Properties

Label 21.3.h.b.2.1
Level 21
Weight 3
Character 21.2
Analytic conductor 0.572
Analytic rank 0
Dimension 4
CM No
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 21 = 3 \cdot 7 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 21.h (of order \(6\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(0.572208555157\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-5})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2.1
Root \(-1.93649 - 1.11803i\)
Character \(\chi\) = 21.2
Dual form 21.3.h.b.11.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-1.93649 - 1.11803i) q^{2}\) \(+(0.936492 - 2.85008i) q^{3}\) \(+(0.500000 + 0.866025i) q^{4}\) \(+(1.93649 + 1.11803i) q^{5}\) \(+(-5.00000 + 4.47214i) q^{6}\) \(+(3.50000 + 6.06218i) q^{7}\) \(+6.70820i q^{8}\) \(+(-7.24597 - 5.33816i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-1.93649 - 1.11803i) q^{2}\) \(+(0.936492 - 2.85008i) q^{3}\) \(+(0.500000 + 0.866025i) q^{4}\) \(+(1.93649 + 1.11803i) q^{5}\) \(+(-5.00000 + 4.47214i) q^{6}\) \(+(3.50000 + 6.06218i) q^{7}\) \(+6.70820i q^{8}\) \(+(-7.24597 - 5.33816i) q^{9}\) \(+(-2.50000 - 4.33013i) q^{10}\) \(+(9.68246 - 5.59017i) q^{11}\) \(+(2.93649 - 0.614017i) q^{12}\) \(-2.00000 q^{13}\) \(-15.6525i q^{14}\) \(+(5.00000 - 4.47214i) q^{15}\) \(+(9.50000 - 16.4545i) q^{16}\) \(+(-23.2379 + 13.4164i) q^{17}\) \(+(8.06351 + 18.4385i) q^{18}\) \(+(-8.00000 + 13.8564i) q^{19}\) \(+2.23607i q^{20}\) \(+(20.5554 - 4.29812i) q^{21}\) \(-25.0000 q^{22}\) \(+(11.6190 + 6.70820i) q^{23}\) \(+(19.1190 + 6.28218i) q^{24}\) \(+(-10.0000 - 17.3205i) q^{25}\) \(+(3.87298 + 2.23607i) q^{26}\) \(+(-22.0000 + 15.6525i) q^{27}\) \(+(-3.50000 + 6.06218i) q^{28}\) \(-15.6525i q^{29}\) \(+(-14.6825 + 3.07008i) q^{30}\) \(+(1.50000 + 2.59808i) q^{31}\) \(+(-13.5554 + 7.82624i) q^{32}\) \(+(-6.86492 - 32.8310i) q^{33}\) \(+60.0000 q^{34}\) \(+15.6525i q^{35}\) \(+(1.00000 - 8.94427i) q^{36}\) \(+(-6.00000 + 10.3923i) q^{37}\) \(+(30.9839 - 17.8885i) q^{38}\) \(+(-1.87298 + 5.70017i) q^{39}\) \(+(-7.50000 + 12.9904i) q^{40}\) \(-31.3050i q^{41}\) \(+(-44.6109 - 14.6584i) q^{42}\) \(+44.0000 q^{43}\) \(+(9.68246 + 5.59017i) q^{44}\) \(+(-8.06351 - 18.4385i) q^{45}\) \(+(-15.0000 - 25.9808i) q^{46}\) \(+(-11.6190 - 6.70820i) q^{47}\) \(+(-38.0000 - 42.4853i) q^{48}\) \(+(-24.5000 + 42.4352i) q^{49}\) \(+44.7214i q^{50}\) \(+(16.4758 + 78.7943i) q^{51}\) \(+(-1.00000 - 1.73205i) q^{52}\) \(+(-17.4284 + 10.0623i) q^{53}\) \(+(60.1028 - 5.71414i) q^{54}\) \(+25.0000 q^{55}\) \(+(-40.6663 + 23.4787i) q^{56}\) \(+(32.0000 + 35.7771i) q^{57}\) \(+(-17.5000 + 30.3109i) q^{58}\) \(+(17.4284 - 10.0623i) q^{59}\) \(+(6.37298 + 2.09406i) q^{60}\) \(+(13.0000 - 22.5167i) q^{61}\) \(-6.70820i q^{62}\) \(+(7.00000 - 62.6099i) q^{63}\) \(-41.0000 q^{64}\) \(+(-3.87298 - 2.23607i) q^{65}\) \(+(-23.4123 + 71.2521i) q^{66}\) \(+(-26.0000 - 45.0333i) q^{67}\) \(+(-23.2379 - 13.4164i) q^{68}\) \(+(30.0000 - 26.8328i) q^{69}\) \(+(17.5000 - 30.3109i) q^{70}\) \(-93.9149i q^{71}\) \(+(35.8095 - 48.6074i) q^{72}\) \(+(-9.00000 - 15.5885i) q^{73}\) \(+(23.2379 - 13.4164i) q^{74}\) \(+(-58.7298 + 12.2803i) q^{75}\) \(-16.0000 q^{76}\) \(+(67.7772 + 39.1312i) q^{77}\) \(+(10.0000 - 8.94427i) q^{78}\) \(+(39.5000 - 68.4160i) q^{79}\) \(+(36.7933 - 21.2426i) q^{80}\) \(+(24.0081 + 77.3603i) q^{81}\) \(+(-35.0000 + 60.6218i) q^{82}\) \(+140.872i q^{83}\) \(+(14.0000 + 15.6525i) q^{84}\) \(-60.0000 q^{85}\) \(+(-85.2056 - 49.1935i) q^{86}\) \(+(-44.6109 - 14.6584i) q^{87}\) \(+(37.5000 + 64.9519i) q^{88}\) \(+(42.6028 + 24.5967i) q^{89}\) \(+(-5.00000 + 44.7214i) q^{90}\) \(+(-7.00000 - 12.1244i) q^{91}\) \(+13.4164i q^{92}\) \(+(8.80948 - 1.84205i) q^{93}\) \(+(15.0000 + 25.9808i) q^{94}\) \(+(-30.9839 + 17.8885i) q^{95}\) \(+(9.61088 + 45.9634i) q^{96}\) \(-93.0000 q^{97}\) \(+(94.8881 - 54.7837i) q^{98}\) \(+(-100.000 - 11.1803i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut -\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 2q^{4} \) \(\mathstrut -\mathstrut 20q^{6} \) \(\mathstrut +\mathstrut 14q^{7} \) \(\mathstrut +\mathstrut 2q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut -\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 2q^{4} \) \(\mathstrut -\mathstrut 20q^{6} \) \(\mathstrut +\mathstrut 14q^{7} \) \(\mathstrut +\mathstrut 2q^{9} \) \(\mathstrut -\mathstrut 10q^{10} \) \(\mathstrut +\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 8q^{13} \) \(\mathstrut +\mathstrut 20q^{15} \) \(\mathstrut +\mathstrut 38q^{16} \) \(\mathstrut +\mathstrut 40q^{18} \) \(\mathstrut -\mathstrut 32q^{19} \) \(\mathstrut +\mathstrut 28q^{21} \) \(\mathstrut -\mathstrut 100q^{22} \) \(\mathstrut +\mathstrut 30q^{24} \) \(\mathstrut -\mathstrut 40q^{25} \) \(\mathstrut -\mathstrut 88q^{27} \) \(\mathstrut -\mathstrut 14q^{28} \) \(\mathstrut -\mathstrut 20q^{30} \) \(\mathstrut +\mathstrut 6q^{31} \) \(\mathstrut +\mathstrut 50q^{33} \) \(\mathstrut +\mathstrut 240q^{34} \) \(\mathstrut +\mathstrut 4q^{36} \) \(\mathstrut -\mathstrut 24q^{37} \) \(\mathstrut +\mathstrut 8q^{39} \) \(\mathstrut -\mathstrut 30q^{40} \) \(\mathstrut -\mathstrut 70q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut -\mathstrut 40q^{45} \) \(\mathstrut -\mathstrut 60q^{46} \) \(\mathstrut -\mathstrut 152q^{48} \) \(\mathstrut -\mathstrut 98q^{49} \) \(\mathstrut -\mathstrut 120q^{51} \) \(\mathstrut -\mathstrut 4q^{52} \) \(\mathstrut +\mathstrut 70q^{54} \) \(\mathstrut +\mathstrut 100q^{55} \) \(\mathstrut +\mathstrut 128q^{57} \) \(\mathstrut -\mathstrut 70q^{58} \) \(\mathstrut +\mathstrut 10q^{60} \) \(\mathstrut +\mathstrut 52q^{61} \) \(\mathstrut +\mathstrut 28q^{63} \) \(\mathstrut -\mathstrut 164q^{64} \) \(\mathstrut +\mathstrut 100q^{66} \) \(\mathstrut -\mathstrut 104q^{67} \) \(\mathstrut +\mathstrut 120q^{69} \) \(\mathstrut +\mathstrut 70q^{70} \) \(\mathstrut +\mathstrut 120q^{72} \) \(\mathstrut -\mathstrut 36q^{73} \) \(\mathstrut -\mathstrut 80q^{75} \) \(\mathstrut -\mathstrut 64q^{76} \) \(\mathstrut +\mathstrut 40q^{78} \) \(\mathstrut +\mathstrut 158q^{79} \) \(\mathstrut +\mathstrut 158q^{81} \) \(\mathstrut -\mathstrut 140q^{82} \) \(\mathstrut +\mathstrut 56q^{84} \) \(\mathstrut -\mathstrut 240q^{85} \) \(\mathstrut -\mathstrut 70q^{87} \) \(\mathstrut +\mathstrut 150q^{88} \) \(\mathstrut -\mathstrut 20q^{90} \) \(\mathstrut -\mathstrut 28q^{91} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut +\mathstrut 60q^{94} \) \(\mathstrut -\mathstrut 70q^{96} \) \(\mathstrut -\mathstrut 372q^{97} \) \(\mathstrut -\mathstrut 400q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/21\mathbb{Z}\right)^\times\).

