Properties

Label 22.4.c.b.15.1
Level 22
Weight 4
Character 22.15
Analytic conductor 1.298
Analytic rank 0
Dimension 8
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 22 = 2 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 22.c (of order \(5\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(1.29804202013\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 15.1
Root \(-4.79501 - 3.48378i\)
Character \(\chi\) = 22.15
Dual form 22.4.c.b.3.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(1.61803 + 1.17557i) q^{2}\) \(+(-1.33153 + 4.09803i) q^{3}\) \(+(1.23607 + 3.80423i) q^{4}\) \(+(6.52241 - 4.73881i) q^{5}\) \(+(-6.97198 + 5.06544i) q^{6}\) \(+(-8.05890 - 24.8027i) q^{7}\) \(+(-2.47214 + 7.60845i) q^{8}\) \(+(6.82261 + 4.95692i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(1.61803 + 1.17557i) q^{2}\) \(+(-1.33153 + 4.09803i) q^{3}\) \(+(1.23607 + 3.80423i) q^{4}\) \(+(6.52241 - 4.73881i) q^{5}\) \(+(-6.97198 + 5.06544i) q^{6}\) \(+(-8.05890 - 24.8027i) q^{7}\) \(+(-2.47214 + 7.60845i) q^{8}\) \(+(6.82261 + 4.95692i) q^{9}\) \(+16.1243 q^{10}\) \(+(-33.3764 - 14.7314i) q^{11}\) \(-17.2357 q^{12}\) \(+(2.64049 + 1.91843i) q^{13}\) \(+(16.1178 - 49.6055i) q^{14}\) \(+(10.7350 + 33.0389i) q^{15}\) \(+(-12.9443 + 9.40456i) q^{16}\) \(+(16.8855 - 12.2681i) q^{17}\) \(+(5.21201 + 16.0409i) q^{18}\) \(+(-38.9268 + 119.804i) q^{19}\) \(+(26.0897 + 18.9552i) q^{20}\) \(+112.373 q^{21}\) \(+(-36.6864 - 63.0723i) q^{22}\) \(+97.8394 q^{23}\) \(+(-27.8879 - 20.2618i) q^{24}\) \(+(-18.5416 + 57.0651i) q^{25}\) \(+(2.01715 + 6.20815i) q^{26}\) \(+(-123.520 + 89.7424i) q^{27}\) \(+(84.3939 - 61.3158i) q^{28}\) \(+(-81.5293 - 250.921i) q^{29}\) \(+(-21.4700 + 66.0778i) q^{30}\) \(+(-161.288 - 117.183i) q^{31}\) \(-32.0000 q^{32}\) \(+(104.811 - 117.162i) q^{33}\) \(+41.7433 q^{34}\) \(+(-170.099 - 123.584i) q^{35}\) \(+(-10.4240 + 32.0819i) q^{36}\) \(+(112.990 + 347.748i) q^{37}\) \(+(-203.823 + 148.086i) q^{38}\) \(+(-11.3776 + 8.26634i) q^{39}\) \(+(19.9307 + 61.3405i) q^{40}\) \(+(84.5880 - 260.335i) q^{41}\) \(+(181.823 + 132.102i) q^{42}\) \(+388.059 q^{43}\) \(+(14.7861 - 145.180i) q^{44}\) \(+67.9898 q^{45}\) \(+(158.307 + 115.017i) q^{46}\) \(+(-16.0238 + 49.3162i) q^{47}\) \(+(-21.3045 - 65.5684i) q^{48}\) \(+(-272.737 + 198.155i) q^{49}\) \(+(-97.0849 + 70.5363i) q^{50}\) \(+(27.7912 + 85.5326i) q^{51}\) \(+(-4.03430 + 12.4163i) q^{52}\) \(+(333.739 + 242.476i) q^{53}\) \(-305.358 q^{54}\) \(+(-287.504 + 62.0801i) q^{55}\) \(+208.633 q^{56}\) \(+(-439.129 - 319.046i) q^{57}\) \(+(163.059 - 501.843i) q^{58}\) \(+(8.12202 + 24.9970i) q^{59}\) \(+(-112.418 + 81.6766i) q^{60}\) \(+(-132.799 + 96.4844i) q^{61}\) \(+(-123.213 - 379.212i) q^{62}\) \(+(67.9624 - 209.167i) q^{63}\) \(+(-51.7771 - 37.6183i) q^{64}\) \(+26.3134 q^{65}\) \(+(307.321 - 66.3591i) q^{66}\) \(+276.961 q^{67}\) \(+(67.5421 + 49.0722i) q^{68}\) \(+(-130.276 + 400.948i) q^{69}\) \(+(-129.944 - 399.927i) q^{70}\) \(+(418.205 - 303.844i) q^{71}\) \(+(-54.5809 + 39.6554i) q^{72}\) \(+(-74.6476 - 229.742i) q^{73}\) \(+(-225.980 + 695.495i) q^{74}\) \(+(-209.166 - 151.968i) q^{75}\) \(-503.879 q^{76}\) \(+(-96.4024 + 946.546i) q^{77}\) \(-28.1271 q^{78}\) \(+(220.959 + 160.536i) q^{79}\) \(+(-39.8615 + 122.681i) q^{80}\) \(+(-132.934 - 409.129i) q^{81}\) \(+(442.908 - 321.792i) q^{82}\) \(+(-58.7298 + 42.6697i) q^{83}\) \(+(138.901 + 427.492i) q^{84}\) \(+(51.9984 - 160.035i) q^{85}\) \(+(627.893 + 456.191i) q^{86}\) \(+1136.84 q^{87}\) \(+(194.594 - 217.525i) q^{88}\) \(-1194.73 q^{89}\) \(+(110.010 + 79.9268i) q^{90}\) \(+(26.3028 - 80.9517i) q^{91}\) \(+(120.936 + 372.203i) q^{92}\) \(+(694.979 - 504.932i) q^{93}\) \(+(-83.9018 + 60.9582i) q^{94}\) \(+(313.833 + 965.880i) q^{95}\) \(+(42.6089 - 131.137i) q^{96}\) \(+(-1184.10 - 860.299i) q^{97}\) \(-674.244 q^{98}\) \(+(-154.692 - 265.951i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(8q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 16q^{8} \) \(\mathstrut -\mathstrut 21q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(8q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 16q^{8} \) \(\mathstrut -\mathstrut 21q^{9} \) \(\mathstrut -\mathstrut 100q^{10} \) \(\mathstrut -\mathstrut 155q^{11} \) \(\mathstrut +\mathstrut 32q^{12} \) \(\mathstrut +\mathstrut 7q^{13} \) \(\mathstrut +\mathstrut 2q^{14} \) \(\mathstrut +\mathstrut 211q^{15} \) \(\mathstrut -\mathstrut 32q^{16} \) \(\mathstrut +\mathstrut 161q^{17} \) \(\mathstrut +\mathstrut 162q^{18} \) \(\mathstrut -\mathstrut 272q^{19} \) \(\mathstrut +\mathstrut 20q^{20} \) \(\mathstrut -\mathstrut 50q^{21} \) \(\mathstrut +\mathstrut 628q^{23} \) \(\mathstrut +\mathstrut 56q^{24} \) \(\mathstrut -\mathstrut 17q^{25} \) \(\mathstrut +\mathstrut 96q^{26} \) \(\mathstrut -\mathstrut 528q^{27} \) \(\mathstrut +\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 33q^{29} \) \(\mathstrut -\mathstrut 422q^{30} \) \(\mathstrut +\mathstrut 323q^{31} \) \(\mathstrut -\mathstrut 256q^{32} \) \(\mathstrut -\mathstrut 1144q^{33} \) \(\mathstrut +\mathstrut 208q^{34} \) \(\mathstrut -\mathstrut 697q^{35} \) \(\mathstrut -\mathstrut 324q^{36} \) \(\mathstrut +\mathstrut 49q^{37} \) \(\mathstrut -\mathstrut 576q^{38} \) \(\mathstrut +\mathstrut 391q^{39} \) \(\mathstrut +\mathstrut 240q^{40} \) \(\mathstrut +\mathstrut 361q^{41} \) \(\mathstrut +\mathstrut 1430q^{42} \) \(\mathstrut +\mathstrut 1442q^{43} \) \(\mathstrut +\mathstrut 620q^{44} \) \(\mathstrut +\mathstrut 2652q^{45} \) \(\mathstrut -\mathstrut 416q^{46} \) \(\mathstrut -\mathstrut 1069q^{47} \) \(\mathstrut +\mathstrut 48q^{48} \) \(\mathstrut -\mathstrut 709q^{49} \) \(\mathstrut -\mathstrut 76q^{50} \) \(\mathstrut -\mathstrut 1332q^{51} \) \(\mathstrut -\mathstrut 192q^{52} \) \(\mathstrut -\mathstrut 281q^{53} \) \(\mathstrut -\mathstrut 1144q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut +\mathstrut 48q^{56} \) \(\mathstrut -\mathstrut 438q^{57} \) \(\mathstrut -\mathstrut 66q^{58} \) \(\mathstrut -\mathstrut 128q^{59} \) \(\mathstrut -\mathstrut 1116q^{60} \) \(\mathstrut -\mathstrut 617q^{61} \) \(\mathstrut +\mathstrut 1044q^{62} \) \(\mathstrut +\mathstrut 694q^{63} \) \(\mathstrut -\mathstrut 128q^{64} \) \(\mathstrut -\mathstrut 138q^{65} \) \(\mathstrut +\mathstrut 1248q^{66} \) \(\mathstrut +\mathstrut 578q^{67} \) \(\mathstrut +\mathstrut 644q^{68} \) \(\mathstrut -\mathstrut 310q^{69} \) \(\mathstrut +\mathstrut 34q^{70} \) \(\mathstrut +\mathstrut 115q^{71} \) \(\mathstrut +\mathstrut 168q^{72} \) \(\mathstrut -\mathstrut 1487q^{73} \) \(\mathstrut -\mathstrut 98q^{74} \) \(\mathstrut -\mathstrut 1852q^{75} \) \(\mathstrut -\mathstrut 128q^{76} \) \(\mathstrut +\mathstrut 553q^{77} \) \(\mathstrut -\mathstrut 4152q^{78} \) \(\mathstrut +\mathstrut 71q^{79} \) \(\mathstrut -\mathstrut 480q^{80} \) \(\mathstrut +\mathstrut 1630q^{81} \) \(\mathstrut +\mathstrut 658q^{82} \) \(\mathstrut +\mathstrut 1942q^{83} \) \(\mathstrut +\mathstrut 2960q^{84} \) \(\mathstrut -\mathstrut 329q^{85} \) \(\mathstrut +\mathstrut 2426q^{86} \) \(\mathstrut +\mathstrut 2122q^{87} \) \(\mathstrut +\mathstrut 560q^{88} \) \(\mathstrut -\mathstrut 2202q^{89} \) \(\mathstrut +\mathstrut 1286q^{90} \) \(\mathstrut +\mathstrut 4523q^{91} \) \(\mathstrut -\mathstrut 2088q^{92} \) \(\mathstrut +\mathstrut 6019q^{93} \) \(\mathstrut -\mathstrut 1332q^{94} \) \(\mathstrut -\mathstrut 793q^{95} \) \(\mathstrut -\mathstrut 96q^{96} \) \(\mathstrut -\mathstrut 5128q^{97} \) \(\mathstrut -\mathstrut 3292q^{98} \) \(\mathstrut -\mathstrut 2213q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/22\mathbb{Z}\right)^\times\).

