# Properties

 Label 210.2.a.a Level $210$ Weight $2$ Character orbit 210.a Self dual yes Analytic conductor $1.677$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$210 = 2 \cdot 3 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 210.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$1.67685844245$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + O(q^{10})$$ $$q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - 4q^{11} - q^{12} - 2q^{13} + q^{14} + q^{15} + q^{16} - 6q^{17} - q^{18} - q^{20} + q^{21} + 4q^{22} - 8q^{23} + q^{24} + q^{25} + 2q^{26} - q^{27} - q^{28} + 10q^{29} - q^{30} - 8q^{31} - q^{32} + 4q^{33} + 6q^{34} + q^{35} + q^{36} + 2q^{37} + 2q^{39} + q^{40} - 2q^{41} - q^{42} + 8q^{43} - 4q^{44} - q^{45} + 8q^{46} + 4q^{47} - q^{48} + q^{49} - q^{50} + 6q^{51} - 2q^{52} + 10q^{53} + q^{54} + 4q^{55} + q^{56} - 10q^{58} + 4q^{59} + q^{60} - 6q^{61} + 8q^{62} - q^{63} + q^{64} + 2q^{65} - 4q^{66} - 6q^{68} + 8q^{69} - q^{70} - 12q^{71} - q^{72} - 6q^{73} - 2q^{74} - q^{75} + 4q^{77} - 2q^{78} - 8q^{79} - q^{80} + q^{81} + 2q^{82} - 4q^{83} + q^{84} + 6q^{85} - 8q^{86} - 10q^{87} + 4q^{88} + 14q^{89} + q^{90} + 2q^{91} - 8q^{92} + 8q^{93} - 4q^{94} + q^{96} + 2q^{97} - q^{98} - 4q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 −1.00000 1.00000 −1.00000 1.00000 −1.00000 −1.00000 1.00000 1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$1$$
$$5$$ $$1$$
$$7$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 210.2.a.a 1
3.b odd 2 1 630.2.a.i 1
4.b odd 2 1 1680.2.a.o 1
5.b even 2 1 1050.2.a.q 1
5.c odd 4 2 1050.2.g.f 2
7.b odd 2 1 1470.2.a.g 1
7.c even 3 2 1470.2.i.t 2
7.d odd 6 2 1470.2.i.n 2
8.b even 2 1 6720.2.a.cg 1
8.d odd 2 1 6720.2.a.z 1
12.b even 2 1 5040.2.a.bg 1
15.d odd 2 1 3150.2.a.t 1
15.e even 4 2 3150.2.g.t 2
20.d odd 2 1 8400.2.a.m 1
21.c even 2 1 4410.2.a.bc 1
35.c odd 2 1 7350.2.a.bo 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.a.a 1 1.a even 1 1 trivial
630.2.a.i 1 3.b odd 2 1
1050.2.a.q 1 5.b even 2 1
1050.2.g.f 2 5.c odd 4 2
1470.2.a.g 1 7.b odd 2 1
1470.2.i.n 2 7.d odd 6 2
1470.2.i.t 2 7.c even 3 2
1680.2.a.o 1 4.b odd 2 1
3150.2.a.t 1 15.d odd 2 1
3150.2.g.t 2 15.e even 4 2
4410.2.a.bc 1 21.c even 2 1
5040.2.a.bg 1 12.b even 2 1
6720.2.a.z 1 8.d odd 2 1
6720.2.a.cg 1 8.b even 2 1
7350.2.a.bo 1 35.c odd 2 1
8400.2.a.m 1 20.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(210))$$:

 $$T_{11} + 4$$ $$T_{17} + 6$$ $$T_{19}$$