\(n\) \(8\) \(10\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.93649 1.11803i −0.968246 0.559017i −0.0695448 0.997579i \(-0.522155\pi\)
−0.898701 + 0.438562i \(0.855488\pi\)
\(3\) 0.936492 2.85008i 0.312164 0.950028i
\(4\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(5\) 1.93649 + 1.11803i 0.387298 + 0.223607i 0.680989 0.732294i \(-0.261550\pi\)
−0.293691 + 0.955901i \(0.594884\pi\)
\(6\) −5.00000 + 4.47214i −0.833333 + 0.745356i
\(7\) 3.50000 + 6.06218i 0.500000 + 0.866025i
\(8\) 6.70820i 0.838525i
\(9\) −7.24597 5.33816i −0.805107 0.593129i
\(10\) −2.50000 4.33013i −0.250000 0.433013i
\(11\) 9.68246 5.59017i 0.880223 0.508197i 0.00949140 0.999955i \(-0.496979\pi\)
0.870732 + 0.491758i \(0.163645\pi\)
\(12\) 2.93649 0.614017i 0.244708 0.0511681i
\(13\) −2.00000 −0.153846 −0.0769231 0.997037i \(-0.524510\pi\)
−0.0769231 + 0.997037i \(0.524510\pi\)
\(14\) 15.6525i 1.11803i
\(15\) 5.00000 4.47214i 0.333333 0.298142i
\(16\) 9.50000 16.4545i 0.593750 1.02841i
\(17\) −23.2379 + 13.4164i −1.36694 + 0.789200i −0.990535 0.137257i \(-0.956171\pi\)
−0.376400 + 0.926457i \(0.622838\pi\)
\(18\) 8.06351 + 18.4385i 0.447973 + 1.02436i
\(19\) −8.00000 + 13.8564i −0.421053 + 0.729285i −0.996043 0.0888758i \(-0.971673\pi\)
0.574990 + 0.818160i \(0.305006\pi\)
\(20\) 2.23607i 0.111803i
\(21\) 20.5554 4.29812i 0.978831 0.204672i
\(22\) −25.0000 −1.13636
\(23\) 11.6190 + 6.70820i 0.505172 + 0.291661i 0.730847 0.682542i \(-0.239125\pi\)
−0.225675 + 0.974203i \(0.572459\pi\)
\(24\) 19.1190 + 6.28218i 0.796623 + 0.261757i
\(25\) −10.0000 17.3205i −0.400000 0.692820i
\(26\) 3.87298 + 2.23607i 0.148961 + 0.0860026i
\(27\) −22.0000 + 15.6525i −0.814815 + 0.579721i
\(28\) −3.50000 + 6.06218i −0.125000 + 0.216506i
\(29\) 15.6525i 0.539741i −0.962897 0.269870i \(-0.913019\pi\)
0.962897 0.269870i \(-0.0869808\pi\)
\(30\) −14.6825 + 3.07008i −0.489415 + 0.102336i
\(31\) 1.50000 + 2.59808i 0.0483871 + 0.0838089i 0.889205 0.457510i \(-0.151259\pi\)
−0.840817 + 0.541319i \(0.817925\pi\)
\(32\) −13.5554 + 7.82624i −0.423608 + 0.244570i
\(33\) −6.86492 32.8310i −0.208028 0.994878i
\(34\) 60.0000 1.76471
\(35\) 15.6525i 0.447214i
\(36\) 1.00000 8.94427i 0.0277778 0.248452i
\(37\) −6.00000 + 10.3923i −0.162162 + 0.280873i −0.935644 0.352946i \(-0.885180\pi\)
0.773482 + 0.633819i \(0.218513\pi\)
\(38\) 30.9839 17.8885i 0.815365 0.470751i
\(39\) −1.87298 + 5.70017i −0.0480252 + 0.146158i
\(40\) −7.50000 + 12.9904i −0.187500 + 0.324760i
\(41\) 31.3050i 0.763535i −0.924258 0.381768i \(-0.875315\pi\)
0.924258 0.381768i \(-0.124685\pi\)
\(42\) −44.6109 14.6584i −1.06216 0.349010i
\(43\) 44.0000 1.02326 0.511628 0.859207i \(-0.329043\pi\)
0.511628 + 0.859207i \(0.329043\pi\)
\(44\) 9.68246 + 5.59017i 0.220056 + 0.127049i
\(45\) −8.06351 18.4385i −0.179189 0.409745i
\(46\) −15.0000 25.9808i −0.326087 0.564799i
\(47\) −11.6190 6.70820i −0.247212 0.142728i 0.371275 0.928523i \(-0.378921\pi\)
−0.618487 + 0.785795i \(0.712254\pi\)
\(48\) −38.0000 42.4853i −0.791667 0.885110i
\(49\) −24.5000 + 42.4352i −0.500000 + 0.866025i
\(50\) 44.7214i 0.894427i
\(51\) 16.4758 + 78.7943i 0.323055 + 1.54499i
\(52\) −1.00000 1.73205i −0.0192308 0.0333087i
\(53\) −17.4284 + 10.0623i −0.328838 + 0.189855i −0.655325 0.755347i \(-0.727468\pi\)
0.326487 + 0.945202i \(0.394135\pi\)
\(54\) 60.1028 5.71414i 1.11302 0.105817i
\(55\) 25.0000 0.454545
\(56\) −40.6663 + 23.4787i −0.726184 + 0.419263i
\(57\) 32.0000 + 35.7771i 0.561404 + 0.627668i
\(58\) −17.5000 + 30.3109i −0.301724 + 0.522602i
\(59\) 17.4284 10.0623i 0.295397 0.170548i −0.344976 0.938611i \(-0.612113\pi\)
0.640373 + 0.768064i \(0.278780\pi\)
\(60\) 6.37298 + 2.09406i 0.106216 + 0.0349010i
\(61\) 13.0000 22.5167i 0.213115 0.369126i −0.739573 0.673076i \(-0.764973\pi\)
0.952688 + 0.303951i \(0.0983058\pi\)
\(62\) 6.70820i 0.108197i
\(63\) 7.00000 62.6099i 0.111111 0.993808i
\(64\) −41.0000 −0.640625
\(65\) −3.87298 2.23607i −0.0595844 0.0344010i
\(66\) −23.4123 + 71.2521i −0.354732 + 1.07958i
\(67\) −26.0000 45.0333i −0.388060 0.672139i 0.604129 0.796887i \(-0.293521\pi\)
−0.992189 + 0.124748i \(0.960188\pi\)
\(68\) −23.2379 13.4164i −0.341734 0.197300i
\(69\) 30.0000 26.8328i 0.434783 0.388881i
\(70\) 17.5000 30.3109i 0.250000 0.433013i
\(71\) 93.9149i 1.32274i −0.750058 0.661372i \(-0.769974\pi\)
0.750058 0.661372i \(-0.230026\pi\)
\(72\) 35.8095 48.6074i 0.497354 0.675103i
\(73\) −9.00000 15.5885i −0.123288 0.213541i 0.797775 0.602956i \(-0.206010\pi\)
−0.921062 + 0.389415i \(0.872677\pi\)
\(74\) 23.2379 13.4164i 0.314026 0.181303i
\(75\) −58.7298 + 12.2803i −0.783064 + 0.163738i
\(76\) −16.0000 −0.210526
\(77\) 67.7772 + 39.1312i 0.880223 + 0.508197i
\(78\) 10.0000 8.94427i 0.128205 0.114670i
\(79\) 39.5000 68.4160i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(80\) 36.7933 21.2426i 0.459917 0.265533i
\(81\) 24.0081 + 77.3603i 0.296396 + 0.955065i
\(82\) −35.0000 + 60.6218i −0.426829 + 0.739290i
\(83\) 140.872i 1.69726i 0.528990 + 0.848628i \(0.322571\pi\)
−0.528990 + 0.848628i \(0.677429\pi\)
\(84\) 14.0000 + 15.6525i 0.166667 + 0.186339i
\(85\) −60.0000 −0.705882
\(86\) −85.2056 49.1935i −0.990763 0.572017i
\(87\) −44.6109 14.6584i −0.512769 0.168488i
\(88\) 37.5000 + 64.9519i 0.426136 + 0.738090i
\(89\) 42.6028 + 24.5967i 0.478683 + 0.276368i 0.719868 0.694111i \(-0.244202\pi\)
−0.241184 + 0.970479i \(0.577536\pi\)
\(90\) −5.00000 + 44.7214i −0.0555556 + 0.496904i
\(91\) −7.00000 12.1244i −0.0769231 0.133235i
\(92\) 13.4164i 0.145831i
\(93\) 8.80948 1.84205i 0.0947255 0.0198070i
\(94\) 15.0000 + 25.9808i 0.159574 + 0.276391i
\(95\) −30.9839 + 17.8885i −0.326146 + 0.188300i
\(96\) 9.61088 + 45.9634i 0.100113 + 0.478785i
\(97\) −93.0000 −0.958763 −0.479381 0.877607i \(-0.659139\pi\)
−0.479381 + 0.877607i \(0.659139\pi\)
\(98\) 94.8881 54.7837i 0.968246 0.559017i
\(99\) −100.000 11.1803i −1.01010 0.112933i
\(100\) 10.0000 17.3205i 0.100000 0.173205i
\(101\) −50.3488 + 29.0689i −0.498503 + 0.287811i −0.728095 0.685476i \(-0.759594\pi\)
0.229592 + 0.973287i \(0.426261\pi\)
\(102\) 56.1895 171.005i 0.550877 1.67652i
\(103\) 41.0000 71.0141i 0.398058 0.689457i −0.595428 0.803409i \(-0.703018\pi\)
0.993486 + 0.113952i \(0.0363509\pi\)