\(n\) \(13\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61803 + 1.17557i 0.572061 + 0.415627i
\(3\) −1.33153 + 4.09803i −0.256253 + 0.788665i 0.737327 + 0.675536i \(0.236088\pi\)
−0.993580 + 0.113130i \(0.963912\pi\)
\(4\) 1.23607 + 3.80423i 0.154508 + 0.475528i
\(5\) 6.52241 4.73881i 0.583382 0.423852i −0.256559 0.966528i \(-0.582589\pi\)
0.839942 + 0.542676i \(0.182589\pi\)
\(6\) −6.97198 + 5.06544i −0.474383 + 0.344659i
\(7\) −8.05890 24.8027i −0.435140 1.33922i −0.892943 0.450169i \(-0.851364\pi\)
0.457804 0.889053i \(-0.348636\pi\)
\(8\) −2.47214 + 7.60845i −0.109254 + 0.336249i
\(9\) 6.82261 + 4.95692i 0.252689 + 0.183590i
\(10\) 16.1243 0.509895
\(11\) −33.3764 14.7314i −0.914852 0.403790i
\(12\) −17.2357 −0.414626
\(13\) 2.64049 + 1.91843i 0.0563338 + 0.0409289i 0.615596 0.788062i \(-0.288915\pi\)
−0.559262 + 0.828991i \(0.688915\pi\)
\(14\) 16.1178 49.6055i 0.307690 0.946973i
\(15\) 10.7350 + 33.0389i 0.184784 + 0.568707i
\(16\) −12.9443 + 9.40456i −0.202254 + 0.146946i
\(17\) 16.8855 12.2681i 0.240902 0.175026i −0.460783 0.887513i \(-0.652431\pi\)
0.701685 + 0.712487i \(0.252431\pi\)
\(18\) 5.21201 + 16.0409i 0.0682491 + 0.210049i
\(19\) −38.9268 + 119.804i −0.470022 + 1.44658i 0.382534 + 0.923942i \(0.375052\pi\)
−0.852555 + 0.522637i \(0.824948\pi\)
\(20\) 26.0897 + 18.9552i 0.291691 + 0.211926i
\(21\) 112.373 1.16770
\(22\) −36.6864 63.0723i −0.355525 0.611230i
\(23\) 97.8394 0.886997 0.443498 0.896275i \(-0.353737\pi\)
0.443498 + 0.896275i \(0.353737\pi\)
\(24\) −27.8879 20.2618i −0.237192 0.172330i
\(25\) −18.5416 + 57.0651i −0.148333 + 0.456521i
\(26\) 2.01715 + 6.20815i 0.0152152 + 0.0468277i
\(27\) −123.520 + 89.7424i −0.880422 + 0.639664i
\(28\) 84.3939 61.3158i 0.569605 0.413842i
\(29\) −81.5293 250.921i −0.522055 1.60672i −0.770066 0.637964i \(-0.779777\pi\)
0.248011 0.968757i \(-0.420223\pi\)
\(30\) −21.4700 + 66.0778i −0.130662 + 0.402137i
\(31\) −161.288 117.183i −0.934460 0.678925i 0.0126205 0.999920i \(-0.495983\pi\)
−0.947081 + 0.320995i \(0.895983\pi\)
\(32\) −32.0000 −0.176777
\(33\) 104.811 117.162i 0.552889 0.618040i
\(34\) 41.7433 0.210557
\(35\) −170.099 123.584i −0.821485 0.596844i
\(36\) −10.4240 + 32.0819i −0.0482594 + 0.148527i
\(37\) 112.990 + 347.748i 0.502039 + 1.54512i 0.805692 + 0.592335i \(0.201794\pi\)
−0.303653 + 0.952783i \(0.598206\pi\)
\(38\) −203.823 + 148.086i −0.870118 + 0.632178i
\(39\) −11.3776 + 8.26634i −0.0467149 + 0.0339404i
\(40\) 19.9307 + 61.3405i 0.0787831 + 0.242469i
\(41\) 84.5880 260.335i 0.322205 0.991646i −0.650481 0.759523i \(-0.725433\pi\)
0.972686 0.232124i \(-0.0745674\pi\)
\(42\) 181.823 + 132.102i 0.667999 + 0.485329i
\(43\) 388.059 1.37624 0.688121 0.725596i \(-0.258436\pi\)
0.688121 + 0.725596i \(0.258436\pi\)
\(44\) 14.7861 145.180i 0.0506612 0.497427i
\(45\) 67.9898 0.225229
\(46\) 158.307 + 115.017i 0.507417 + 0.368660i
\(47\) −16.0238 + 49.3162i −0.0497301 + 0.153053i −0.972838 0.231488i \(-0.925641\pi\)
0.923108 + 0.384542i \(0.125641\pi\)
\(48\) −21.3045 65.5684i −0.0640632 0.197166i
\(49\) −272.737 + 198.155i −0.795153 + 0.577712i
\(50\) −97.0849 + 70.5363i −0.274598 + 0.199507i
\(51\) 27.7912 + 85.5326i 0.0763049 + 0.234842i
\(52\) −4.03430 + 12.4163i −0.0107588 + 0.0331122i
\(53\) 333.739 + 242.476i 0.864955 + 0.628427i 0.929228 0.369506i \(-0.120473\pi\)
−0.0642735 + 0.997932i \(0.520473\pi\)
\(54\) −305.358 −0.769517
\(55\) −287.504 + 62.0801i −0.704856 + 0.152198i
\(56\) 208.633 0.497853
\(57\) −439.129 319.046i −1.02042 0.741380i
\(58\) 163.059 501.843i 0.369149 1.13612i
\(59\) 8.12202 + 24.9970i 0.0179220 + 0.0551582i 0.959618 0.281308i \(-0.0907682\pi\)
−0.941696 + 0.336466i \(0.890768\pi\)
\(60\) −112.418 + 81.6766i −0.241886 + 0.175740i
\(61\) −132.799 + 96.4844i −0.278741 + 0.202517i −0.718368 0.695663i \(-0.755111\pi\)
0.439627 + 0.898180i \(0.355111\pi\)
\(62\) −123.213 379.212i −0.252389 0.776774i
\(63\) 67.9624 209.167i 0.135912 0.418294i
\(64\) −51.7771 37.6183i −0.101127 0.0734732i
\(65\) 26.3134 0.0502119
\(66\) 307.321 66.3591i 0.573160 0.123761i
\(67\) 276.961 0.505017 0.252508 0.967595i \(-0.418744\pi\)
0.252508 + 0.967595i \(0.418744\pi\)
\(68\) 67.5421 + 49.0722i 0.120451 + 0.0875130i
\(69\) −130.276 + 400.948i −0.227296 + 0.699544i
\(70\) −129.944 399.927i −0.221876 0.682863i
\(71\) 418.205 303.844i 0.699039 0.507882i −0.180580 0.983560i \(-0.557797\pi\)
0.879619 + 0.475679i \(0.157797\pi\)
\(72\) −54.5809 + 39.6554i −0.0893392 + 0.0649087i
\(73\) −74.6476 229.742i −0.119683 0.368346i 0.873212 0.487340i \(-0.162033\pi\)
−0.992895 + 0.118995i \(0.962033\pi\)
\(74\) −225.980 + 695.495i −0.354995 + 1.09256i
\(75\) −209.166 151.968i −0.322031 0.233969i
\(76\) −503.879 −0.760511
\(77\) −96.4024 + 946.546i −0.142676 + 1.40089i
\(78\) −28.1271 −0.0408303
\(79\) 220.959 + 160.536i 0.314681 + 0.228629i 0.733902 0.679255i \(-0.237697\pi\)
−0.419222 + 0.907884i \(0.637697\pi\)
\(80\) −39.8615 + 122.681i −0.0557081 + 0.171452i
\(81\) −132.934 409.129i −0.182351 0.561220i
\(82\) 442.908 321.792i 0.596476 0.433365i
\(83\) −58.7298 + 42.6697i −0.0776678 + 0.0564290i −0.625942 0.779870i \(-0.715285\pi\)
0.548274 + 0.836299i \(0.315285\pi\)
\(84\) 138.901 + 427.492i 0.180420 + 0.555276i
\(85\) 51.9984 160.035i 0.0663532 0.204214i
\(86\) 627.893 + 456.191i 0.787295 + 0.572004i
\(87\) 1136.84 1.40094
\(88\) 194.594 217.525i 0.235725 0.263503i
\(89\) −1194.73 −1.42294 −0.711470 0.702717i \(-0.751970\pi\)
−0.711470 + 0.702717i \(0.751970\pi\)
\(90\) 110.010 + 79.9268i 0.128845 + 0.0936114i
\(91\) 26.3028 80.9517i 0.0302998 0.0932532i
\(92\) 120.936 + 372.203i 0.137049 + 0.421792i
\(93\) 694.979 504.932i 0.774903 0.563000i
\(94\) −83.9018 + 60.9582i −0.0920618 + 0.0668868i
\(95\) 313.833 + 965.880i 0.338933 + 1.04313i
\(96\) 42.6089 131.137i 0.0452995 0.139418i
\(97\) −1184.10 860.299i −1.23946 0.900517i −0.241893 0.970303i \(-0.577768\pi\)
−0.997562 + 0.0697858i \(0.977768\pi\)
\(98\) −674.244 −0.694989
\(99\) −154.692 265.951i −0.157042 0.269991i
\(100\) −240.007 −0.240007
\(101\) 728.191 + 529.062i 0.717403 + 0.521224i 0.885553 0.464538i \(-0.153779\pi\)
−0.168151 + 0.985761i \(0.553779\pi\)
\(102\) −55.5825 + 171.065i −0.0539557 + 0.166059i
\(103\) −128.899 396.710i −0.123309 0.379505i 0.870281 0.492556i \(-0.163937\pi\)
