006i
\(529\) −1335.94 −0.109800
\(530\) 10333.1 + 7507.41i 0.846867 + 0.615285i
\(531\) 9266.56 28519.5i 0.757315 2.33078i
\(532\) −210.250 647.084i −0.0171344 0.0527343i
\(533\) 1256.34 912.785i 0.102098 0.0741784i
\(534\) −3598.30 + 2614.32i −0.291599 + 0.211859i
\(535\) −2804.97 8632.79i −0.226671 0.697623i
\(536\) 728.231 2241.26i 0.0586843 0.180612i
\(537\) −2603.72 1891.71i −0.209234 0.152018i
\(538\) 11690.7 0.936840
\(539\) 5045.44 + 5639.98i 0.403196 + 0.450707i
\(540\) 8278.26 0.659703
\(541\) −16725.1 12151.5i −1.32914 0.965679i −0.999769 0.0214796i \(-0.993162\pi\)
−0.329374 0.944200i \(-0.606838\pi\)
\(542\) −3650.01 + 11233.6i −0.289264 + 0.890264i
\(543\) 8697.33 + 26767.6i 0.687363 + 2.11548i
\(544\) −1695.76 + 1232.04i −0.133649 + 0.0971015i
\(545\) −12850.8 + 9336.63i −1.01003 + 0.733830i
\(546\) −1420.57 4372.07i −0.111346 0.342688i
\(547\) 2833.62 8721.00i 0.221494 0.681687i −0.777135 0.629334i \(-0.783328\pi\)
0.998629 0.0523532i \(-0.0166722\pi\)
\(548\) −1668.77 1212.43i −0.130084 0.0945119i
\(549\) 16832.4 1.30854
\(550\) −1809.89 2023.17i −0.140317 0.156851i
\(551\) 923.311 0.0713873
\(552\) −5755.65 4181.73i −0.443799 0.322439i
\(553\) 2958.19 9104.37i 0.227477 0.700104i
\(554\) −5489.62 16895.3i −0.420995 1.29569i
\(555\) 7519.15 5462.98i 0.575081 0.417821i
\(556\) −7970.97 + 5791.25i −0.607994 + 0.441733i
\(557\) 6276.38 + 19316.7i 0.477449 + 1.46944i 0.842627 + 0.538498i \(0.181008\pi\)
−0.365178 + 0.930938i \(0.618992\pi\)
\(558\) 8213.78 25279.4i 0.623149 1.91785i
\(559\) −3280.74 2383.60i −0.248230 0.180350i
\(560\) 4780.78 0.360759
\(561\) −18681.3 + 8245.40i −1.40593 + 0.620537i
\(562\) 16303.5 1.22371
\(563\) −4500.68 3269.94i −0.336911 0.244780i 0.406446 0.913675i \(-0.366768\pi\)
−0.743357 + 0.668894i \(0.766768\pi\)
\(564\) −1421.71 + 4375.57i −0.106143 + 0.326675i
\(565\) −3864.78 11894.6i −0.287774 0.885678i
\(566\) 9488.08 6893.50i 0.704618 0.511935i
\(567\) −2772.90 + 2014.63i −0.205381 + 0.149218i
\(568\) −327.425 1007.71i −0.0241874 0.0744412i
\(569\) −7041.09 + 21670.3i −0.518766 + 1.59660i 0.257557 + 0.966263i \(0.417083\pi\)
−0.776323 + 0.630335i \(0.782917\pi\)
\(570\) −1276.66 927.546i −0.0938128 0.0681590i
\(571\) −11157.6 −0.817743 −0.408871 0.912592i \(-0.634078\pi\)
−0.408871 + 0.912592i \(0.634078\pi\)
\(572\) −1635.48 353.145i −0.119550 0.0258142i
\(573\) 19570.3 1.42681
\(574\) −5141.56 3735.56i −0.373876 0.271637i
\(575\) −1196.47 + 3682.34i −0.0867758 + 0.267068i
\(576\) 910.078 + 2800.93i 0.0658332 + 0.202614i
\(577\) −10055.4 + 7305.64i −0.725494 + 0.527102i −0.888135 0.459583i \(-0.847999\pi\)
0.162641 + 0.986685i \(0.447999\pi\)