\(104\) 13.4164i 0.129004i
\(105\) 44.6109 + 14.6584i 0.424866 + 0.139604i
\(106\) 45.0000 0.424528
\(107\) −56.1583 32.4230i −0.524844 0.303019i 0.214071 0.976818i \(-0.431328\pi\)
−0.738914 + 0.673800i \(0.764661\pi\)
\(108\) −24.5554 11.2263i −0.227365 0.103947i
\(109\) 72.0000 + 124.708i 0.660550 + 1.14411i 0.980471 + 0.196663i \(0.0630104\pi\)
−0.319921 + 0.947444i \(0.603656\pi\)
\(110\) −48.4123 27.9508i −0.440112 0.254099i
\(111\) 24.0000 + 26.8328i 0.216216 + 0.241737i
\(112\) 133.000 1.18750
\(113\) 31.3050i 0.277035i 0.990360 + 0.138517i \(0.0442337\pi\)
−0.990360 + 0.138517i \(0.955766\pi\)
\(114\) −21.9677 105.059i −0.192699 0.921571i
\(115\) 15.0000 + 25.9808i 0.130435 + 0.225920i
\(116\) 13.5554 7.82624i 0.116857 0.0674676i
\(117\) 14.4919 + 10.6763i 0.123863 + 0.0912506i
\(118\) −45.0000 −0.381356
\(119\) −162.665 93.9149i −1.36694 0.789200i
\(120\) 30.0000 + 33.5410i 0.250000 + 0.279508i
\(121\) 2.00000 3.46410i 0.0165289 0.0286289i
\(122\) −50.3488 + 29.0689i −0.412695 + 0.238270i
\(123\) −89.2218 29.3168i −0.725380 0.238348i
\(124\) −1.50000 + 2.59808i −0.0120968 + 0.0209522i
\(125\) 100.623i 0.804984i
\(126\) −83.5554 + 113.417i −0.663138 + 0.900137i
\(127\) 177.000 1.39370 0.696850 0.717217i \(-0.254584\pi\)
0.696850 + 0.717217i \(0.254584\pi\)
\(128\) 133.618 + 77.1443i 1.04389 + 0.602690i
\(129\) 41.2056 125.404i 0.319424 0.972122i
\(130\) 5.00000 + 8.66025i 0.0384615 + 0.0666173i
\(131\) 164.602 + 95.0329i 1.25650 + 0.725442i 0.972393 0.233350i \(-0.0749688\pi\)
0.284109 + 0.958792i \(0.408302\pi\)
\(132\) 25.0000 22.3607i 0.189394 0.169399i
\(133\) −112.000 −0.842105
\(134\) 116.276i 0.867728i
\(135\) −60.1028 + 5.71414i −0.445206 + 0.0423270i
\(136\) −90.0000 155.885i −0.661765 1.14621i
\(137\) 185.903 107.331i 1.35696 0.783440i 0.367745 0.929927i \(-0.380130\pi\)
0.989213 + 0.146487i \(0.0467966\pi\)
\(138\) −88.0948 + 18.4205i −0.638368 + 0.133482i
\(139\) −114.000 −0.820144 −0.410072 0.912053i \(-0.634496\pi\)
−0.410072 + 0.912053i \(0.634496\pi\)
\(140\) −13.5554 + 7.82624i −0.0968246 + 0.0559017i
\(141\) −30.0000 + 26.8328i −0.212766 + 0.190304i
\(142\) −105.000 + 181.865i −0.739437 + 1.28074i
\(143\) −19.3649 + 11.1803i −0.135419 + 0.0781842i
\(144\) −156.673 + 68.5161i −1.08801 + 0.475806i
\(145\) 17.5000 30.3109i 0.120690 0.209041i
\(146\) 40.2492i 0.275680i
\(147\) 98.0000 + 109.567i 0.666667 + 0.745356i
\(148\) −12.0000 −0.0810811
\(149\) 11.6190 + 6.70820i 0.0779795 + 0.0450215i 0.538483 0.842637i \(-0.318998\pi\)
−0.460503 + 0.887658i \(0.652331\pi\)
\(150\) 127.460 + 41.8812i 0.849731 + 0.279208i
\(151\) −29.5000 51.0955i −0.195364 0.338381i 0.751656 0.659556i \(-0.229256\pi\)
−0.947020 + 0.321175i \(0.895922\pi\)
\(152\) −92.9516 53.6656i −0.611524 0.353063i
\(153\) 240.000 + 26.8328i 1.56863 + 0.175378i
\(154\) −87.5000 151.554i −0.568182 0.984120i
\(155\) 6.70820i 0.0432787i
\(156\) −5.87298 + 1.22803i −0.0376473 + 0.00787201i
\(157\) 124.000 + 214.774i 0.789809 + 1.36799i 0.926084 + 0.377318i \(0.123154\pi\)
−0.136275 + 0.990671i \(0.543513\pi\)
\(158\) −152.983 + 88.3247i −0.968246 + 0.559017i
\(159\) 12.3569 + 59.0958i 0.0777160 + 0.371671i
\(160\) −35.0000 −0.218750
\(161\) 93.9149i 0.583322i
\(162\) 40.0000 176.649i 0.246914 1.09043i
\(163\) 1.00000 1.73205i 0.00613497 0.0106261i −0.862942 0.505304i \(-0.831380\pi\)
0.869077 + 0.494678i \(0.164714\pi\)
\(164\) 27.1109 15.6525i 0.165310 0.0954419i
\(165\) 23.4123 71.2521i 0.141893 0.431831i
\(166\) 157.500 272.798i 0.948795 1.64336i
\(167\) 250.440i 1.49964i −0.661643 0.749819i \(-0.730140\pi\)
0.661643 0.749819i \(-0.269860\pi\)
\(168\) 28.8327 + 137.890i 0.171623 + 0.820774i
\(169\) −165.000 −0.976331
\(170\) 116.190 + 67.0820i 0.683468 + 0.394600i
\(171\) 131.935 57.6978i 0.771552 0.337414i
\(172\) 22.0000 + 38.1051i 0.127907 + 0.221541i
\(173\) −228.506 131.928i −1.32084 0.762590i −0.336981 0.941512i \(-0.609406\pi\)
−0.983863 + 0.178922i \(0.942739\pi\)
\(174\) 70.0000 + 78.2624i 0.402299 + 0.449784i
\(175\) 70.0000 121.244i 0.400000 0.692820i
\(176\) 212.426i 1.20697i
\(177\) −12.3569 59.0958i −0.0698127 0.333874i
\(178\) −55.0000 95.2628i −0.308989 0.535184i
\(179\) −166.538 + 96.1509i −0.930381 + 0.537156i −0.886932 0.461900i \(-0.847168\pi\)
−0.0434493 + 0.999056i \(0.513835\pi\)
\(180\) 11.9365 16.2025i 0.0663138 0.0900137i
\(181\) 82.0000 0.453039 0.226519 0.974007i \(-0.427265\pi\)
0.226519 + 0.974007i \(0.427265\pi\)
\(182\) 31.3050i 0.172005i
\(183\) −52.0000 58.1378i −0.284153 0.317693i
\(184\) −45.0000 + 77.9423i −0.244565 + 0.423599i
\(185\) −23.2379 + 13.4164i −0.125610 + 0.0725211i
\(186\) −19.1190 6.28218i −0.102790 0.0337751i
\(187\) −150.000 + 259.808i −0.802139 + 1.38935i
\(188\) 13.4164i 0.0713639i
\(189\) −171.888 78.5842i −0.909461 0.415790i
\(190\) 80.0000 0.421053
\(191\) 147.173 + 84.9706i 0.770541 + 0.444872i 0.833068 0.553171i \(-0.186582\pi\)
−0.0625264 + 0.998043i \(0.519916\pi\)
\(192\) −38.3962 + 116.853i −0.199980 + 0.608612i
\(193\) −29.5000 51.0955i −0.152850 0.264744i 0.779424 0.626496i \(-0.215512\pi\)
−0.932274 + 0.361753i \(0.882178\pi\)
\(194\) 180.094 + 103.977i 0.928318 + 0.535965i
\(195\) −10.0000 + 8.94427i −0.0512821 + 0.0458681i
\(196\) −49.0000 −0.250000
\(197\) 219.135i 1.11236i 0.831062 + 0.556179i \(0.187733\pi\)
−0.831062 + 0.556179i \(0.812267\pi\)
\(198\) 181.149 + 133.454i 0.914895 + 0.674010i
\(199\) 117.000 + 202.650i 0.587940 + 1.01834i 0.994502 + 0.104718i \(0.0333941\pi\)
−0.406562 + 0.913623i \(0.633273\pi\)
\(200\) 116.190 67.0820i 0.580948 0.335410i
\(201\) −152.698 + 31.9289i −0.759689 + 0.158850i
\(202\) 130.000 0.643564
\(203\) 94.8881 54.7837i 0.467429 0.269870i
\(204\) −60.0000 + 53.6656i −0.294118 + 0.263067i
\(205\) 35.0000 60.6218i 0.170732 0.295716i
\(206\) −158.792 + 91.6788i −0.770836 + 0.445043i
\(207\) −48.3810 110.631i −0.233725 0.534450i
\(208\) −19.0000 + 32.9090i −0.0913462 + 0.158216i
\(209\) 178.885i 0.855911i
\(210\) −70.0000 78.2624i −0.333333 0.372678i
\(211\) −26.0000 −0.123223 −0.0616114 0.998100i \(-0.519624\pi\)
−0.0616114 + 0.998100i \(0.519624\pi\)
\(212\) −17.4284 10.0623i −0.0822096 0.0474637i
\(213\) −267.665 87.9505i −1.25664 0.412913i