−0.993589 + 0.113052i \(0.963937\pi\)
\(104\) −21.1239 + 15.3474i −0.0199170 + 0.0144705i
\(105\) 732.943 532.514i 0.681218 0.494934i
\(106\) 254.954 + 784.668i 0.233616 + 0.718997i
\(107\) 333.858 1027.51i 0.301638 0.928346i −0.679273 0.733886i \(-0.737705\pi\)
0.980911 0.194460i \(-0.0622954\pi\)
\(108\) −494.079 358.970i −0.440211 0.319832i
\(109\) −1472.08 −1.29358 −0.646789 0.762669i \(-0.723888\pi\)
−0.646789 + 0.762669i \(0.723888\pi\)
\(110\) −538.171 237.534i −0.466478 0.205890i
\(111\) −1575.53 −1.34723
\(112\) 337.576 + 245.263i 0.284803 + 0.206921i
\(113\) −39.0846 + 120.290i −0.0325378 + 0.100141i −0.966006 0.258518i \(-0.916766\pi\)
0.933469 + 0.358659i \(0.116766\pi\)
\(114\) −335.465 1032.45i −0.275607 0.848230i
\(115\) 638.149 463.643i 0.517458 0.375956i
\(116\) 853.786 620.312i 0.683379 0.496504i
\(117\) 8.50554 + 26.1774i 0.00672083 + 0.0206846i
\(118\) −16.2440 + 49.9940i −0.0126727 + 0.0390027i
\(119\) −440.360 319.940i −0.339225 0.246461i
\(120\) −277.913 −0.211416
\(121\) 896.971 + 983.364i 0.673907 + 0.738816i
\(122\) −328.298 −0.243629
\(123\) 954.228 + 693.287i 0.699511 + 0.508224i
\(124\) 246.427 758.424i 0.178466 0.549262i
\(125\) 460.902 + 1418.51i 0.329795 + 1.01500i
\(126\) 355.856 258.544i 0.251605 0.182801i
\(127\) −860.426 + 625.136i −0.601185 + 0.436786i −0.846299 0.532708i \(-0.821174\pi\)
0.245115 + 0.969494i \(0.421174\pi\)
\(128\) −39.5542 121.735i −0.0273135 0.0840623i
\(129\) −516.712 + 1590.28i −0.352666 + 1.08539i
\(130\) 42.5760 + 30.9333i 0.0287243 + 0.0208694i
\(131\) −1525.04 −1.01713 −0.508563 0.861025i \(-0.669823\pi\)
−0.508563 + 0.861025i \(0.669823\pi\)
\(132\) 575.265 + 253.906i 0.379321 + 0.167422i
\(133\) 3285.18 2.14182
\(134\) 448.132 + 325.587i 0.288901 + 0.209899i
\(135\) −380.375 + 1170.67i −0.242500 + 0.746338i
\(136\) 51.5976 + 158.801i 0.0325328 + 0.100126i
\(137\) 1681.81 1221.91i 1.04881 0.762004i 0.0768227 0.997045i \(-0.475522\pi\)
0.971985 + 0.235041i \(0.0755225\pi\)
\(138\) −682.134 + 495.600i −0.420776 + 0.305712i
\(139\) 465.826 + 1433.67i 0.284251 + 0.874834i 0.986622 + 0.163023i \(0.0521246\pi\)
−0.702371 + 0.711811i \(0.747875\pi\)
\(140\) 259.888 799.854i 0.156890 0.482857i
\(141\) −180.763 131.332i −0.107964 0.0784408i
\(142\) 1033.86 0.610983
\(143\) −59.8688 102.928i −0.0350104 0.0601909i
\(144\) −134.931 −0.0780853
\(145\) −1720.84 1250.26i −0.985570 0.716059i
\(146\) 149.295 459.484i 0.0846285 0.260460i
\(147\) −448.888 1381.53i −0.251862 0.775150i
\(148\) −1183.25 + 859.679i −0.657178 + 0.477468i
\(149\) 347.754 252.658i 0.191202 0.138916i −0.488066 0.872807i \(-0.662297\pi\)
0.679268 + 0.733890i \(0.262297\pi\)
\(150\) −159.788 491.778i −0.0869777 0.267690i
\(151\) 275.545 848.040i 0.148500 0.457036i −0.848944 0.528482i \(-0.822761\pi\)
0.997444 + 0.0714459i \(0.0227613\pi\)
\(152\) −815.293 592.345i −0.435059 0.316089i
\(153\) 176.015 0.0930064
\(154\) −1268.71 + 1418.22i −0.663869 + 0.742098i
\(155\) −1607.30 −0.832912
\(156\) −45.5106 33.0654i −0.0233574 0.0169702i
\(157\) 167.188 514.551i 0.0849875 0.261565i −0.899528 0.436864i \(-0.856089\pi\)
0.984515 + 0.175299i \(0.0560892\pi\)
\(158\) 168.797 + 519.505i 0.0849924 + 0.261580i
\(159\) −1438.06 + 1044.81i −0.717266 + 0.521124i
\(160\) −208.717 + 151.642i −0.103128 + 0.0749272i
\(161\) −788.478 2426.69i −0.385968 1.18789i
\(162\) 265.868 818.259i 0.128942 0.396842i
\(163\) 2368.47 + 1720.80i 1.13812 + 0.826891i 0.986856 0.161603i \(-0.0516665\pi\)
0.151261 + 0.988494i \(0.451666\pi\)
\(164\) 1094.93 0.521339
\(165\) 128.414 1260.86i 0.0605881 0.594897i
\(166\) −145.188 −0.0678842
\(167\) −1407.88 1022.88i −0.652364 0.473970i 0.211712 0.977332i \(-0.432096\pi\)
−0.864076 + 0.503362i \(0.832096\pi\)
\(168\) −277.801 + 854.984i −0.127576 + 0.392640i
\(169\) −675.619 2079.34i −0.307519 0.946445i
\(170\) 272.267 197.814i 0.122835 0.0892448i
\(171\) −859.443 + 624.422i −0.384346 + 0.279244i
\(172\) 479.667 + 1476.26i 0.212641 + 0.654442i
\(173\) −89.8625 + 276.568i −0.0394920 + 0.121544i −0.968859 0.247613i \(-0.920354\pi\)
0.929367 + 0.369157i \(0.120354\pi\)
\(174\) 1839.45 + 1336.44i 0.801426 + 0.582270i
\(175\) 1564.80 0.675928
\(176\) 570.576 123.203i 0.244368 0.0527659i
\(177\) −113.253 −0.0480939
\(178\) −1933.12 1404.49i −0.814009 0.591412i
\(179\) 803.545 2473.06i 0.335529 1.03265i −0.630932 0.775839i \(-0.717327\pi\)
0.966461 0.256814i \(-0.0826729\pi\)
\(180\) 84.0400 + 258.649i 0.0347999 + 0.107103i
\(181\) −1501.40 + 1090.83i −0.616563 + 0.447959i −0.851719 0.523998i \(-0.824440\pi\)
0.235156 + 0.971958i \(0.424440\pi\)
\(182\) 137.723 100.062i 0.0560919 0.0407532i
\(183\) −218.569 672.687i −0.0882902 0.271729i
\(184\) −241.872 + 744.406i −0.0969080 + 0.298252i
\(185\) 2384.88 + 1732.72i 0.947782 + 0.688604i
\(186\) 1718.08 0.677290
\(187\) −744.304 + 160.716i −0.291064 + 0.0628487i
\(188\) −207.417 −0.0804649
\(189\) 3221.29 + 2340.41i 1.23976 + 0.900738i
\(190\) −627.667 + 1931.76i −0.239662 + 0.737603i
\(191\) 473.462 + 1457.17i 0.179364 + 0.552026i 0.999806 0.0197044i \(-0.00627251\pi\)
−0.820442 + 0.571730i \(0.806273\pi\)
\(192\) 223.103 162.094i 0.0838599 0.0609278i
\(193\) −850.742 + 618.100i −0.317294 + 0.230528i −0.735020 0.678045i \(-0.762827\pi\)
0.417726 + 0.908573i \(0.362827\pi\)
\(194\) −904.572 2783.99i −0.334765 1.03030i
\(195\) −35.0371 + 107.833i −0.0128670 + 0.0396004i
\(196\) −1090.95 792.622i −0.397577 0.288856i
\(197\) −1577.77 −0.570616 −0.285308 0.958436i \(-0.592096\pi\)
−0.285308 + 0.958436i \(0.592096\pi\)
\(198\) 62.3473 612.169i 0.0223779 0.219722i
\(199\) 3760.53 1.33958 0.669791 0.742550i \(-0.266384\pi\)
0.669791 + 0.742550i \(0.266384\pi\)
\(200\) −388.340 282.145i −0.137299 0.0997534i
\(201\) −368.781 + 1134.99i −0.129412 + 0.398289i
\(202\) 556.288 + 1712.08i 0.193764 + 0.596344i
\(203\) −5566.50 + 4044.30i −1.92459 + 1.39830i
\(204\) −291.034 + 211.448i −0.0998844 + 0.0725703i
\(205\) −681.961 2098.86i −0.232342 0.715076i
\(206\) 257.798 793.420i 0.0871923 0.268350i
\(207\) 667.521 + 484.982i 0.224135 + 0.162843i
\(208\) −52.2211 −0.0174081
\(209\) 3064.12 3425.19i 1.01411 1.13361i
\(210\) 1811.93 0.595407
\(211\) −1149.27 834.996i −0.374973 0.272434i 0.384297 0.923209i \(-0.374444\pi\)