\(578\) −1007.17 + 731.752i −0.0724788 + 0.0526589i
\(579\) −6082.23 18719.2i −0.436561 1.34360i
\(580\) −2004.82 + 6170.20i −0.143527 + 0.441730i
\(581\) 25804.7 + 18748.2i 1.84262 + 1.33874i
\(582\) −24174.3 −1.72175
\(583\) −9197.84 + 15813.2i −0.653406 + 1.12335i
\(584\) −3755.91 −0.266131
\(585\) −5436.20 3949.63i −0.384203 0.279140i
\(586\) −4707.30 + 14487.6i −0.331837 + 1.02129i
\(587\) 1889.62 + 5815.66i 0.132867 + 0.408923i 0.995252 0.0973299i \(-0.0310302\pi\)
−0.862385 + 0.506253i \(0.831030\pi\)
\(588\) −5735.72 + 4167.25i −0.402274 + 0.292269i
\(589\) −1694.02 + 1230.77i −0.118507 + 0.0861005i
\(590\) −5129.35 15786.5i −0.357918 1.10156i
\(591\) −2751.09 + 8466.99i −0.191480 + 0.589315i
\(592\) 1105.47 + 803.172i 0.0767476 + 0.0557604i
\(593\) 7188.32 0.497789 0.248894 0.968531i \(-0.419933\pi\)
0.248894 + 0.968531i \(0.419933\pi\)
\(594\) 1201.36 + 11795.8i 0.0829839 + 0.814794i
\(595\) −19572.0 −1.34852
\(596\) 1406.90 + 1022.18i 0.0966930 + 0.0702516i
\(597\) 9146.41 28149.8i 0.627031 1.92980i
\(598\) 737.461 + 2269.67i 0.0504298 + 0.155207i
\(599\) 818.874 594.947i 0.0558569 0.0405824i −0.559506 0.828826i \(-0.689009\pi\)
0.615363 + 0.788244i \(0.289009\pi\)
\(600\) 2057.51 1494.87i 0.139996 0.101713i
\(601\) 4134.93 + 12726.0i 0.280644 + 0.863734i 0.987671 + 0.156547i \(0.0500362\pi\)
−0.707026 + 0.707187i \(0.749964\pi\)
\(602\) −5128.43 + 15783.7i −0.347208 + 1.06860i
\(603\) 10966.6 + 7967.68i 0.740619 + 0.538091i
\(604\) −3123.97 −0.210451
\(605\) 11423.7 12524.0i 0.767671 0.841611i
\(606\) 3189.28 0.213788
\(607\) −442.493 321.490i −0.0295885 0.0214973i 0.572893 0.819630i \(-0.305821\pi\)
−0.602481 + 0.798133i \(0.705821\pi\)
\(608\) 71.6932 220.649i 0.00478214 0.0147179i
\(609\) −7889.42 24281.1i −0.524951 1.61563i
\(610\) 7537.83 5476.55i 0.500324 0.363507i
\(611\) 1248.55 907.124i 0.0826692 0.0600627i
\(612\) −3725.76 11466.7i −0.246086 0.757376i
\(613\) 4247.62 13072.8i 0.279869 0.861349i −0.708020 0.706192i \(-0.750412\pi\)
0.987890 0.155157i \(-0.0495885\pi\)
\(614\) 6635.04 + 4820.64i 0.436105 + 0.316849i
\(615\) −14740.1 −0.966468
\(616\) 693.798 + 6812.19i 0.0453797 + 0.445570i
\(617\) −3323.39 −0.216847 −0.108423 0.994105i \(-0.534580\pi\)
−0.108423 + 0.994105i \(0.534580\pi\)
\(618\) −16216.8 11782.2i −1.05556 0.766909i
\(619\) −6699.20 + 20618.0i −0.434998 + 1.33879i 0.458091 + 0.888905i \(0.348533\pi\)
−0.893089 + 0.449881i \(0.851467\pi\)
\(620\) −4546.60 13993.0i −0.294509 0.906406i
\(621\) 13681.8 9940.38i 0.884107 0.642341i
\(622\) 2356.07 1711.79i 0.151881 0.110348i
\(623\) −1886.82 5807.03i −0.121338 0.373441i
\(624\) 484.401 1490.83i 0.0310762 0.0956427i
\(625\) 15283.4 + 11104.0i 0.978138 + 0.710659i