\(214\) 72.5000 + 125.574i 0.338785 + 0.586793i
\(215\) 85.2056 + 49.1935i 0.396305 + 0.228807i
\(216\) −105.000 147.580i −0.486111 0.683243i
\(217\) −10.5000 + 18.1865i −0.0483871 + 0.0838089i
\(218\) 321.994i 1.47704i
\(219\) −52.8569 + 11.0523i −0.241355 + 0.0504671i
\(220\) 12.5000 + 21.6506i 0.0568182 + 0.0984120i
\(221\) 46.4758 26.8328i 0.210298 0.121415i
\(222\) −16.4758 78.7943i −0.0742153 0.354929i
\(223\) −107.000 −0.479821 −0.239910 0.970795i \(-0.577118\pi\)
−0.239910 + 0.970795i \(0.577118\pi\)
\(224\) −94.8881 54.7837i −0.423608 0.244570i
\(225\) −20.0000 + 178.885i −0.0888889 + 0.795046i
\(226\) 35.0000 60.6218i 0.154867 0.268238i
\(227\) 261.426 150.935i 1.15166 0.664910i 0.202367 0.979310i \(-0.435137\pi\)
0.949291 + 0.314400i \(0.101803\pi\)
\(228\) −14.9839 + 45.6014i −0.0657187 + 0.200006i
\(229\) 167.000 289.252i 0.729258 1.26311i −0.227940 0.973675i \(-0.573199\pi\)
0.957197 0.289436i \(-0.0934678\pi\)
\(230\) 67.0820i 0.291661i
\(231\) 175.000 156.525i 0.757576 0.677596i
\(232\) 105.000 0.452586
\(233\) −232.379 134.164i −0.997335 0.575811i −0.0898761 0.995953i \(-0.528647\pi\)
−0.907459 + 0.420141i \(0.861980\pi\)
\(234\) −16.1270 36.8771i −0.0689189 0.157594i
\(235\) −15.0000 25.9808i −0.0638298 0.110556i
\(236\) 17.4284 + 10.0623i 0.0738493 + 0.0426369i
\(237\) −158.000 176.649i −0.666667 0.745356i
\(238\) 210.000 + 363.731i 0.882353 + 1.52828i
\(239\) 281.745i 1.17885i 0.807824 + 0.589424i \(0.200645\pi\)
−0.807824 + 0.589424i \(0.799355\pi\)
\(240\) −26.0867 124.758i −0.108695 0.519824i
\(241\) −89.5000 155.019i −0.371369 0.643230i 0.618407 0.785858i \(-0.287778\pi\)
−0.989776 + 0.142627i \(0.954445\pi\)
\(242\) −7.74597 + 4.47214i −0.0320081 + 0.0184799i
\(243\) 242.967 + 4.02223i 0.999863 + 0.0165524i
\(244\) 26.0000 0.106557
\(245\) −94.8881 + 54.7837i −0.387298 + 0.223607i
\(246\) 140.000 + 156.525i 0.569106 + 0.636280i
\(247\) 16.0000 27.7128i 0.0647773 0.112198i
\(248\) −17.4284 + 10.0623i −0.0702759 + 0.0405738i
\(249\) 401.498 + 131.926i 1.61244 + 0.529822i
\(250\) −112.500 + 194.856i −0.450000 + 0.779423i
\(251\) 172.177i 0.685965i 0.939342 + 0.342983i \(0.111437\pi\)
−0.939342 + 0.342983i \(0.888563\pi\)
\(252\) 57.7218 25.2428i 0.229055 0.100170i
\(253\) 150.000 0.592885
\(254\) −342.759 197.892i −1.34944 0.779102i
\(255\) −56.1895 + 171.005i −0.220351 + 0.670608i
\(256\) −90.5000 156.751i −0.353516 0.612307i
\(257\) −228.506 131.928i −0.889128 0.513339i −0.0154711 0.999880i \(-0.504925\pi\)
−0.873657 + 0.486542i \(0.838258\pi\)
\(258\) −220.000 + 196.774i −0.852713 + 0.762690i
\(259\) −84.0000 −0.324324
\(260\) 4.47214i 0.0172005i
\(261\) −83.5554 + 113.417i −0.320136 + 0.434549i
\(262\) −212.500 368.061i −0.811069 1.40481i
\(263\) −30.9839 + 17.8885i −0.117809 + 0.0680173i −0.557747 0.830011i \(-0.688334\pi\)
0.439937 + 0.898028i \(0.355001\pi\)
\(264\) 220.237 46.0513i 0.834231 0.174437i
\(265\) −45.0000 −0.169811
\(266\) 216.887 + 125.220i 0.815365 + 0.470751i
\(267\) 110.000 98.3870i 0.411985 0.368491i
\(268\) 26.0000 45.0333i 0.0970149 0.168035i
\(269\) 342.759 197.892i 1.27420 0.735658i 0.298422 0.954434i \(-0.403540\pi\)
0.975775 + 0.218776i \(0.0702064\pi\)
\(270\) 122.777 + 56.1316i 0.454730 + 0.207895i
\(271\) −228.500 + 395.774i −0.843173 + 1.46042i 0.0440246 + 0.999030i \(0.485982\pi\)
−0.887198 + 0.461389i \(0.847351\pi\)
\(272\) 509.823i 1.87435i
\(273\) −41.1109 + 8.59624i −0.150589 + 0.0314880i
\(274\) −480.000 −1.75182
\(275\) −193.649 111.803i −0.704179 0.406558i
\(276\) 38.2379 + 12.5644i 0.138543 + 0.0455230i
\(277\) −26.0000 45.0333i −0.0938628 0.162575i 0.815271 0.579080i \(-0.196588\pi\)
−0.909133 + 0.416505i \(0.863255\pi\)
\(278\) 220.760 + 127.456i 0.794101 + 0.458474i
\(279\) 3.00000 26.8328i 0.0107527 0.0961750i
\(280\) −105.000 −0.375000
\(281\) 125.220i 0.445622i −0.974862 0.222811i \(-0.928477\pi\)
0.974862 0.222811i \(-0.0715233\pi\)
\(282\) 88.0948 18.4205i 0.312393 0.0653209i
\(283\) −44.0000 76.2102i −0.155477 0.269294i 0.777756 0.628567i \(-0.216358\pi\)
−0.933233 + 0.359273i \(0.883025\pi\)
\(284\) 81.3327 46.9574i 0.286383 0.165343i
\(285\) 21.9677 + 105.059i 0.0770798 + 0.368628i
\(286\) 50.0000 0.174825
\(287\) 189.776 109.567i 0.661241 0.381768i
\(288\) 140.000 + 15.6525i 0.486111 + 0.0543489i
\(289\) 215.500 373.257i 0.745675 1.29155i
\(290\) −67.7772 + 39.1312i −0.233715 + 0.134935i
\(291\) −87.0937 + 265.058i −0.299291 + 0.910852i
\(292\) 9.00000 15.5885i 0.0308219 0.0533851i
\(293\) 15.6525i 0.0534214i 0.999643 + 0.0267107i \(0.00850329\pi\)
−0.999643 + 0.0267107i \(0.991497\pi\)
\(294\) −67.2762 321.744i −0.228831 1.09437i
\(295\) 45.0000 0.152542
\(296\) −69.7137 40.2492i −0.235519 0.135977i
\(297\) −125.514 + 274.538i −0.422606 + 0.924371i
\(298\) −15.0000 25.9808i −0.0503356 0.0871838i
\(299\) −23.2379 13.4164i −0.0777187 0.0448709i
\(300\) −40.0000 44.7214i −0.133333 0.149071i
\(301\) 154.000 + 266.736i 0.511628 + 0.886166i
\(302\) 131.928i 0.436848i
\(303\) 35.6976 + 170.721i 0.117814 + 0.563436i
\(304\) 152.000 + 263.272i 0.500000 + 0.866025i
\(305\) 50.3488 29.0689i 0.165078 0.0953078i
\(306\) −434.758 320.290i −1.42078 1.04670i
\(307\) 166.000 0.540717 0.270358 0.962760i \(-0.412858\pi\)
0.270358 + 0.962760i \(0.412858\pi\)
\(308\) 78.2624i 0.254099i
\(309\) −164.000 183.358i −0.530744 0.593390i
\(310\) 7.50000 12.9904i 0.0241935 0.0419045i
\(311\) −267.236 + 154.289i −0.859279 + 0.496105i −0.863771 0.503885i \(-0.831904\pi\)
0.00449160 + 0.999990i \(0.498570\pi\)
\(312\) −38.2379 12.5644i −0.122557 0.0402704i
\(313\) 135.500 234.693i 0.432907 0.749818i −0.564215 0.825628i \(-0.690821\pi\)
0.997122 + 0.0758104i \(0.0241544\pi\)
\(314\) 554.545i 1.76607i
\(315\) 83.5554 113.417i 0.265255 0.360055i
\(316\) 79.0000 0.250000
\(317\) 377.616 + 218.017i 1.19122 + 0.687750i 0.958583 0.284815i \(-0.0919320\pi\)
0.232635 + 0.972564i \(0.425265\pi\)
\(318\) 42.1421 128.254i 0.132522 0.403314i
\(319\) −87.5000 151.554i −0.274295 0.475092i
\(320\) −79.3962 45.8394i −0.248113 0.143248i
\(321\) −145.000 + 129.692i −0.451713 + 0.404025i
\(322\) 105.000 181.865i 0.326087 0.564799i
\(323\) 429.325i 1.32918i
\(324\) −54.9919 + 59.4717i −0.169728 + 0.183555i