−0.759270 + 0.650776i \(0.774444\pi\)
\(212\) −509.908 + 1569.34i −0.165192 + 0.508408i
\(213\) 688.307 + 2118.39i 0.221418 + 0.681454i
\(214\) 1748.10 1270.07i 0.558401 0.405702i
\(215\) 2531.08 1838.94i 0.802876 0.583323i
\(216\) −377.443 1161.65i −0.118897 0.365927i
\(217\) −1606.65 + 4944.76i −0.502611 + 1.54688i
\(218\) −2381.88 1730.54i −0.740006 0.537645i
\(219\) 1040.88 0.321171
\(220\) −591.542 1017.00i −0.181281 0.311663i
\(221\) 68.1213 0.0207346
\(222\) −2549.26 1852.14i −0.770698 0.559945i
\(223\) 1624.34 4999.20i 0.487774 1.50121i −0.340148 0.940372i \(-0.610477\pi\)
0.827922 0.560843i \(-0.189523\pi\)
\(224\) 257.885 + 793.688i 0.0769226 + 0.236743i
\(225\) −409.369 + 297.424i −0.121295 + 0.0881256i
\(226\) −204.650 + 148.687i −0.0602350 + 0.0437633i
\(227\) 861.007 + 2649.91i 0.251749 + 0.774804i 0.994453 + 0.105184i \(0.0335430\pi\)
−0.742704 + 0.669620i \(0.766457\pi\)
\(228\) 670.929 2064.91i 0.194883 0.599789i
\(229\) −3626.49 2634.80i −1.04649 0.760316i −0.0749442 0.997188i \(-0.523878\pi\)
−0.971541 + 0.236872i \(0.923878\pi\)
\(230\) 1577.59 0.452275
\(231\) −3750.61 1655.41i −1.06828 0.471507i
\(232\) 2110.67 0.597296
\(233\) −255.337 185.513i −0.0717925 0.0521603i 0.551310 0.834300i \(-0.314128\pi\)
−0.623103 + 0.782140i \(0.714128\pi\)
\(234\) −17.0111 + 52.3547i −0.00475234 + 0.0146262i
\(235\) 129.186 + 397.595i 0.0358604 + 0.110367i
\(236\) −85.0549 + 61.7960i −0.0234602 + 0.0170448i
\(237\) −952.093 + 691.736i −0.260950 + 0.189591i
\(238\) −336.405 1035.35i −0.0916215 0.281982i
\(239\) 249.186 766.915i 0.0674414 0.207563i −0.911656 0.410953i \(-0.865196\pi\)
0.979098 + 0.203390i \(0.0651959\pi\)
\(240\) −449.673 326.707i −0.120943 0.0878701i
\(241\) −1009.91 −0.269935 −0.134967 0.990850i \(-0.543093\pi\)
−0.134967 + 0.990850i \(0.543093\pi\)
\(242\) 295.315 + 2645.57i 0.0784446 + 0.702742i
\(243\) −2268.70 −0.598919
\(244\) −531.197 385.937i −0.139371 0.101259i
\(245\) −839.886 + 2584.90i −0.219014 + 0.674055i
\(246\) 728.965 + 2243.52i 0.188931 + 0.581471i
\(247\) −332.621 + 241.663i −0.0856849 + 0.0622537i
\(248\) 1290.31 937.464i 0.330382 0.240036i
\(249\) −96.6610 297.492i −0.0246010 0.0757140i
\(250\) −921.805 + 2837.02i −0.233200 + 0.717717i
\(251\) 2578.54 + 1873.42i 0.648429 + 0.471111i 0.862736 0.505655i \(-0.168749\pi\)
−0.214307 + 0.976766i \(0.568749\pi\)
\(252\) 879.724 0.219910
\(253\) −3265.53 1441.31i −0.811471 0.358160i
\(254\) −2127.09 −0.525455
\(255\) 586.589 + 426.182i 0.144053 + 0.104661i
\(256\) 79.1084 243.470i 0.0193136 0.0594410i
\(257\) 785.951 + 2418.91i 0.190764 + 0.587111i 1.00000 0.000372917i \(-0.000118703\pi\)
−0.809236 + 0.587484i \(0.800119\pi\)
\(258\) −2705.54 + 1965.69i −0.652866 + 0.474335i
\(259\) 7714.52 5604.93i 1.85080 1.34468i
\(260\) 32.5252 + 100.102i 0.00775817 + 0.0238772i
\(261\) 687.554 2116.07i 0.163059 0.501845i
\(262\) −2467.57 1792.80i −0.581859 0.422745i
\(263\) 2992.29 0.701568 0.350784 0.936456i \(-0.385915\pi\)
0.350784 + 0.936456i \(0.385915\pi\)
\(264\) 632.314 + 1087.09i 0.147410 + 0.253432i
\(265\) 3325.83 0.770960
\(266\) 5315.54 + 3861.96i 1.22525 + 0.890196i
\(267\) 1590.82 4896.05i 0.364632 1.12222i
\(268\) 342.342 + 1053.62i 0.0780294 + 0.240150i
\(269\) 664.469 482.765i 0.150607 0.109423i −0.509930 0.860216i \(-0.670329\pi\)
0.660537 + 0.750793i \(0.270329\pi\)
\(270\) −1991.67 + 1447.03i −0.448923 + 0.326162i
\(271\) 1989.99 + 6124.55i 0.446063 + 1.37284i 0.881313 + 0.472532i \(0.156660\pi\)
−0.435250 + 0.900310i \(0.643340\pi\)
\(272\) −103.195 + 317.602i −0.0230041 + 0.0707995i
\(273\) 296.719 + 215.579i 0.0657812 + 0.0477928i
\(274\) 4157.66 0.916692
\(275\) 1459.50 1631.48i 0.320041 0.357753i
\(276\) −1686.33 −0.367772
\(277\) −416.212 302.395i −0.0902806 0.0655927i 0.541729 0.840553i \(-0.317770\pi\)
−0.632010 + 0.774960i \(0.717770\pi\)
\(278\) −931.652 + 2867.33i −0.200996 + 0.618601i
\(279\) −519.543 1598.99i −0.111485 0.343114i
\(280\) 1360.79 988.673i 0.290439 0.211016i
\(281\) −6276.91 + 4560.44i −1.33256 + 0.968160i −0.332875 + 0.942971i \(0.608019\pi\)
−0.999683 + 0.0251891i \(0.991981\pi\)
\(282\) −138.091 424.999i −0.0291602 0.0897459i
\(283\) −1806.94 + 5561.18i −0.379545 + 1.16812i 0.560816 + 0.827940i \(0.310487\pi\)
−0.940361 + 0.340178i \(0.889513\pi\)
\(284\) 1672.82 + 1215.37i 0.349520 + 0.253941i
\(285\) −4376.08 −0.909532
\(286\) 24.1296 236.921i 0.00498886 0.0489841i
\(287\) −7138.71 −1.46824
\(288\) −218.324 158.621i −0.0446696 0.0324544i
\(289\) −1383.58 + 4258.24i −0.281617 + 0.866728i
\(290\) −1314.60 4045.93i −0.266193 0.819259i
\(291\) 5102.19 3706.96i 1.02782 0.746755i
\(292\) 781.720 567.953i 0.156667 0.113825i
\(293\) −2495.16 7679.30i −0.497504 1.53116i −0.813019 0.582238i \(-0.802177\pi\)
0.315515 0.948921i \(-0.397823\pi\)
\(294\) 897.776 2763.07i 0.178093 0.548114i
\(295\) 171.431 + 124.552i 0.0338343 + 0.0245820i
\(296\) −2925.15 −0.574394
\(297\) 5444.68 1175.66i 1.06375 0.229692i
\(298\) 859.695 0.167117
\(299\) 258.344 + 187.698i 0.0499679 + 0.0363038i
\(300\) 319.576 983.555i 0.0615025 0.189285i
\(301\) −3127.33 9624.93i −0.598858 1.84309i
\(302\) 1442.77 1048.23i 0.274908 0.199732i
\(303\) −3137.72 + 2279.68i −0.594908 + 0.432226i
\(304\) −622.828 1916.87i −0.117505 0.361645i
\(305\) −408.951 + 1258.62i −0.0767753 + 0.236290i
\(306\) 284.799 + 206.918i 0.0532054 + 0.0386560i
\(307\) −4210.64 −0.782781 −0.391391 0.920225i \(-0.628006\pi\)
−0.391391 + 0.920225i \(0.628006\pi\)
\(308\) −3720.03 + 803.259i −0.688210 + 0.148604i
\(309\) 1797.36 0.330900
\(310\) −2600.66 1889.49i −0.476477 0.346181i
\(311\) −407.549 + 1254.31i −0.0743086 + 0.228698i −0.981311 0.192426i \(-0.938364\pi\)
0.907003 + 0.421124i \(0.138364\pi\)
\(312\) −34.7670 107.002i −0.00630863 0.0194160i
\(313\) 3402.85 2472.31i 0.614505 0.446464i −0.236493 0.971633i \(-0.575998\pi\)
0.850998 + 0.525169i \(0.175998\pi\)
\(314\) 875.407 636.020i 0.157331 0.114308i
\(315\) −547.923 1686.33i −0.0980063 0.301632i
\(316\) −337.595 + 1039.01i −0.0600987 + 0.184965i
\(317\) 1992.69 + 1447.77i 0.353062 + 0.256515i 0.750152 0.661265i \(-0.229980\pi\)
−0.397090 + 0.917779i \(0.629980\pi\)
\(318\) −3555.07 −0.626913
\(319\) −975.271 + 9575.90i −0.171175 + 1.68071i
\(320\) −515.977 −0.0901376
\(321\) 3766.21 + 2736.32i 0.654859 + 0.475783i