\(626\) 6923.35 0.442033
\(627\) 1136.40 1953.73i 0.0723820 0.124441i
\(628\) 2089.53 0.132773
\(629\) −4525.67 3288.09i −0.286885 0.208434i
\(630\) −8497.82 + 26153.6i −0.537399 + 1.65394i
\(631\) −9236.13 28425.9i −0.582702 1.79337i −0.608311 0.793699i \(-0.708153\pi\)
0.0256092 0.999672i \(-0.491847\pi\)
\(632\) 2640.84 1918.68i 0.166214 0.120761i
\(633\) −14461.9 + 10507.2i −0.908073 + 0.659753i
\(634\) −3085.42 9495.94i −0.193277 0.594845i
\(635\) −6102.83 + 18782.6i −0.381391 + 1.17380i
\(636\) −13865.7 10074.0i −0.864479 0.628081i
\(637\) 2378.21 0.147925
\(638\) −9082.93 1961.26i −0.563631 0.121704i
\(639\) 6094.75 0.377316
\(640\) 1318.86 + 958.205i 0.0814569 + 0.0591819i
\(641\) 8398.45 25847.8i 0.517502 1.59271i −0.261181 0.965290i \(-0.584112\pi\)
0.778683 0.627418i \(-0.215888\pi\)
\(642\) 3763.91 + 11584.1i 0.231386 + 0.712132i
\(643\) −13247.2 + 9624.69i −0.812474 + 0.590297i −0.914547 0.404480i \(-0.867452\pi\)
0.102073 + 0.994777i \(0.467452\pi\)
\(644\) 7901.36 5740.67i 0.483474 0.351264i
\(645\) 11894.5 + 36607.6i 0.726119 + 2.23476i
\(646\) −293.504 + 903.312i −0.0178758 + 0.0550160i
\(647\) −1850.76 1344.66i −0.112459 0.0817062i 0.530134 0.847914i \(-0.322141\pi\)
−0.642593 + 0.766207i \(0.722141\pi\)
\(648\) −1168.74 −0.0708526
\(649\) 21750.0 9599.84i 1.31550 0.580627i
\(650\) −853.107 −0.0514794
\(651\) 46841.6 + 34032.4i 2.82007 + 2.04890i
\(652\) 3143.67 9675.23i 0.188828 0.581152i
\(653\) −354.419 1090.79i −0.0212396 0.0653689i 0.939875 0.341519i \(-0.110941\pi\)
−0.961115 + 0.276150i \(0.910941\pi\)
\(654\) 17244.1 12528.6i 1.03104 0.749092i
\(655\) −7646.43 + 5555.45i −0.456138 + 0.331404i
\(656\) −669.670 2061.03i −0.0398571 0.122667i
\(657\) 6676.12 20547.0i 0.396439 1.22011i
\(658\) −5109.67 3712.40i −0.302729 0.219946i
\(659\) −377.923 −0.0223396 −0.0111698 0.999938i \(-0.503556\pi\)
−0.0111698 + 0.999938i \(0.503556\pi\)
\(660\) 10588.7 + 11836.4i 0.624490 + 0.698079i
\(661\) −17500.4 −1.02978 −0.514892 0.857255i \(-0.672168\pi\)
−0.514892 + 0.857255i \(0.672168\pi\)
\(662\) 16502.8 + 11990.0i 0.968880 + 0.703932i
\(663\) −1983.08 + 6103.30i −0.116164 + 0.357515i
\(664\) 3360.97 + 10344.0i 0.196432 + 0.604556i
\(665\) 1752.60 1273.34i 0.102200 0.0742524i
\(666\) −6358.78 + 4619.92i −0.369967 + 0.268796i
\(667\) 4095.63 + 12605.0i 0.237756 + 0.731738i
\(668\) 1712.50 5270.53i 0.0991895 0.305274i
\(669\) −25602.6 18601.4i −1.47960 1.07499i
\(670\) 7503.38 0.432658
\(671\) 8897.51 + 9945.97i 0.511900 + 0.572221i
\(672\) −6415.20 −0.368261
\(673\) 11739.3 + 8529.08i 0.672386 + 0.488517i 0.870823 0.491597i \(-0.163587\pi\)
−0.198437 + 0.980114i \(0.563587\pi\)