\(325\) 20.0000 + 34.6410i 0.0615385 + 0.106588i
\(326\) −3.87298 + 2.23607i −0.0118803 + 0.00685910i
\(327\) 422.855 88.4184i 1.29313 0.270393i
\(328\) 210.000 0.640244
\(329\) 93.9149i 0.285455i
\(330\) −125.000 + 111.803i −0.378788 + 0.338798i
\(331\) 8.00000 13.8564i 0.0241692 0.0418623i −0.853688 0.520785i \(-0.825639\pi\)
0.877857 + 0.478923i \(0.158973\pi\)
\(332\) −121.999 + 70.4361i −0.367467 + 0.212157i
\(333\) 98.9516 43.2733i 0.297152 0.129950i
\(334\) −280.000 + 484.974i −0.838323 + 1.45202i
\(335\) 116.276i 0.347091i
\(336\) 124.553 379.061i 0.370695 1.12816i
\(337\) −509.000 −1.51039 −0.755193 0.655503i \(-0.772457\pi\)
−0.755193 + 0.655503i \(0.772457\pi\)
\(338\) 319.521 + 184.476i 0.945329 + 0.545786i
\(339\) 89.2218 + 29.3168i 0.263191 + 0.0864803i
\(340\) −30.0000 51.9615i −0.0882353 0.152828i
\(341\) 29.0474 + 16.7705i 0.0851829 + 0.0491804i
\(342\) −320.000 35.7771i −0.935673 0.104611i
\(343\) −343.000 −1.00000
\(344\) 295.161i 0.858026i
\(345\) 88.0948 18.4205i 0.255347 0.0533928i
\(346\) 295.000 + 510.955i 0.852601 + 1.47675i
\(347\) −329.204 + 190.066i −0.948713 + 0.547740i −0.892681 0.450689i \(-0.851178\pi\)
−0.0560324 + 0.998429i \(0.517845\pi\)
\(348\) −9.61088 45.9634i −0.0276175 0.132079i
\(349\) 628.000 1.79943 0.899713 0.436481i \(-0.143775\pi\)
0.899713 + 0.436481i \(0.143775\pi\)
\(350\) −271.109 + 156.525i −0.774597 + 0.447214i
\(351\) 44.0000 31.3050i 0.125356 0.0891879i
\(352\) −87.5000 + 151.554i −0.248580 + 0.430552i
\(353\) −402.790 + 232.551i −1.14105 + 0.658785i −0.946690 0.322146i \(-0.895596\pi\)
−0.194359 + 0.980931i \(0.562263\pi\)
\(354\) −42.1421 + 128.254i −0.119046 + 0.362299i
\(355\) 105.000 181.865i 0.295775 0.512297i
\(356\) 49.1935i 0.138184i
\(357\) −420.000 + 375.659i −1.17647 + 1.05227i
\(358\) 430.000 1.20112
\(359\) 201.395 + 116.276i 0.560989 + 0.323887i 0.753542 0.657399i \(-0.228343\pi\)
−0.192553 + 0.981287i \(0.561677\pi\)
\(360\) 123.690 54.0917i 0.343582 0.150255i
\(361\) 52.5000 + 90.9327i 0.145429 + 0.251891i
\(362\) −158.792 91.6788i −0.438653 0.253256i
\(363\) −8.00000 8.94427i −0.0220386 0.0246399i
\(364\) 7.00000 12.1244i 0.0192308 0.0333087i
\(365\) 40.2492i 0.110272i
\(366\) 35.6976 + 170.721i 0.0975343 + 0.466451i
\(367\) −250.500 433.879i −0.682561 1.18223i −0.974197 0.225701i \(-0.927533\pi\)
0.291635 0.956530i \(-0.405801\pi\)
\(368\) 220.760 127.456i 0.599891 0.346347i
\(369\) −167.111 + 226.835i −0.452875 + 0.614728i
\(370\) 60.0000 0.162162
\(371\) −121.999 70.4361i −0.328838 0.189855i
\(372\) 6.00000 + 6.70820i 0.0161290 + 0.0180328i
\(373\) −349.000 + 604.486i −0.935657 + 1.62061i −0.162198 + 0.986758i \(0.551858\pi\)
−0.773458 + 0.633847i \(0.781475\pi\)
\(374\) 580.948 335.410i 1.55334 0.896819i
\(375\) −286.784 94.2327i −0.764758 0.251287i
\(376\) 45.0000 77.9423i 0.119681 0.207293i
\(377\) 31.3050i 0.0830370i
\(378\) 245.000 + 344.354i 0.648148 + 0.910991i
\(379\) 366.000 0.965699 0.482850 0.875703i \(-0.339602\pi\)
0.482850 + 0.875703i \(0.339602\pi\)
\(380\) −30.9839 17.8885i −0.0815365 0.0470751i
\(381\) 165.759 504.465i 0.435063 1.32406i
\(382\) −190.000 329.090i −0.497382 0.861491i
\(383\) −11.6190 6.70820i −0.0303367 0.0175149i 0.484755 0.874650i \(-0.338909\pi\)
−0.515092 + 0.857135i \(0.672242\pi\)
\(384\) 345.000 308.577i 0.898438 0.803587i
\(385\) 87.5000 + 151.554i 0.227273 + 0.393648i
\(386\) 131.928i 0.341782i
\(387\) −318.823 234.879i −0.823831 0.606923i
\(388\) −46.5000 80.5404i −0.119845 0.207578i
\(389\) −58.0948 + 33.5410i −0.149344 + 0.0862237i −0.572810 0.819688i \(-0.694147\pi\)
0.423466 + 0.905912i \(0.360813\pi\)
\(390\) 29.3649 6.14017i 0.0752947 0.0157440i
\(391\) −360.000 −0.920716
\(392\) −284.664 164.351i −0.726184 0.419263i
\(393\) 425.000 380.132i 1.08142 0.967256i
\(394\) 245.000 424.352i 0.621827 1.07704i
\(395\) 152.983 88.3247i 0.387298 0.223607i
\(396\) −40.3175 92.1927i −0.101812 0.232810i
\(397\) 132.000 228.631i 0.332494 0.575896i −0.650506 0.759501i \(-0.725443\pi\)
0.983000 + 0.183605i \(0.0587766\pi\)
\(398\) 523.240i 1.31467i
\(399\) −104.887 + 319.209i −0.262875 + 0.800024i
\(400\) −380.000 −0.950000
\(401\) 92.9516 + 53.6656i 0.231800 + 0.133830i 0.611402 0.791320i \(-0.290606\pi\)
−0.379602 + 0.925150i \(0.623939\pi\)
\(402\) 331.395 + 108.891i 0.824366 + 0.270873i
\(403\) −3.00000 5.19615i −0.00744417 0.0128937i
\(404\) −50.3488 29.0689i −0.124626 0.0719527i
\(405\) −40.0000 + 176.649i −0.0987654 + 0.436171i
\(406\) −245.000 −0.603448
\(407\) 134.164i 0.329641i
\(408\) −528.569 + 110.523i −1.29551 + 0.270890i
\(409\) 99.5000 + 172.339i 0.243276 + 0.421367i 0.961646 0.274295i \(-0.0884445\pi\)
−0.718369 + 0.695662i \(0.755111\pi\)
\(410\) −135.554 + 78.2624i −0.330621 + 0.190884i
\(411\) −131.806 630.355i −0.320697 1.53371i
\(412\) 82.0000 0.199029
\(413\) 121.999 + 70.4361i 0.295397 + 0.170548i
\(414\) −30.0000 + 268.328i −0.0724638 + 0.648136i
\(415\) −157.500 + 272.798i −0.379518 + 0.657345i
\(416\) 27.1109 15.6525i 0.0651704 0.0376261i
\(417\) −106.760 + 324.910i −0.256019 + 0.779160i
\(418\) 200.000 346.410i 0.478469 0.828732i
\(419\) 93.9149i 0.224140i 0.993700 + 0.112070i \(0.0357482\pi\)
−0.993700 + 0.112070i \(0.964252\pi\)
\(420\) 9.61088 + 45.9634i 0.0228831 + 0.109437i
\(421\) 254.000 0.603325 0.301663 0.953415i \(-0.402458\pi\)
0.301663 + 0.953415i \(0.402458\pi\)
\(422\) 50.3488 + 29.0689i 0.119310 + 0.0688836i
\(423\) 48.3810 + 110.631i 0.114376 + 0.261540i
\(424\) −67.5000 116.913i −0.159198 0.275739i
\(425\) 464.758 + 268.328i 1.09355 + 0.631360i
\(426\) 420.000 + 469.574i 0.985915 + 1.10229i
\(427\) 182.000 0.426230
\(428\) 64.8460i 0.151509i
\(429\) 13.7298 + 65.6619i 0.0320043 + 0.153058i
\(430\) −110.000 190.526i −0.255814 0.443083i
\(431\) 104.571 60.3738i 0.242623 0.140079i −0.373759 0.927526i \(-0.621931\pi\)
0.616382 + 0.787447i \(0.288598\pi\)
\(432\) 48.5534 + 510.697i 0.112392 + 1.18217i
\(433\) −506.000 −1.16859 −0.584296 0.811541i \(-0.698629\pi\)
−0.584296 + 0.811541i \(0.698629\pi\)
\(434\) 40.6663 23.4787i 0.0937012 0.0540984i
\(435\) −70.0000 78.2624i −0.160920 0.179914i
\(436\) −72.0000 + 124.708i −0.165138 + 0.286027i
\(437\) −185.903 + 107.331i −0.425408 + 0.245609i