\(322\) 1576.96 4853.37i 0.272920 0.839962i
\(323\) 812.466 + 2500.51i 0.139959 + 0.430750i
\(324\) 1392.10 1011.42i 0.238701 0.173427i
\(325\) −158.434 + 115.109i −0.0270410 + 0.0196464i
\(326\) 1809.35 + 5568.61i 0.307395 + 0.946064i
\(327\) 1960.12 6032.63i 0.331483 1.02020i
\(328\) 1771.63 + 1287.17i 0.298238 + 0.216683i
\(329\) 1352.31 0.226612
\(330\) 1690.01 1889.16i 0.281915 0.315135i
\(331\) −3332.42 −0.553373 −0.276687 0.960960i \(-0.589236\pi\)
−0.276687 + 0.960960i \(0.589236\pi\)
\(332\) −234.919 170.679i −0.0388339 0.0282145i
\(333\) −952.869 + 2932.63i −0.156808 + 0.482604i
\(334\) −1075.52 3310.12i −0.176198 0.542280i
\(335\) 1806.45 1312.46i 0.294618 0.214052i
\(336\) −1454.59 + 1056.82i −0.236173 + 0.171590i
\(337\) 2572.10 + 7916.10i 0.415760 + 1.27958i 0.911569 + 0.411146i \(0.134871\pi\)
−0.495810 + 0.868431i \(0.665129\pi\)
\(338\) 1351.24 4158.68i 0.217449 0.669238i
\(339\) −440.910 320.340i −0.0706399 0.0513229i
\(340\) 673.082 0.107362
\(341\) 3656.96 + 6287.16i 0.580749 + 0.998442i
\(342\) −2124.66 −0.335931
\(343\) −124.015 90.1024i −0.0195224 0.0141839i
\(344\) −959.334 + 2952.53i −0.150360 + 0.462761i
\(345\) 1050.30 + 3232.51i 0.163903 + 0.504441i
\(346\) −470.526 + 341.857i −0.0731088 + 0.0531167i
\(347\) −2930.66 + 2129.25i −0.453390 + 0.329407i −0.790933 0.611903i \(-0.790404\pi\)
0.337543 + 0.941310i \(0.390404\pi\)
\(348\) 1405.21 + 4324.80i 0.216458 + 0.666188i
\(349\) 644.814 1984.53i 0.0988999 0.304383i −0.889350 0.457226i \(-0.848843\pi\)
0.988250 + 0.152843i \(0.0488430\pi\)
\(350\) 2531.89 + 1839.53i 0.386672 + 0.280934i
\(351\) −498.316 −0.0757782
\(352\) 1068.05 + 471.405i 0.161724 + 0.0713807i
\(353\) 7582.15 1.14322 0.571611 0.820525i \(-0.306319\pi\)
0.571611 + 0.820525i \(0.306319\pi\)
\(354\) −183.247 133.137i −0.0275127 0.0199891i
\(355\) 1287.85 3963.59i 0.192540 0.592579i
\(356\) −1476.77 4545.04i −0.219856 0.676648i
\(357\) 1897.48 1378.60i 0.281303 0.204378i
\(358\) 4207.41 3056.87i 0.621142 0.451286i
\(359\) 1400.77 + 4311.13i 0.205933 + 0.633796i 0.999674 + 0.0255401i \(0.00813054\pi\)
−0.793741 + 0.608256i \(0.791869\pi\)
\(360\) −168.080 + 517.297i −0.0246072 + 0.0757332i
\(361\) −7288.73 5295.57i −1.06265 0.772061i
\(362\) −3711.66 −0.538896
\(363\) −5224.19 + 2366.43i −0.755369 + 0.342164i
\(364\) 340.471 0.0490261
\(365\) −1575.59 1144.73i −0.225945 0.164159i
\(366\) 437.138 1345.37i 0.0624306 0.192142i
\(367\) −894.003 2751.46i −0.127157 0.391349i 0.867131 0.498080i \(-0.165961\pi\)
−0.994288 + 0.106732i \(0.965961\pi\)
\(368\) −1266.46 + 920.137i −0.179399 + 0.130341i
\(369\) 1867.57 1356.87i 0.263474 0.191425i
\(370\) 1821.88 + 5607.18i 0.255987 + 0.787848i
\(371\) 3324.49 10231.7i 0.465227 1.43182i
\(372\) 2779.92 + 2019.73i 0.387451 + 0.281500i
\(373\) −3389.46 −0.470508 −0.235254 0.971934i \(-0.575592\pi\)
−0.235254 + 0.971934i \(0.575592\pi\)
\(374\) −1393.24 614.938i −0.192628 0.0850206i
\(375\) −6426.80 −0.885010
\(376\) −335.607 243.833i −0.0460309 0.0334434i
\(377\) 266.097 818.962i 0.0363520 0.111880i
\(378\) 2460.85 + 7573.71i 0.334847 + 1.03055i
\(379\) −6523.45 + 4739.57i −0.884135 + 0.642362i −0.934342 0.356377i \(-0.884012\pi\)
0.0502069 + 0.998739i \(0.484012\pi\)
\(380\) −3286.51 + 2387.79i −0.443669 + 0.322344i
\(381\) −1416.14 4358.43i −0.190423 0.586061i
\(382\) −946.924 + 2914.33i −0.126829 + 0.390341i
\(383\) −4250.99 3088.52i −0.567142 0.412053i 0.266924 0.963718i \(-0.413993\pi\)
−0.834066 + 0.551665i \(0.813993\pi\)
\(384\) 551.542 0.0732962
\(385\) 3856.73 + 6630.60i 0.510538 + 0.877731i
\(386\) −2103.15 −0.277325
\(387\) 2647.58 + 1923.58i 0.347762 + 0.252664i
\(388\) 1809.14 5567.97i 0.236715 0.728534i
\(389\) −3502.56 10779.8i −0.456521 1.40503i −0.869340 0.494214i \(-0.835456\pi\)
0.412819 0.910813i \(-0.364544\pi\)
\(390\) −183.456 + 133.289i −0.0238197 + 0.0173060i
\(391\) 1652.07 1200.30i 0.213680 0.155247i
\(392\) −833.412 2564.98i −0.107382 0.330487i
\(393\) 2030.64 6249.67i 0.260642 0.802173i
\(394\) −2552.88 1854.78i −0.326427 0.237163i
\(395\) 2201.93 0.280484
\(396\) 820.528 917.217i 0.104124 0.116394i
\(397\) 9896.10 1.25106 0.625530 0.780200i \(-0.284883\pi\)
0.625530 + 0.780200i \(0.284883\pi\)
\(398\) 6084.66 + 4420.77i 0.766323 + 0.556766i
\(399\) −4374.32 + 13462.8i −0.548846 + 1.68918i
\(400\) −296.665 913.041i −0.0370831 0.114130i
\(401\) 12016.9 8730.81i 1.49650 1.08727i 0.524752 0.851255i \(-0.324158\pi\)
0.971749 0.236016i \(-0.0758418\pi\)
\(402\) −1930.96 + 1402.93i −0.239571 + 0.174059i
\(403\) −201.073 618.840i −0.0248540 0.0764928i
\(404\) −1112.58 + 3424.16i −0.137012 + 0.421679i
\(405\) −2805.84 2038.56i −0.344255 0.250116i
\(406\) −13761.1 −1.68215
\(407\) 1351.61 13271.1i 0.164612 1.61627i
\(408\) −719.474 −0.0873022
\(409\) −6748.88 4903.35i −0.815919 0.592800i 0.0996219 0.995025i \(-0.468237\pi\)
−0.915541 + 0.402226i \(0.868237\pi\)
\(410\) 1363.92 4197.72i 0.164291 0.505635i
\(411\) 2768.02 + 8519.10i 0.332206 + 1.02242i
\(412\) 1349.85 980.721i 0.161413 0.117273i
\(413\) 554.540 402.897i 0.0660705 0.0480030i
\(414\) 509.940 + 1569.43i 0.0605367 + 0.186313i
\(415\) −180.856 + 556.619i −0.0213925 + 0.0658394i
\(416\) −84.4955 61.3896i −0.00995850 0.00723527i
\(417\) −6495.46 −0.762791
\(418\) 8984.41 1939.98i 1.05130 0.227004i
\(419\) −13082.4 −1.52534 −0.762670 0.646788i \(-0.776112\pi\)
−0.762670 + 0.646788i \(0.776112\pi\)
\(420\) 2931.77 + 2130.06i 0.340609 + 0.247467i
\(421\) −1716.75 + 5283.61i −0.198739 + 0.611656i 0.801173 + 0.598432i \(0.204209\pi\)
−0.999913 + 0.0132238i \(0.995791\pi\)
\(422\) −877.967 2702.10i −0.101277 0.311698i
\(423\) −353.781 + 257.037i −0.0406653 + 0.0295450i
\(424\) −2669.91 + 1939.81i −0.305808 + 0.222182i
\(425\) 386.993 + 1191.04i 0.0441693 + 0.135939i
\(426\) −1376.61 + 4236.78i −0.156566 + 0.481861i
\(427\) 3463.29 + 2516.23i 0.392507 + 0.285173i
\(428\) 4321.55 0.488060
\(429\) 501.520 108.292i 0.0564420 0.0121874i
\(430\) 6257.18 0.701739
\(431\) 291.099 + 211.496i 0.0325330 + 0.0236366i 0.603933 0.797035i \(-0.293599\pi\)
−0.571400 + 0.820672i \(0.693599\pi\)
\(432\) 754.886 2323.30i 0.0840728 0.258750i
\(433\) 4625.45 + 14235.7i 0.513360 + 1.57996i 0.786246 + 0.617913i \(0.212022\pi\)
−0.272886 + 0.962046i \(0.587978\pi\)