\(674\) 1038.75 3196.95i 0.0593639 0.182703i
\(675\) 1868.16 + 5749.60i 0.106527 + 0.327855i
\(676\) 6684.24 4856.38i 0.380305 0.276308i
\(677\) −379.518 + 275.736i −0.0215451 + 0.0156534i −0.598506 0.801119i \(-0.704239\pi\)
0.576961 + 0.816772i \(0.304239\pi\)
\(678\) 5186.04 + 15961.0i 0.293759 + 0.904098i
\(679\) 10255.2 31562.2i 0.579614 1.78387i
\(680\) −5399.25 3922.78i −0.304488 0.221223i
\(681\) −41473.1 −2.33370
\(682\) 19279.0 8509.20i 1.08245 0.477763i
\(683\) −15892.3 −0.890342 −0.445171 0.895446i \(-0.646857\pi\)
−0.445171 + 0.895446i \(0.646857\pi\)
\(684\) 1079.64 + 784.406i 0.0603525 + 0.0438487i
\(685\) 2029.51 6246.19i 0.113202 0.348401i
\(686\) 1965.82 + 6050.17i 0.109410 + 0.336730i
\(687\) 9241.67 6714.46i 0.513234 0.372886i
\(688\) −4578.27 + 3326.31i −0.253699 + 0.184323i
\(689\) 1776.58 + 5467.75i 0.0982326 + 0.302329i
\(690\) 6999.86 21543.3i 0.386203 1.18861i
\(691\) 5020.47 + 3647.58i 0.276393 + 0.200811i 0.717343 0.696721i \(-0.245358\pi\)
−0.440950 + 0.897532i \(0.645358\pi\)
\(692\) −1774.04 −0.0974553
\(693\) −38499.8 8313.18i −2.11037 0.455688i
\(694\) −21052.5 −1.15150
\(695\) −25379.4 18439.2i −1.38517 1.00639i
\(696\) 2690.21 8279.62i 0.146512 0.450917i
\(697\) 2741.55 + 8437.64i 0.148987 + 0.458534i
\(698\) −8576.16 + 6230.95i −0.465061 + 0.337887i
\(699\) 40813.9 29653.1i 2.20848 1.60455i
\(700\) 1078.88 + 3320.46i 0.0582541 + 0.179288i
\(701\) 578.646 1780.89i 0.0311771 0.0959533i −0.934257 0.356600i \(-0.883936\pi\)
0.965434 + 0.260647i \(0.0839358\pi\)
\(702\) 3014.59 + 2190.22i 0.162077 + 0.117756i
\(703\) 619.178 0.0332187
\(704\) −1173.96 + 2018.31i −0.0628486 + 0.108051i
\(705\) −14648.7 −0.782554
\(706\) −12035.6 8744.36i −0.641594 0.466145i
\(707\) −1352.95 + 4163.95i −0.0719702 + 0.221502i
\(708\) 6882.93 + 21183.5i 0.365362 + 1.12447i
\(709\) −4236.02 + 3077.65i −0.224383 + 0.163023i −0.694297 0.719688i \(-0.744285\pi\)
0.469915 + 0.882712i \(0.344285\pi\)
\(710\) 2729.34 1982.98i 0.144268 0.104817i
\(711\) 5802.22 + 17857.4i 0.306048 + 0.941919i
\(712\) 643.385 1980.14i 0.0338650 0.104226i
\(713\) −24316.8 17667.2i −1.27724 0.927970i
\(714\) 26263.1 1.37657
\(715\) −539.778 5299.92i −0.0282329 0.277211i
\(716\) 1506.56 0.0786349
\(717\) 22949.8 + 16674.0i 1.19536 + 0.868483i
\(718\) −6273.85 + 19308.9i −0.326098 + 1.00363i
\(719\) −5338.20 16429.3i −0.276886 0.852169i −0.988714 0.149814i \(-0.952132\pi\)
0.711828 0.702354i \(-0.247868\pi\)
\(720\) −7586.20 + 5511.69i −0.392668 + 0.285290i
\(721\) 22262.4 16174.6i 1.14993 0.835470i
\(722\) 4206.61 + 12946.6i 0.216833 + 0.667345i
\(723\) −13931.4 + 42876.4i −0.716617 + 2.20552i
\(724\) −10658.8 7744.09i −0.547144 0.397523i