\(438\) 114.714 + 37.6931i 0.261903 + 0.0860572i
\(439\) −235.500 + 407.898i −0.536446 + 0.929153i 0.462645 + 0.886543i \(0.346900\pi\)
−0.999092 + 0.0426091i \(0.986433\pi\)
\(440\) 167.705i 0.381148i
\(441\) 404.052 176.699i 0.916219 0.400679i
\(442\) −120.000 −0.271493
\(443\) 52.2853 + 30.1869i 0.118025 + 0.0681420i 0.557851 0.829941i \(-0.311626\pi\)
−0.439825 + 0.898083i \(0.644960\pi\)
\(444\) −11.2379 + 34.2010i −0.0253106 + 0.0770293i
\(445\) 55.0000 + 95.2628i 0.123596 + 0.214074i
\(446\) 207.205 + 119.630i 0.464584 + 0.268228i
\(447\) 30.0000 26.8328i 0.0671141 0.0600287i
\(448\) −143.500 248.549i −0.320312 0.554798i
\(449\) 281.745i 0.627493i 0.949507 + 0.313747i \(0.101584\pi\)
−0.949507 + 0.313747i \(0.898416\pi\)
\(450\) 238.730 324.049i 0.530511 0.720110i
\(451\) −175.000 303.109i −0.388027 0.672082i
\(452\) −27.1109 + 15.6525i −0.0599798 + 0.0346294i
\(453\) −173.253 + 36.2270i −0.382457 + 0.0799713i
\(454\) −675.000 −1.48678
\(455\) 31.3050i 0.0688021i
\(456\) −240.000 + 214.663i −0.526316 + 0.470751i
\(457\) 11.5000 19.9186i 0.0251641 0.0435855i −0.853169 0.521634i \(-0.825323\pi\)
0.878333 + 0.478049i \(0.158656\pi\)
\(458\) −646.788 + 373.423i −1.41220 + 0.815335i
\(459\) 301.234 658.892i 0.656283 1.43549i
\(460\) −15.0000 + 25.9808i −0.0326087 + 0.0564799i
\(461\) 594.794i 1.29023i −0.764087 0.645113i \(-0.776810\pi\)
0.764087 0.645113i \(-0.223190\pi\)
\(462\) −513.886 + 107.453i −1.11231 + 0.232582i
\(463\) 58.0000 0.125270 0.0626350 0.998037i \(-0.480050\pi\)
0.0626350 + 0.998037i \(0.480050\pi\)
\(464\) −257.553 148.699i −0.555072 0.320471i
\(465\) 19.1190 + 6.28218i 0.0411160 + 0.0135101i
\(466\) 300.000 + 519.615i 0.643777 + 1.11505i
\(467\) −499.615 288.453i −1.06984 0.617672i −0.141702 0.989909i \(-0.545257\pi\)
−0.928137 + 0.372238i \(0.878591\pi\)
\(468\) −2.00000 + 17.8885i −0.00427350 + 0.0382234i
\(469\) 182.000 315.233i 0.388060 0.672139i
\(470\) 67.0820i 0.142728i
\(471\) 728.250 152.276i 1.54618 0.323304i
\(472\) 67.5000 + 116.913i 0.143008 + 0.247698i
\(473\) 426.028 245.967i 0.900694 0.520016i
\(474\) 108.466 + 518.729i 0.228831 + 1.09437i
\(475\) 320.000 0.673684
\(476\) 187.830i 0.394600i
\(477\) 180.000 + 20.1246i 0.377358 + 0.0421900i
\(478\) 315.000 545.596i 0.658996 1.14141i
\(479\) −294.347 + 169.941i −0.614503 + 0.354783i −0.774726 0.632298i \(-0.782112\pi\)
0.160223 + 0.987081i \(0.448779\pi\)
\(480\) −32.7772 + 99.7530i −0.0682859 + 0.207819i
\(481\) 12.0000 20.7846i 0.0249480 0.0432112i
\(482\) 400.256i 0.830407i
\(483\) 267.665 + 87.9505i 0.554172 + 0.182092i
\(484\) 4.00000 0.00826446
\(485\) −180.094 103.977i −0.371327 0.214386i
\(486\) −466.006 279.434i −0.958860 0.574967i
\(487\) 404.500 + 700.615i 0.830595 + 1.43863i 0.897567 + 0.440879i \(0.145333\pi\)
−0.0669712 + 0.997755i \(0.521334\pi\)
\(488\) 151.046 + 87.2067i 0.309521 + 0.178702i
\(489\) −4.00000 4.47214i −0.00817996 0.00914547i
\(490\) 245.000 0.500000
\(491\) 453.922i 0.924484i −0.886754 0.462242i \(-0.847045\pi\)
0.886754 0.462242i \(-0.152955\pi\)
\(492\) −19.2218 91.9267i −0.0390686 0.186843i
\(493\) 210.000 + 363.731i 0.425963 + 0.737790i
\(494\) −61.9677 + 35.7771i −0.125441 + 0.0724233i
\(495\) −181.149 133.454i −0.365958 0.269604i
\(496\) 57.0000 0.114919
\(497\) 569.329 328.702i 1.14553 0.661372i
\(498\) −630.000 704.361i −1.26506 1.41438i
\(499\) 127.000 219.970i 0.254509 0.440823i −0.710253 0.703946i \(-0.751419\pi\)
0.964762 + 0.263124i \(0.0847528\pi\)
\(500\) 87.1421 50.3115i 0.174284 0.100623i
\(501\) −713.774 234.535i −1.42470 0.468133i
\(502\) 192.500 333.420i 0.383466 0.664183i
\(503\) 939.149i 1.86709i 0.358454 + 0.933547i \(0.383304\pi\)
−0.358454 + 0.933547i \(0.616696\pi\)
\(504\) 420.000 + 46.9574i 0.833333 + 0.0931695i
\(505\) −130.000 −0.257426
\(506\) −290.474 167.705i −0.574059 0.331433i
\(507\) −154.521 + 470.264i −0.304775 + 0.927542i
\(508\) 88.5000 + 153.286i 0.174213 + 0.301745i
\(509\) −350.505 202.364i −0.688615 0.397572i 0.114478 0.993426i \(-0.463480\pi\)
−0.803093 + 0.595854i \(0.796814\pi\)
\(510\) 300.000 268.328i 0.588235 0.526134i
\(511\) 63.0000 109.119i 0.123288 0.213541i
\(512\) 212.426i 0.414895i
\(513\) −40.8871 430.061i −0.0797019 0.838325i
\(514\) 295.000 + 510.955i 0.573930 + 0.994076i
\(515\) 158.792 91.6788i 0.308335 0.178017i
\(516\) 129.206 27.0167i 0.250399 0.0523580i
\(517\) −150.000 −0.290135
\(518\) 162.665 + 93.9149i 0.314026 + 0.181303i
\(519\) −590.000 + 527.712i −1.13680 + 1.01679i
\(520\) 15.0000 25.9808i 0.0288462 0.0499630i
\(521\) 302.093 174.413i 0.579832 0.334766i −0.181234 0.983440i \(-0.558009\pi\)
0.761067 + 0.648674i \(0.224676\pi\)
\(522\) 288.609 126.214i 0.552890 0.241789i
\(523\) −197.000 + 341.214i −0.376673 + 0.652417i −0.990576 0.136965i \(-0.956265\pi\)
0.613903 + 0.789382i \(0.289599\pi\)
\(524\) 190.066i 0.362721i
\(525\) −280.000 313.050i −0.533333 0.596285i
\(526\) 80.0000 0.152091
\(527\) −69.7137 40.2492i −0.132284 0.0763742i
\(528\) −605.433 198.936i −1.14665 0.376772i
\(529\) −174.500 302.243i −0.329868 0.571348i
\(530\) 87.1421 + 50.3115i 0.164419 + 0.0949274i
\(531\) −180.000 20.1246i −0.338983 0.0378995i
\(532\) −56.0000 96.9948i −0.105263 0.182321i
\(533\) 62.6099i 0.117467i
\(534\) −323.014 + 67.5419i −0.604895 + 0.126483i
\(535\) −72.5000 125.574i −0.135514 0.234717i
\(536\) 302.093 174.413i 0.563606 0.325398i
\(537\) 118.077 + 564.693i 0.219882 + 1.05157i
\(538\) −885.000 −1.64498
\(539\) 547.837i 1.01639i
\(540\) −35.0000 49.1935i −0.0648148 0.0910991i
\(541\) −202.000 + 349.874i −0.373383 + 0.646718i −0.990084 0.140480i \(-0.955135\pi\)
0.616701 + 0.787198i \(0.288469\pi\)
\(542\) 884.977 510.942i 1.63280 0.942697i
\(543\) 76.7923 233.707i 0.141422 0.430400i
\(544\) 210.000 363.731i 0.386029 0.668623i
\(545\) 321.994i 0.590814i
\(546\) 89.2218 + 29.3168i 0.163410 + 0.0536938i
\(547\) 16.0000 0.0292505 0.0146252 0.999893i \(-0.495344\pi\)
0.0146252 + 0.999893i \(0.495344\pi\)
\(548\) 185.903 + 107.331i 0.339239 + 0.195860i
\(549\) −214.395 + 93.7589i −0.390519 + 0.170781i
\(550\) 250.000 + 433.013i 0.454545 + 0.787296i
\(551\) 216.887 + 125.220i 0.393624 + 0.227259i
\(552\) 180.000 + 201.246i 0.326087 + 0.364576i