\(434\) −8412.53 + 6112.06i −0.930448 + 0.676010i
\(435\) 7414.95 5387.27i 0.817286 0.593793i
\(436\) −1819.59 5600.13i −0.199869 0.615132i
\(437\) −3808.57 + 11721.6i −0.416908 + 1.28311i
\(438\) 1684.18 + 1223.63i 0.183729 + 0.133487i
\(439\) 15893.9 1.72796 0.863979 0.503527i \(-0.167965\pi\)
0.863979 + 0.503527i \(0.167965\pi\)
\(440\) 238.416 2340.93i 0.0258319 0.253635i
\(441\) −2843.02 −0.306989
\(442\) 110.223 + 80.0814i 0.0118614 + 0.00861784i
\(443\) −812.238 + 2499.81i −0.0871119 + 0.268103i −0.985118 0.171881i \(-0.945016\pi\)
0.898006 + 0.439983i \(0.145016\pi\)
\(444\) −1947.46 5993.66i −0.208158 0.640646i
\(445\) −7792.56 + 5661.62i −0.830118 + 0.603116i
\(446\) 8505.14 6179.35i 0.902982 0.656055i
\(447\) 572.355 + 1761.53i 0.0605625 + 0.186392i
\(448\) −515.770 + 1587.38i −0.0543925 + 0.167403i
\(449\) 1049.68 + 762.635i 0.110328 + 0.0801580i 0.641581 0.767055i \(-0.278279\pi\)
−0.531253 + 0.847213i \(0.678279\pi\)
\(450\) −1012.02 −0.106015
\(451\) −6658.35 + 7442.95i −0.695187 + 0.777106i
\(452\) −505.922 −0.0526473
\(453\) 3108.39 + 2258.38i 0.322395 + 0.234234i
\(454\) −1722.01 + 5299.81i −0.178013 + 0.547869i
\(455\) −212.057 652.645i −0.0218492 0.0672449i
\(456\) 3513.03 2552.37i 0.360774 0.262117i
\(457\) −1821.87 + 1323.67i −0.186485 + 0.135489i −0.677111 0.735881i \(-0.736768\pi\)
0.490626 + 0.871370i \(0.336768\pi\)
\(458\) −2770.39 8526.39i −0.282646 0.869895i
\(459\) −984.733 + 3030.70i −0.100138 + 0.308193i
\(460\) 2552.60 + 1854.57i 0.258729 + 0.187978i
\(461\) 16772.0 1.69447 0.847233 0.531222i \(-0.178267\pi\)
0.847233 + 0.531222i \(0.178267\pi\)
\(462\) −4122.55 7087.62i −0.415148 0.713735i
\(463\) 7726.06 0.775509 0.387754 0.921763i \(-0.373251\pi\)
0.387754 + 0.921763i \(0.373251\pi\)
\(464\) 3415.14 + 2481.25i 0.341690 + 0.248252i
\(465\) 2140.16 6586.75i 0.213436 0.656889i
\(466\) −195.060 600.332i −0.0193905 0.0596778i
\(467\) 6112.55 4441.03i 0.605685 0.440056i −0.242207 0.970225i \(-0.577871\pi\)
0.847892 + 0.530169i \(0.177871\pi\)
\(468\) −89.0711 + 64.7140i −0.00879768 + 0.00639189i
\(469\) −2232.00 6869.38i −0.219753 0.676330i
\(470\) −258.373 + 795.189i −0.0253571 + 0.0780412i
\(471\) 1886.03 + 1370.28i 0.184509 + 0.134053i
\(472\) −210.267 −0.0205049
\(473\) −12952.0 5716.66i −1.25906 0.555713i
\(474\) −2353.70 −0.228078
\(475\) −6114.88 4442.72i −0.590673 0.429149i
\(476\) 672.811 2070.70i 0.0647862 0.199391i
\(477\) 1075.04 + 3308.64i 0.103192 + 0.317593i
\(478\) 1304.75 947.959i 0.124849 0.0907085i
\(479\) −10794.4 + 7842.59i −1.02966 + 0.748094i −0.968241 0.250018i \(-0.919563\pi\)
−0.0614218 + 0.998112i \(0.519563\pi\)
\(480\) −343.520 1057.24i −0.0326655 0.100534i
\(481\) −368.779 + 1134.99i −0.0349582 + 0.107590i
\(482\) −1634.07 1187.22i −0.154419 0.112192i
\(483\) 10994.5 1.03575
\(484\) −2632.22 + 4627.78i −0.247203 + 0.434615i
\(485\) −11800.0 −1.10476
\(486\) −3670.83 2667.02i −0.342618 0.248927i
\(487\) 5815.72 17898.9i 0.541141 1.66546i −0.188853 0.982005i \(-0.560477\pi\)
0.729994 0.683454i \(-0.239523\pi\)
\(488\) −405.799 1248.92i −0.0376427 0.115852i
\(489\) −10205.6 + 7414.77i −0.943786 + 0.685701i
\(490\) −4397.70 + 3195.12i −0.405445 + 0.294573i
\(491\) 970.055 + 2985.52i 0.0891608 + 0.274409i 0.985688 0.168580i \(-0.0539182\pi\)
−0.896527 + 0.442989i \(0.853918\pi\)
\(492\) −1457.93 + 4487.05i −0.133595 + 0.411162i
\(493\) −4454.98 3236.73i −0.406982 0.295690i
\(494\) −822.285 −0.0748914
\(495\) −2269.26 1001.59i −0.206052 0.0909454i
\(496\) 3189.82 0.288764
\(497\) −10906.4 7923.98i −0.984346 0.715169i
\(498\) 193.322 594.984i 0.0173955 0.0535379i
\(499\) −1722.86 5302.43i −0.154561 0.475690i 0.843555 0.537043i \(-0.180459\pi\)
−0.998116 + 0.0613526i \(0.980459\pi\)
\(500\) −4826.63 + 3506.75i −0.431707 + 0.313654i
\(501\) 6066.43 4407.52i 0.540974 0.393041i
\(502\) 1969.83 + 6062.50i 0.175135 + 0.539009i
\(503\) 728.995 2243.62i 0.0646209 0.198883i −0.913533 0.406764i \(-0.866657\pi\)
0.978154 + 0.207882i \(0.0666570\pi\)
\(504\) 1423.42 + 1034.18i 0.125802 + 0.0914007i
\(505\) 7256.68 0.639442
\(506\) −3589.37 6170.95i −0.315350 0.542159i
\(507\) 9420.79 0.825231
\(508\) −3441.70 2500.54i −0.300592 0.218393i
\(509\) −2355.68 + 7250.02i −0.205135 + 0.631339i 0.794573 + 0.607168i \(0.207695\pi\)
−0.999708 + 0.0241710i \(0.992305\pi\)
\(510\) 448.114 + 1379.15i 0.0389075 + 0.119745i
\(511\) −5096.65 + 3702.93i −0.441218 + 0.320564i
\(512\) 414.217 300.946i 0.0357538 0.0259767i
\(513\) −5943.30 18291.6i −0.511507 1.57426i
\(514\) −1571.90 + 4837.82i −0.134890 + 0.415150i
\(515\) −2720.67 1976.68i −0.232790 0.169132i
\(516\) −6688.46 −0.570626
\(517\) 1261.32 1409.95i 0.107297 0.119941i
\(518\) 19071.3 1.61766
\(519\) −1013.73 736.518i −0.0857376 0.0622920i
\(520\) −65.0503 + 200.204i −0.00548585 + 0.0168837i
\(521\) 6472.30 + 19919.7i 0.544255 + 1.67504i 0.722755 + 0.691104i \(0.242875\pi\)
−0.178500 + 0.983940i \(0.557125\pi\)
\(522\) 3600.08 2615.61i 0.301861 0.219314i
\(523\) 4837.79 3514.86i 0.404477 0.293870i −0.366885 0.930266i \(-0.619576\pi\)
0.771362 + 0.636396i \(0.219576\pi\)
\(524\) −1885.06 5801.61i −0.157155 0.483673i
\(525\) −2083.57 + 6412.57i −0.173209 + 0.533081i
\(526\) 4841.63 + 3517.65i 0.401340 + 0.291591i
\(527\) −4161.05 −0.343943
\(528\) −254.849 + 2502.28i −0.0210054 + 0.206246i
\(529\) −2594.45 −0.213237
\(530\) 5381.31 + 3909.75i 0.441036 + 0.320432i
\(531\) −68.4947 + 210.805i −0.00559777 + 0.0172282i
\(532\) 4060.71 + 12497.6i 0.330929 + 1.01849i
\(533\) 722.786 525.135i 0.0587380 0.0426757i
\(534\) 8329.66 6051.86i 0.675018 0.490430i
\(535\) −2691.61 8283.92i −0.217511 0.669430i
\(536\) −684.684 + 2107.24i −0.0551751 + 0.169812i
\(537\) 9064.70 + 6585.89i 0.728437 + 0.529241i
\(538\) 1642.66 0.131636
\(539\) 12022.1 2595.91i 0.960722 0.207446i
\(540\) −4923.68 −0.392373
\(541\) 6838.05 + 4968.13i 0.543421 + 0.394818i 0.825354 0.564616i \(-0.190976\pi\)
−0.281933 + 0.959434i \(0.590976\pi\)
\(542\) −3979.98 + 12249.1i −0.315414 + 0.970746i
\(543\) −2471.09 7605.23i −0.195294 0.601053i
\(544\) −540.337 + 392.578i −0.0425859 + 0.0309405i
\(545\) −9601.53 + 6975.92i −0.754650 + 0.548285i
\(546\) 226.673 + 697.629i 0.0177669 + 0.0546809i
\(547\) 375.960 1157.09i 0.0293874 0.0904450i −0.935287 0.353890i \(-0.884859\pi\)