\(725\) −4737.89 −0.242705
\(726\) −15329.2 + 16805.7i −0.783637 + 0.859114i
\(727\) 17292.7 0.882190 0.441095 0.897461i \(-0.354590\pi\)
0.441095 + 0.897461i \(0.354590\pi\)
\(728\) 1740.95 + 1264.88i 0.0886319 + 0.0643949i
\(729\) −9507.85 + 29262.1i −0.483049 + 1.48667i
\(730\) −3695.45 11373.4i −0.187363 0.576644i
\(731\) 18742.9 13617.5i 0.948333 0.689004i
\(732\) −10114.8 + 7348.84i −0.510729 + 0.371067i
\(733\) −4289.57 13201.9i −0.216151 0.665245i −0.999070 0.0431210i \(-0.986270\pi\)
0.782919 0.622124i \(-0.213730\pi\)
\(734\) −294.680 + 906.933i −0.0148186 + 0.0456069i
\(735\) −18262.4 13268.4i −0.916488 0.665868i
\(736\) 3330.32 0.166790
\(737\) 1088.91 + 10691.7i 0.0544239 + 0.534372i
\(738\) 12465.4 0.621757
\(739\) −5160.93 3749.64i −0.256898 0.186648i 0.451880 0.892079i \(-0.350753\pi\)
−0.708779 + 0.705431i \(0.750753\pi\)
\(740\) −1344.44 + 4137.77i −0.0667874 + 0.205550i
\(741\) −219.498 675.545i −0.0108819 0.0334909i
\(742\) 19034.8 13829.6i 0.941763 0.684231i
\(743\) −18641.9 + 13544.2i −0.920467 + 0.668758i −0.943640 0.330973i \(-0.892623\pi\)
0.0231734 + 0.999731i \(0.492623\pi\)
\(744\) 6100.96 + 18776.8i 0.300634 + 0.925257i
\(745\) −1711.04 + 5266.03i −0.0841443 + 0.258970i
\(746\) −20611.3 14975.0i −1.01157 0.734950i
\(747\) −62561.8 −3.06428
\(748\) 4806.07 8262.74i 0.234930 0.403898i
\(749\) −16721.1 −0.815720
\(750\) −15459.9 11232.3i −0.752688 0.546860i
\(751\) −6429.44 + 19787.8i −0.312401 + 0.961473i 0.664409 + 0.747369i \(0.268683\pi\)
−0.976811 + 0.214104i \(0.931317\pi\)
\(752\) −665.517 2048.25i −0.0322725 0.0993245i
\(753\) 13562.4 9853.63i 0.656361 0.476874i
\(754\) −2362.55 + 1716.49i −0.114110 + 0.0829059i
\(755\) −3073.68 9459.83i −0.148163 0.455998i
\(756\) 4712.38 14503.2i 0.226703 0.697720i
\(757\) 17667.1 + 12835.9i 0.848246 + 0.616287i 0.924662 0.380789i \(-0.124348\pi\)
−0.0764161 + 0.997076i \(0.524348\pi\)
\(758\) 2597.38 0.124460
\(759\) 31713.2 + 6847.77i 1.51662 + 0.327481i
\(760\) 738.696 0.0352570
\(761\) 5775.94 + 4196.47i 0.275135 + 0.199897i 0.716793 0.697286i \(-0.245609\pi\)
−0.441658 + 0.897184i \(0.645609\pi\)
\(762\) 8189.22 25203.8i 0.389323 1.19821i
\(763\) 9042.17 + 27828.9i 0.429028 + 1.32041i
\(764\) −7411.45 + 5384.73i −0.350964 + 0.254990i
\(765\) 31057.0 22564.2i 1.46780 1.06642i
\(766\) 414.434 + 1275.50i 0.0195484 + 0.0601639i
\(767\) 2308.84 7105.86i 0.108693 0.334521i
\(768\) −1769.74 1285.79i −0.0831509 0.0604127i
\(769\) 15473.8 0.725618 0.362809 0.931864i \(-0.381818\pi\)
0.362809 + 0.931864i \(0.381818\pi\)
\(770\) −19945.7 + 8803.46i −0.933496 + 0.412019i
\(771\) 50774.0 2.37170
\(772\) 7453.96 + 5415.62i 0.347505 + 0.252477i