\(553\) 553.000 1.00000
\(554\) 116.276i 0.209884i
\(555\) 16.4758 + 78.7943i 0.0296861 + 0.141972i
\(556\) −57.0000 98.7269i −0.102518 0.177566i
\(557\) −640.979 + 370.069i −1.15077 + 0.664397i −0.949075 0.315051i \(-0.897978\pi\)
−0.201695 + 0.979448i \(0.564645\pi\)
\(558\) −35.8095 + 48.6074i −0.0641747 + 0.0871101i
\(559\) −88.0000 −0.157424
\(560\) 257.553 + 148.699i 0.459917 + 0.265533i
\(561\) 600.000 + 670.820i 1.06952 + 1.19576i
\(562\) −140.000 + 242.487i −0.249110 + 0.431472i
\(563\) 207.205 119.630i 0.368037 0.212486i −0.304564 0.952492i \(-0.598511\pi\)
0.672600 + 0.740006i \(0.265177\pi\)
\(564\) −38.2379 12.5644i −0.0677977 0.0222772i
\(565\) −35.0000 + 60.6218i −0.0619469 + 0.107295i
\(566\) 196.774i 0.347657i
\(567\) −384.944 + 416.302i −0.678913 + 0.734219i
\(568\) 630.000 1.10915
\(569\) −828.818 478.519i −1.45662 0.840982i −0.457780 0.889066i \(-0.651355\pi\)
−0.998843 + 0.0480841i \(0.984688\pi\)
\(570\) 74.9193 228.007i 0.131437 0.400012i
\(571\) 23.0000 + 39.8372i 0.0402802 + 0.0697674i 0.885463 0.464711i \(-0.153842\pi\)
−0.845182 + 0.534478i \(0.820508\pi\)
\(572\) −19.3649 11.1803i −0.0338547 0.0195460i
\(573\) 380.000 339.882i 0.663176 0.593163i
\(574\) −490.000 −0.853659
\(575\) 268.328i 0.466658i
\(576\) 297.085 + 218.865i 0.515772 + 0.379973i
\(577\) −495.500 858.231i −0.858752 1.48740i −0.873120 0.487506i \(-0.837907\pi\)
0.0143677 0.999897i \(-0.495426\pi\)
\(578\) −834.628 + 481.873i −1.44399 + 0.833690i
\(579\) −173.253 + 36.2270i −0.299228 + 0.0625682i
\(580\) 35.0000 0.0603448
\(581\) −853.993 + 493.053i −1.46987 + 0.848628i
\(582\) 465.000 415.909i 0.798969 0.714620i
\(583\) −112.500 + 194.856i −0.192967 + 0.334229i
\(584\) 104.571 60.3738i 0.179059 0.103380i
\(585\) 16.1270 + 36.8771i 0.0275675 + 0.0630378i
\(586\) 17.5000 30.3109i 0.0298635 0.0517251i
\(587\) 766.971i 1.30660i −0.757101 0.653298i \(-0.773385\pi\)
0.757101 0.653298i \(-0.226615\pi\)
\(588\) −45.8881 + 139.654i −0.0780410 + 0.237507i
\(589\) −48.0000 −0.0814941
\(590\) −87.1421 50.3115i −0.147699 0.0852738i
\(591\) 624.552 + 205.218i 1.05677 + 0.347238i
\(592\) 114.000 + 197.454i 0.192568 + 0.333537i
\(593\) 151.046 + 87.2067i 0.254716 + 0.147060i 0.621922 0.783080i \(-0.286352\pi\)
−0.367206 + 0.930140i \(0.619686\pi\)
\(594\) 550.000 391.312i 0.925926 0.658774i
\(595\) −210.000 363.731i −0.352941 0.611312i
\(596\) 13.4164i 0.0225108i
\(597\) 687.139 143.680i 1.15099 0.240670i
\(598\) 30.0000 + 51.9615i 0.0501672 + 0.0868922i
\(599\) 836.564 482.991i 1.39660 0.806328i 0.402567 0.915391i \(-0.368118\pi\)
0.994035 + 0.109062i \(0.0347848\pi\)
\(600\) −82.3790 393.972i −0.137298 0.656619i
\(601\) −471.000 −0.783694 −0.391847 0.920030i \(-0.628164\pi\)
−0.391847 + 0.920030i \(0.628164\pi\)
\(602\) 688.709i 1.14403i
\(603\) −52.0000 + 465.102i −0.0862355 + 0.771314i
\(604\) 29.5000 51.0955i 0.0488411 0.0845952i
\(605\) 7.74597 4.47214i 0.0128033 0.00739196i
\(606\) 121.744 370.511i 0.200898 0.611404i
\(607\) 471.500 816.662i 0.776771 1.34541i −0.157023 0.987595i \(-0.550190\pi\)
0.933794 0.357812i \(-0.116477\pi\)
\(608\) 250.440i 0.411907i
\(609\) −67.2762 321.744i −0.110470 0.528315i
\(610\) −130.000 −0.213115
\(611\) 23.2379 + 13.4164i 0.0380326 + 0.0219581i
\(612\) 96.7621 + 221.263i 0.158108 + 0.361540i
\(613\) −467.000 808.868i −0.761827 1.31952i −0.941908 0.335871i \(-0.890969\pi\)
0.180081 0.983652i \(-0.442364\pi\)
\(614\) −321.458 185.594i −0.523547 0.302270i
\(615\) −140.000 156.525i −0.227642 0.254512i
\(616\) −262.500 + 454.663i −0.426136 + 0.738090i
\(617\) 93.9149i 0.152212i −0.997100 0.0761060i \(-0.975751\pi\)
0.997100 0.0761060i \(-0.0242488\pi\)
\(618\) 112.585 + 538.428i 0.182176 + 0.871243i
\(619\) 61.0000 + 105.655i 0.0985460 + 0.170687i 0.911083 0.412223i \(-0.135247\pi\)
−0.812537 + 0.582910i \(0.801914\pi\)
\(620\) −5.80948 + 3.35410i −0.00937012 + 0.00540984i
\(621\) −360.617 + 34.2848i −0.580704 + 0.0552091i
\(622\) 690.000 1.10932
\(623\) 344.354i 0.552736i
\(624\) 76.0000 + 84.9706i 0.121795 + 0.136171i
\(625\) −137.500 + 238.157i −0.220000 + 0.381051i
\(626\) −524.789 + 302.987i −0.838321 + 0.484005i
\(627\) 509.839 + 167.525i 0.813140 + 0.267185i
\(628\) −124.000 + 214.774i −0.197452 + 0.341997i
\(629\) 321.994i 0.511914i
\(630\) −288.609 + 126.214i −0.458109 + 0.200339i
\(631\) −61.0000 −0.0966719 −0.0483360 0.998831i \(-0.515392\pi\)
−0.0483360 + 0.998831i \(0.515392\pi\)
\(632\) 458.949 + 264.974i 0.726184 + 0.419263i
\(633\) −24.3488 + 74.1022i −0.0384657 + 0.117065i
\(634\) −487.500 844.375i −0.768927 1.33182i
\(635\) 342.759 + 197.892i 0.539778 + 0.311641i
\(636\) −45.0000 + 40.2492i −0.0707547 + 0.0632849i
\(637\) 49.0000 84.8705i 0.0769231 0.133235i
\(638\) 391.312i 0.613342i
\(639\) −501.333 + 680.504i −0.784558 + 1.06495i
\(640\) 172.500 + 298.779i 0.269531 + 0.466842i
\(641\) −708.756 + 409.200i −1.10570 + 0.638378i −0.937713 0.347410i \(-0.887061\pi\)
−0.167990 + 0.985789i \(0.553728\pi\)
\(642\) 425.791 89.0324i 0.663226 0.138680i
\(643\) 908.000 1.41213 0.706065 0.708147i \(-0.250468\pi\)
0.706065 + 0.708147i \(0.250468\pi\)
\(644\) −81.3327 + 46.9574i −0.126293 + 0.0729153i
\(645\) 220.000 196.774i 0.341085 0.305076i
\(646\) −480.000 + 831.384i −0.743034 + 1.28697i
\(647\) 274.982 158.761i 0.425011 0.245380i −0.272208 0.962238i \(-0.587754\pi\)
0.697219 + 0.716858i \(0.254421\pi\)
\(648\) −518.949 + 161.051i −0.800846 + 0.248536i
\(649\) 112.500 194.856i 0.173344 0.300240i
\(650\) 89.4427i 0.137604i
\(651\) 42.0000 + 46.9574i 0.0645161 + 0.0721312i
\(652\) 2.00000 0.00306748
\(653\) 865.612 + 499.761i 1.32559 + 0.765331i 0.984615 0.174740i \(-0.0559086\pi\)
0.340978 + 0.940071i \(0.389242\pi\)
\(654\) −917.710 301.545i −1.40323 0.461077i
\(655\) 212.500 + 368.061i 0.324427 + 0.561925i
\(656\) −515.107 297.397i −0.785224 0.453349i
\(657\) −18.0000 + 160.997i −0.0273973 + 0.245049i
\(658\) −105.000 + 181.865i −0.159574 + 0.276391i
\(659\) 657.404i 0.997578i 0.866723 + 0.498789i \(0.166222\pi\)
−0.866723 + 0.498789i \(0.833778\pi\)
\(660\) 73.4123 15.3504i 0.111231 0.0232582i
\(661\) 418.000 + 723.997i 0.632375 + 1.09531i 0.987065 + 0.160322i \(0.0512532\pi\)
−0.354690 + 0.934984i \(0.615413\pi\)