0.964674 + 0.263445i \(0.0848587\pi\)
\(548\) 6727.24 + 4887.63i 0.524404 + 0.381002i
\(549\) −1384.30 −0.107615
\(550\) 4279.45 924.051i 0.331775 0.0716394i
\(551\) 33235.1 2.56963
\(552\) −2728.54 1982.40i −0.210388 0.152856i
\(553\) 2201.05 6774.12i 0.169255 0.520913i
\(554\) −317.957 978.572i −0.0243840 0.0750461i
\(555\) −10276.2 + 7466.13i −0.785950 + 0.571026i
\(556\) −4878.19 + 3544.22i −0.372089 + 0.270339i
\(557\) 2045.70 + 6296.01i 0.155618 + 0.478942i 0.998223 0.0595897i \(-0.0189792\pi\)
−0.842605 + 0.538532i \(0.818979\pi\)
\(558\) 1039.09 3197.98i 0.0788315 0.242619i
\(559\) 1024.66 + 744.462i 0.0775289 + 0.0563281i
\(560\) 3364.06 0.253853
\(561\) 332.445 3264.18i 0.0250193 0.245657i
\(562\) −15517.4 −1.16470
\(563\) −785.836 570.943i −0.0588260 0.0427396i 0.557984 0.829852i \(-0.311575\pi\)
−0.616810 + 0.787112i \(0.711575\pi\)
\(564\) 276.181 849.998i 0.0206194 0.0634599i
\(565\) 315.106 + 969.797i 0.0234630 + 0.0722118i
\(566\) −9461.24 + 6873.99i −0.702625 + 0.510487i
\(567\) −9076.23 + 6594.27i −0.672250 + 0.488418i
\(568\) 1277.92 + 3933.03i 0.0944020 + 0.290540i
\(569\) 1298.72 3997.04i 0.0956856 0.294490i −0.891746 0.452536i \(-0.850519\pi\)
0.987432 + 0.158046i \(0.0505194\pi\)
\(570\) −7080.64 5144.39i −0.520308 0.378026i
\(571\) −11418.5 −0.836862 −0.418431 0.908248i \(-0.637420\pi\)
−0.418431 + 0.908248i \(0.637420\pi\)
\(572\) 317.560 354.981i 0.0232131 0.0259484i
\(573\) −6601.93 −0.481326
\(574\) −11550.7 8392.05i −0.839923 0.610240i
\(575\) −1814.10 + 5583.21i −0.131570 + 0.404932i
\(576\) −166.784 513.310i −0.0120648 0.0371318i
\(577\) 1176.28 854.620i 0.0848688 0.0616608i −0.544542 0.838734i \(-0.683296\pi\)
0.629411 + 0.777073i \(0.283296\pi\)
\(578\) −7244.54 + 5263.47i −0.521338 + 0.378774i
\(579\) −1400.20 4309.38i −0.100502 0.309312i
\(580\) 2629.20 8091.86i 0.188227 0.579304i
\(581\) 1531.62 + 1112.79i 0.109367 + 0.0794600i
\(582\) 12613.3 0.898348
\(583\) −7567.01 13009.4i −0.537553 0.924177i
\(584\) 1932.52 0.136932
\(585\) 179.526 + 130.433i 0.0126880 + 0.00921839i
\(586\) 4990.31 15358.6i 0.351788 1.08269i
\(587\) 3014.31 + 9277.09i 0.211949 + 0.652311i 0.999356 + 0.0358780i \(0.0114228\pi\)
−0.787408 + 0.616433i \(0.788577\pi\)
\(588\) 4700.82 3415.34i 0.329691 0.239535i
\(589\) 20317.5 14761.5i 1.42134 1.03266i
\(590\) 130.962 + 403.059i 0.00913832 + 0.0281249i
\(591\) 2100.85 6465.74i 0.146222 0.450025i
\(592\) −4732.99 3438.72i −0.328589 0.238734i
\(593\) −22963.3 −1.59020 −0.795102 0.606476i \(-0.792583\pi\)
−0.795102 + 0.606476i \(0.792583\pi\)
\(594\) 10191.7 + 4498.35i 0.703994 + 0.310723i
\(595\) −4388.35 −0.302361
\(596\) 1391.02 + 1010.63i 0.0956011 + 0.0694582i
\(597\) −5007.25 + 15410.7i −0.343272 + 1.05648i
\(598\) 197.357 + 607.402i 0.0134959 + 0.0415360i
\(599\) −8081.00 + 5871.19i −0.551220 + 0.400485i −0.828235 0.560381i \(-0.810655\pi\)
0.277015 + 0.960866i \(0.410655\pi\)
\(600\) 1673.32 1215.74i 0.113855 0.0827207i
\(601\) −146.457 450.749i −0.00994030 0.0305931i 0.945963 0.324274i \(-0.105120\pi\)
−0.955904 + 0.293680i \(0.905120\pi\)
\(602\) 6254.66 19249.9i 0.423456 1.30326i
\(603\) 1889.60 + 1372.87i 0.127612 + 0.0927158i
\(604\) 3566.73 0.240278
\(605\) 10510.4 + 2163.33i 0.706294 + 0.145375i
\(606\) −7756.86 −0.519968
\(607\) 3231.25 + 2347.64i 0.216067 + 0.156982i 0.690554 0.723281i \(-0.257367\pi\)
−0.474488 + 0.880262i \(0.657367\pi\)
\(608\) 1245.66 3833.74i 0.0830889 0.255721i
\(609\) −9161.69 28196.8i −0.609606 1.87618i
\(610\) −2141.30 + 1555.74i −0.142129 + 0.103263i
\(611\) −136.920 + 99.4783i −0.00906579 + 0.00658668i
\(612\) 217.567 + 669.602i 0.0143703 + 0.0442272i
\(613\) 3260.82 10035.8i 0.214850 0.661241i −0.784314 0.620364i \(-0.786985\pi\)
0.999164 0.0408768i \(-0.0130151\pi\)
\(614\) −6812.96 4949.90i −0.447799 0.325345i
\(615\) 9509.23 0.623494
\(616\) −6963.43 3073.46i −0.455462 0.201028i
\(617\) −14598.0 −0.952500 −0.476250 0.879310i \(-0.658004\pi\)
−0.476250 + 0.879310i \(0.658004\pi\)
\(618\) 2908.19 + 2112.92i 0.189295 + 0.137531i
\(619\) −4324.78 + 13310.3i −0.280820 + 0.864275i 0.706801 + 0.707413i \(0.250138\pi\)
−0.987621 + 0.156862i \(0.949862\pi\)
\(620\) −1986.73 6114.53i −0.128692 0.396073i
\(621\) −12085.1 + 8780.34i −0.780932 + 0.567380i
\(622\) −2133.95 + 1550.41i −0.137562 + 0.0999448i
\(623\) 9628.25 + 29632.7i 0.619178 + 1.90563i
\(624\) 69.5340 214.003i 0.00446087 0.0137292i
\(625\) 3660.45 + 2659.47i 0.234269 + 0.170206i
\(626\) 8412.30 0.537097
\(627\) 9956.55 + 17117.6i 0.634173 + 1.09029i
\(628\) 2164.12 0.137513
\(629\) 6174.08 + 4485.73i 0.391378 + 0.284353i
\(630\) 1095.85 3372.67i 0.0693009 0.213286i
\(631\) −2522.70 7764.08i −0.159156 0.489830i 0.839403 0.543510i \(-0.182905\pi\)
−0.998558 + 0.0536797i \(0.982905\pi\)
\(632\) −1767.67 + 1284.29i −0.111256 + 0.0808325i
\(633\) 4952.13 3597.93i 0.310947 0.225916i
\(634\) 1522.28 + 4685.10i 0.0953588 + 0.293484i
\(635\) −2649.65 + 8154.79i −0.165588 + 0.509627i
\(636\) −5752.22 4179.23i −0.358633 0.260562i
\(637\) −1100.31 −0.0684391
\(638\) −12835.2 + 14347.6i −0.796472 + 0.890326i
\(639\) 4359.38 0.269882
\(640\) −834.869 606.568i −0.0515642 0.0374636i
\(641\) 5457.36 16796.0i 0.336276 1.03495i −0.629815 0.776745i \(-0.716869\pi\)
0.966090 0.258204i \(-0.0831308\pi\)
\(642\) 2877.13 + 8854.90i 0.176871 + 0.544354i
\(643\) 14586.7 10597.8i 0.894623 0.649981i −0.0424565 0.999098i \(-0.513518\pi\)
0.937079 + 0.349117i \(0.113518\pi\)
\(644\) 8257.05 5999.10i 0.505238 0.367077i
\(645\) 4165.81 + 12821.0i 0.254308 + 0.782679i
\(646\) −1624.93 + 5001.03i −0.0989661 + 0.304586i
\(647\) −7986.43 5802.48i −0.485285 0.352580i 0.318083 0.948063i \(-0.396961\pi\)
−0.803368 + 0.595483i \(0.796961\pi\)
\(648\) 3441.47 0.208632
\(649\) 97.1574 953.959i 0.00587636 0.0576983i
\(650\) −391.670 −0.0236347
\(651\) −18124.5 13168.2i −1.09117 0.792784i
\(652\) −3618.70 + 11137.2i −0.217361 + 0.668969i
\(653\) 3078.59 + 9474.92i 0.184494 + 0.567813i 0.999939 0.0110205i \(-0.00350799\pi\)
−0.815446 + 0.578834i \(0.803508\pi\)
\(654\) 10263.3 7456.74i 0.613651 0.445844i
\(655\) −9946.96 + 7226.89i −0.593374 + 0.431111i
\(656\) 1353.41 + 4165.36i 0.0805513 + 0.247912i
\(657\) 629.519 1937.46i 0.0373819 0.115050i