\(662\) −30.9839 + 17.8885i −0.0468034 + 0.0270220i
\(663\) −32.9516 157.589i −0.0497008 0.237690i
\(664\) −945.000 −1.42319
\(665\) −216.887 125.220i −0.326146 0.188300i
\(666\) −240.000 26.8328i −0.360360 0.0402895i
\(667\) 105.000 181.865i 0.157421 0.272662i
\(668\) 216.887 125.220i 0.324681 0.187455i
\(669\) −100.205 + 304.959i −0.149783 + 0.455843i
\(670\) −130.000 + 225.167i −0.194030 + 0.336070i
\(671\) 290.689i 0.433217i
\(672\) −245.000 + 219.135i −0.364583 + 0.326093i
\(673\) −677.000 −1.00594 −0.502972 0.864303i \(-0.667760\pi\)
−0.502972 + 0.864303i \(0.667760\pi\)
\(674\) 985.674 + 569.079i 1.46242 + 0.844331i
\(675\) 491.109 + 224.526i 0.727569 + 0.332632i
\(676\) −82.5000 142.894i −0.122041 0.211382i
\(677\) 923.707 + 533.302i 1.36441 + 0.787743i 0.990208 0.139603i \(-0.0445827\pi\)
0.374204 + 0.927346i \(0.377916\pi\)
\(678\) −140.000 156.525i −0.206490 0.230862i
\(679\) −325.500 563.783i −0.479381 0.830313i
\(680\) 402.492i 0.591900i
\(681\) −185.353 886.436i −0.272177 1.30167i
\(682\) −37.5000 64.9519i −0.0549853 0.0952374i
\(683\) 551.900 318.640i 0.808053 0.466530i −0.0382264 0.999269i \(-0.512171\pi\)
0.846279 + 0.532740i \(0.178837\pi\)
\(684\) 115.935 + 85.4106i 0.169496 + 0.124869i
\(685\) 480.000 0.700730
\(686\) 664.217 + 383.486i 0.968246 + 0.559017i
\(687\) −668.000 746.847i −0.972344 1.08711i
\(688\) 418.000 723.997i 0.607558 1.05232i
\(689\) 34.8569 20.1246i 0.0505905 0.0292084i
\(690\) −191.190 62.8218i −0.277086 0.0910460i
\(691\) −337.000 + 583.701i −0.487699 + 0.844719i −0.999900 0.0141462i \(-0.995497\pi\)
0.512201 + 0.858866i \(0.328830\pi\)
\(692\) 263.856i 0.381295i
\(693\) −282.223 645.349i −0.407248 0.931239i
\(694\) 850.000 1.22478
\(695\) −220.760 127.456i −0.317640 0.183390i
\(696\) 98.3316 299.259i 0.141281 0.429970i
\(697\) 420.000 + 727.461i 0.602582 + 1.04370i
\(698\) −1216.12 702.125i −1.74229 1.00591i
\(699\) −600.000 + 536.656i −0.858369 + 0.767749i
\(700\) 140.000 0.200000
\(701\) 1080.02i 1.54069i −0.637630 0.770343i \(-0.720085\pi\)
0.637630 0.770343i \(-0.279915\pi\)
\(702\) −120.206 + 11.4283i −0.171233 + 0.0162796i
\(703\) −96.0000 166.277i −0.136558 0.236525i
\(704\) −396.981 + 229.197i −0.563893 + 0.325564i
\(705\) −88.0948 + 18.4205i −0.124957 + 0.0261284i
\(706\) 1040.00 1.47309
\(707\) −352.441 203.482i −0.498503 0.287811i
\(708\) 45.0000 40.2492i 0.0635593 0.0568492i
\(709\) 57.0000 98.7269i 0.0803949 0.139248i −0.823025 0.568006i \(-0.807715\pi\)
0.903420 + 0.428757i \(0.141049\pi\)
\(710\) −406.663 + 234.787i −0.572765 + 0.330686i
\(711\) −651.431 + 284.883i −0.916219 + 0.400679i
\(712\) −165.000 + 285.788i −0.231742 + 0.401388i
\(713\) 40.2492i 0.0564505i
\(714\) 1233.33 257.887i 1.72735 0.361186i
\(715\) −50.0000 −0.0699301
\(716\) −166.538 96.1509i −0.232595 0.134289i
\(717\) 802.996 + 263.851i 1.11994 + 0.367994i
\(718\) −260.000 450.333i −0.362117 0.627205i
\(719\) −336.950 194.538i −0.468636 0.270567i 0.247032 0.969007i \(-0.420545\pi\)
−0.715669 + 0.698440i \(0.753878\pi\)
\(720\) −380.000 42.4853i −0.527778 0.0590073i
\(721\) 574.000 0.796117
\(722\) 234.787i 0.325190i
\(723\) −525.632 + 109.909i −0.727015 + 0.152018i
\(724\) 41.0000 + 71.0141i 0.0566298 + 0.0980858i
\(725\) −271.109 + 156.525i −0.373943 + 0.215896i
\(726\) 5.49193 + 26.2648i 0.00756465 + 0.0361774i
\(727\) 1307.00 1.79780 0.898900 0.438155i \(-0.144368\pi\)
0.898900 + 0.438155i \(0.144368\pi\)
\(728\) 81.3327 46.9574i 0.111721 0.0645020i
\(729\) 239.000 688.709i 0.327846 0.944731i
\(730\) −45.0000 + 77.9423i −0.0616438 + 0.106770i
\(731\) −1022.47 + 590.322i −1.39872 + 0.807554i
\(732\) 24.3488 74.1022i 0.0332634 0.101233i
\(733\) −204.000 + 353.338i −0.278308 + 0.482044i −0.970964 0.239224i \(-0.923107\pi\)
0.692656 + 0.721268i \(0.256440\pi\)
\(734\) 1120.27i 1.52625i
\(735\) 67.2762 + 321.744i 0.0915322 + 0.437746i
\(736\) −210.000 −0.285326
\(737\) −503.488 290.689i −0.683159 0.394422i
\(738\) 577.218 252.428i 0.782138 0.342043i
\(739\) 177.000 + 306.573i 0.239513 + 0.414848i 0.960575 0.278022i \(-0.0896789\pi\)
−0.721062 + 0.692871i \(0.756346\pi\)
\(740\) −23.2379 13.4164i −0.0314026 0.0181303i
\(741\) −64.0000 71.5542i −0.0863698 0.0965643i
\(742\) 157.500 + 272.798i 0.212264 + 0.367652i
\(743\) 751.319i 1.01120i 0.862769 + 0.505598i \(0.168728\pi\)
−0.862769 + 0.505598i \(0.831272\pi\)
\(744\) 12.3569 + 59.0958i 0.0166087 + 0.0794298i
\(745\) 15.0000 + 25.9808i 0.0201342 + 0.0348735i
\(746\) 1351.67 780.388i 1.81189 1.04610i
\(747\) 751.999 1020.76i 1.00669 1.36647i
\(748\) −300.000 −0.401070
\(749\) 453.922i 0.606037i
\(750\) 450.000 + 503.115i 0.600000 + 0.670820i
\(751\) 515.500 892.872i 0.686418 1.18891i −0.286571 0.958059i \(-0.592515\pi\)
0.972989 0.230852i \(-0.0741513\pi\)
\(752\) −220.760 + 127.456i −0.293564 + 0.169489i
\(753\) 490.720 + 161.243i 0.651686 + 0.214134i
\(754\) 35.0000 60.6218i 0.0464191 0.0804002i
\(755\) 131.928i 0.174739i
\(756\) −17.8881 188.152i −0.0236615 0.248878i
\(757\) −1258.00 −1.66182 −0.830911 0.556405i \(-0.812180\pi\)
−0.830911 + 0.556405i \(0.812180\pi\)
\(758\) −708.756 409.200i −0.935034 0.539842i
\(759\) 140.474 427.513i 0.185077 0.563258i
\(760\) −120.000 207.846i −0.157895 0.273482i
\(761\) 801.708 + 462.866i 1.05349 + 0.608234i 0.923625 0.383297i \(-0.125212\pi\)
0.129867 + 0.991531i \(0.458545\pi\)
\(762\) −885.000 + 791.568i −1.16142 + 1.03880i
\(763\) −504.000 + 872.954i −0.660550 + 1.14411i
\(764\) 169.941i 0.222436i
\(765\) 434.758 + 320.290i 0.568311 + 0.418679i
\(766\) 15.0000 + 25.9808i 0.0195822 + 0.0339174i
\(767\) −34.8569 + 20.1246i −0.0454457 + 0.0262381i
\(768\) −531.505 + 111.137i −0.692064 + 0.144710i
\(769\) −877.000 −1.14044 −0.570221 0.821491i \(-0.693142\pi\)
−0.570221 + 0.821491i \(0.693142\pi\)
\(770\) 391.312i 0.508197i
\(771\) −590.000 + 527.712i −0.765240 + 0.684451i
\(772\) 29.5000 51.0955i 0.0382124 0.0661859i
\(773\) 437.647 252.676i 0.566167 0.326877i −0.189450 0.981890i \(-0.560670\pi\)
0.755617 + 0.655014i \(0.227337\pi\)
\(774\) 354.794 + 811.296i 0.458391 + 1.04819i
\(775\) 30.0000 51.9615i 0.0387097 0.0670471i
\(776\) 623.863i 0.803947i
\(777\) −78.6653 + 239.407i −0.101242 + 0.308117i
\(778\)