\(658\) 2188.09 + 1589.74i 0.129636 + 0.0941861i
\(659\) −15778.5 −0.932692 −0.466346 0.884602i \(-0.654430\pi\)
−0.466346 + 0.884602i \(0.654430\pi\)
\(660\) 4955.33 1069.99i 0.292251 0.0631052i
\(661\) 9698.70 0.570704 0.285352 0.958423i \(-0.407889\pi\)
0.285352 + 0.958423i \(0.407889\pi\)
\(662\) −5391.97 3917.50i −0.316563 0.229997i
\(663\) −90.7056 + 279.163i −0.00531329 + 0.0163526i
\(664\) −179.462 552.328i −0.0104887 0.0322808i
\(665\) 21427.3 15567.9i 1.24950 0.907813i
\(666\) −4989.29 + 3624.93i −0.290287 + 0.210906i
\(667\) −7976.78 24550.0i −0.463062 1.42516i
\(668\) 2151.05 6620.24i 0.124590 0.383450i
\(669\) 18324.0 + 13313.1i 1.05896 + 0.769381i
\(670\) 4465.79 0.257506
\(671\) 5853.72 1263.98i 0.336781 0.0727204i
\(672\) −3595.93 −0.206423
\(673\) 21866.7 + 15887.1i 1.25245 + 0.909960i 0.998362 0.0572204i \(-0.0182238\pi\)
0.254091 + 0.967180i \(0.418224\pi\)
\(674\) −5144.20 + 15832.2i −0.293987 + 0.904798i
\(675\) −2830.91 8712.63i −0.161425 0.496814i
\(676\) 7075.17 5140.41i 0.402547 0.292468i
\(677\) −2811.85 + 2042.93i −0.159628 + 0.115976i −0.664732 0.747082i \(-0.731454\pi\)
0.505104 + 0.863059i \(0.331454\pi\)
\(678\) −336.825 1036.64i −0.0190792 0.0587197i
\(679\) −11795.2 + 36302.0i −0.666656 + 2.05176i
\(680\) 1089.07 + 791.255i 0.0614175 + 0.0446224i
\(681\) −12005.8 −0.675572
\(682\) −1473.91 + 14471.8i −0.0827548 + 0.812545i
\(683\) −2691.57 −0.150790 −0.0753952 0.997154i \(-0.524022\pi\)
−0.0753952 + 0.997154i \(0.524022\pi\)
\(684\) −3437.77 2497.69i −0.192173 0.139622i
\(685\) 5179.08 15939.6i 0.288879 0.889079i
\(686\) −94.7393 291.577i −0.00527283 0.0162281i
\(687\) 15626.2 11353.1i 0.867800 0.630493i
\(688\) −5023.14 + 3649.53i −0.278351 + 0.202234i
\(689\) 416.062 + 1280.51i 0.0230054 + 0.0708033i
\(690\) −2100.61 + 6465.01i −0.115897 + 0.356694i
\(691\) −5807.64 4219.50i −0.319730 0.232297i 0.416331 0.909213i \(-0.363316\pi\)
−0.736060 + 0.676916i \(0.763316\pi\)
\(692\) −1163.21 −0.0638995
\(693\) −5349.67 + 5980.06i −0.293243 + 0.327797i
\(694\) −7244.99 −0.396277
\(695\) 9832.18 + 7143.50i 0.536627 + 0.389882i
\(696\) −2810.42 + 8649.60i −0.153059 + 0.471066i
\(697\) −1765.49 5433.62i −0.0959437 0.295284i
\(698\) 3376.29 2453.02i 0.183086 0.133020i
\(699\) 1100.22 799.360i 0.0595341 0.0432540i
\(700\) 1934.19 + 5952.83i 0.104437 + 0.321423i
\(701\) 1269.83 3908.15i 0.0684180 0.210569i −0.911002 0.412402i \(-0.864690\pi\)
0.979420 + 0.201833i \(0.0646899\pi\)
\(702\) −806.293 585.806i −0.0433498 0.0314955i
\(703\) −46060.0 −2.47110
\(704\) 1173.96 + 2018.31i 0.0628486 + 0.108051i
\(705\) −1801.37 −0.0962319
\(706\) 12268.2 + 8913.35i 0.653993 + 0.475154i
\(707\) 7253.76 22324.8i 0.385864 1.18757i
\(708\) −139.988 430.840i −0.00743091 0.0228700i
\(709\) 12973.8 9426.03i 0.687224 0.499298i −0.188522 0.982069i \(-0.560370\pi\)
0.875746 + 0.482771i \(0.160370\pi\)
\(710\) 6743.26 4899.26i 0.356437 0.258966i
\(711\) 711.752 + 2190.55i 0.0375426 + 0.115544i
\(712\) 2953.55 9090.08i 0.155462 0.478462i
\(713\) −15780.4 11465.1i −0.828863 0.602204i
\(714\) 4690.82 0.245868
\(715\) −878.247 387.634i −0.0459365 0.0202751i
\(716\) 10401.3 0.542898
\(717\) 2811.04 + 2042.34i 0.146416 + 0.106377i
\(718\) −2801.54 + 8622.26i −0.145616 + 0.448161i
\(719\) −11376.1 35011.9i −0.590064 1.81603i −0.577907 0.816103i \(-0.696130\pi\)
−0.0121568 0.999926i \(-0.503870\pi\)
\(720\) −880.079 + 639.415i −0.0455536 + 0.0330966i
\(721\) −8800.71 + 6394.09i −0.454585 + 0.330275i
\(722\) −5568.09 17136.8i −0.287012 0.883333i
\(723\) 1344.73 4138.65i 0.0691716 0.212888i
\(724\) −6005.59 4363.31i −0.308282 0.223980i
\(725\) 15830.5 0.810939
\(726\) −11234.8 2312.44i −0.574330 0.118213i
\(727\) −21685.1 −1.10627 −0.553133 0.833093i \(-0.686568\pi\)
−0.553133 + 0.833093i \(0.686568\pi\)
\(728\) 550.893 + 400.247i 0.0280460 + 0.0203766i
\(729\) 6610.06 20343.7i 0.335826 1.03357i
\(730\) −1203.64 3704.42i −0.0610257 0.187818i
\(731\) 6552.58 4760.73i 0.331540 0.240878i
\(732\) 2288.89 1662.97i 0.115573 0.0839689i
\(733\) 7456.99 + 22950.2i 0.375757 + 1.15646i 0.942966 + 0.332888i \(0.108023\pi\)
−0.567209 + 0.823574i \(0.691977\pi\)
\(734\) 1788.01 5502.92i 0.0899135 0.276725i
\(735\) −9474.67 6883.75i −0.475481 0.345457i
\(736\) −3130.86 −0.156800
\(737\) −9243.95 4080.02i −0.462015 0.203921i
\(738\) 4616.89 0.230285
\(739\) 29175.8 + 21197.4i 1.45230 + 1.05516i 0.985287 + 0.170905i \(0.0546691\pi\)
0.467011 + 0.884252i \(0.345331\pi\)
\(740\) −3643.77 + 11214.4i −0.181010 + 0.557092i
\(741\) −547.448 1684.87i −0.0271404 0.0835294i
\(742\) 17407.3 12647.1i 0.861241 0.625728i
\(743\) −11375.4 + 8264.73i −0.561674 + 0.408080i −0.832071 0.554669i \(-0.812845\pi\)
0.270397 + 0.962749i \(0.412845\pi\)
\(744\) 2123.67 + 6535.98i 0.104647 + 0.322071i
\(745\) 1070.90 3295.88i 0.0526639 0.162083i
\(746\) −5484.26 3984.55i −0.269159 0.195556i
\(747\) −612.201 −0.0299856
\(748\) −1531.41 2632.85i −0.0748582 0.128698i
\(749\) −28175.6 −1.37452
\(750\) −10398.8 7555.16i −0.506280 0.367834i
\(751\) −8943.86 + 27526.4i −0.434575 + 1.33749i 0.458946 + 0.888464i \(0.348227\pi\)
−0.893521 + 0.449021i \(0.851773\pi\)
\(752\) −256.381 789.059i −0.0124325 0.0382633i
\(753\) −11110.7 + 8072.40i −0.537711 + 0.390670i
\(754\) 1393.30 1012.29i 0.0672958 0.0488933i
\(755\) −2221.48 6837.02i −0.107084 0.329569i
\(756\) −4921.70 + 15147.4i −0.236773 + 0.728712i
\(757\) 17493.1 + 12709.5i 0.839893 + 0.610218i 0.922341 0.386377i \(-0.126274\pi\)
−0.0824476 + 0.996595i \(0.526274\pi\)
\(758\) −16126.9 −0.772763
\(759\) 10254.7 11463.1i 0.490410 0.548199i
\(760\) −8124.69 −0.387781
\(761\) −17469.7 12692.5i −0.832163 0.604602i 0.0880073 0.996120i \(-0.471950\pi\)
−0.920170 + 0.391518i \(0.871950\pi\)
\(762\) 2832.28 8716.87i 0.134649 0.414408i
\(763\) 11863.4 + 36511.7i 0.562887 + 1.73239i
\(764\) −4958.16 + 3602.31i −0.234790 + 0.170585i
\(765\) 1148.04 834.103i 0.0542583 0.0394210i
\(766\) −3247.47 9994.67i −0.153180 0.471439i
\(767\) −26.5088 + 81.5857i −0.00124795 + 0.00384079i
\(768\) 892.413 + 648.376i 0.0419299 + 0.0304639i
\(769\) 30161.8 1.41439 0.707194 0.707020i \(-0.249961\pi\)
0.707194 + 0.707020i \(0.249961\pi\)
\(770\) −1554.42 + 15262.4i −0.0727499 + 0.714309i
\(771\) −10959.3 −0.511918
\(772\) −3402.97 2472.40i −0.158647 0.115264i