Properties

Label 21.3.h.b.11.2
Level 21
Weight 3
Character 21.11
Analytic conductor 0.572
Analytic rank 0
Dimension 4
CM No
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 21 = 3 \cdot 7 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 21.h (of order \(6\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(0.572208555157\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-5})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.2
Root \(1.93649 - 1.11803i\)
Character \(\chi\) = 21.11
Dual form 21.3.h.b.2.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(1.93649 - 1.11803i) q^{2}\) \(+(-2.93649 + 0.614017i) q^{3}\) \(+(0.500000 - 0.866025i) q^{4}\) \(+(-1.93649 + 1.11803i) q^{5}\) \(+(-5.00000 + 4.47214i) q^{6}\) \(+(3.50000 - 6.06218i) q^{7}\) \(+6.70820i q^{8}\) \(+(8.24597 - 3.60611i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(1.93649 - 1.11803i) q^{2}\) \(+(-2.93649 + 0.614017i) q^{3}\) \(+(0.500000 - 0.866025i) q^{4}\) \(+(-1.93649 + 1.11803i) q^{5}\) \(+(-5.00000 + 4.47214i) q^{6}\) \(+(3.50000 - 6.06218i) q^{7}\) \(+6.70820i q^{8}\) \(+(8.24597 - 3.60611i) q^{9}\) \(+(-2.50000 + 4.33013i) q^{10}\) \(+(-9.68246 - 5.59017i) q^{11}\) \(+(-0.936492 + 2.85008i) q^{12}\) \(-2.00000 q^{13}\) \(-15.6525i q^{14}\) \(+(5.00000 - 4.47214i) q^{15}\) \(+(9.50000 + 16.4545i) q^{16}\) \(+(23.2379 + 13.4164i) q^{17}\) \(+(11.9365 - 16.2025i) q^{18}\) \(+(-8.00000 - 13.8564i) q^{19}\) \(+2.23607i q^{20}\) \(+(-6.55544 + 19.9506i) q^{21}\) \(-25.0000 q^{22}\) \(+(-11.6190 + 6.70820i) q^{23}\) \(+(-4.11895 - 19.6986i) q^{24}\) \(+(-10.0000 + 17.3205i) q^{25}\) \(+(-3.87298 + 2.23607i) q^{26}\) \(+(-22.0000 + 15.6525i) q^{27}\) \(+(-3.50000 - 6.06218i) q^{28}\) \(-15.6525i q^{29}\) \(+(4.68246 - 14.2504i) q^{30}\) \(+(1.50000 - 2.59808i) q^{31}\) \(+(13.5554 + 7.82624i) q^{32}\) \(+(31.8649 + 10.4703i) q^{33}\) \(+60.0000 q^{34}\) \(+15.6525i q^{35}\) \(+(1.00000 - 8.94427i) q^{36}\) \(+(-6.00000 - 10.3923i) q^{37}\) \(+(-30.9839 - 17.8885i) q^{38}\) \(+(5.87298 - 1.22803i) q^{39}\) \(+(-7.50000 - 12.9904i) q^{40}\) \(-31.3050i q^{41}\) \(+(9.61088 + 45.9634i) q^{42}\) \(+44.0000 q^{43}\) \(+(-9.68246 + 5.59017i) q^{44}\) \(+(-11.9365 + 16.2025i) q^{45}\) \(+(-15.0000 + 25.9808i) q^{46}\) \(+(11.6190 - 6.70820i) q^{47}\) \(+(-38.0000 - 42.4853i) q^{48}\) \(+(-24.5000 - 42.4352i) q^{49}\) \(+44.7214i q^{50}\) \(+(-76.4758 - 25.1287i) q^{51}\) \(+(-1.00000 + 1.73205i) q^{52}\) \(+(17.4284 + 10.0623i) q^{53}\) \(+(-25.1028 + 54.9076i) q^{54}\) \(+25.0000 q^{55}\) \(+(40.6663 + 23.4787i) q^{56}\) \(+(32.0000 + 35.7771i) q^{57}\) \(+(-17.5000 - 30.3109i) q^{58}\) \(+(-17.4284 - 10.0623i) q^{59}\) \(+(-1.37298 - 6.56619i) q^{60}\) \(+(13.0000 + 22.5167i) q^{61}\) \(-6.70820i q^{62}\) \(+(7.00000 - 62.6099i) q^{63}\) \(-41.0000 q^{64}\) \(+(3.87298 - 2.23607i) q^{65}\) \(+(73.4123 - 15.3504i) q^{66}\) \(+(-26.0000 + 45.0333i) q^{67}\) \(+(23.2379 - 13.4164i) q^{68}\) \(+(30.0000 - 26.8328i) q^{69}\) \(+(17.5000 + 30.3109i) q^{70}\) \(-93.9149i q^{71}\) \(+(24.1905 + 55.3156i) q^{72}\) \(+(-9.00000 + 15.5885i) q^{73}\) \(+(-23.2379 - 13.4164i) q^{74}\) \(+(18.7298 - 57.0017i) q^{75}\) \(-16.0000 q^{76}\) \(+(-67.7772 + 39.1312i) q^{77}\) \(+(10.0000 - 8.94427i) q^{78}\) \(+(39.5000 + 68.4160i) q^{79}\) \(+(-36.7933 - 21.2426i) q^{80}\) \(+(54.9919 - 59.4717i) q^{81}\) \(+(-35.0000 - 60.6218i) q^{82}\) \(+140.872i q^{83}\) \(+(14.0000 + 15.6525i) q^{84}\) \(-60.0000 q^{85}\) \(+(85.2056 - 49.1935i) q^{86}\) \(+(9.61088 + 45.9634i) q^{87}\) \(+(37.5000 - 64.9519i) q^{88}\) \(+(-42.6028 + 24.5967i) q^{89}\) \(+(-5.00000 + 44.7214i) q^{90}\) \(+(-7.00000 + 12.1244i) q^{91}\) \(+13.4164i q^{92}\) \(+(-2.80948 + 8.55025i) q^{93}\) \(+(15.0000 - 25.9808i) q^{94}\) \(+(30.9839 + 17.8885i) q^{95}\) \(+(-44.6109 - 14.6584i) q^{96}\) \(-93.0000 q^{97}\) \(+(-94.8881 - 54.7837i) q^{98}\) \(+(-100.000 - 11.1803i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut -\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 2q^{4} \) \(\mathstrut -\mathstrut 20q^{6} \) \(\mathstrut +\mathstrut 14q^{7} \) \(\mathstrut +\mathstrut 2q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut -\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 2q^{4} \) \(\mathstrut -\mathstrut 20q^{6} \) \(\mathstrut +\mathstrut 14q^{7} \) \(\mathstrut +\mathstrut 2q^{9} \) \(\mathstrut -\mathstrut 10q^{10} \) \(\mathstrut +\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 8q^{13} \) \(\mathstrut +\mathstrut 20q^{15} \) \(\mathstrut +\mathstrut 38q^{16} \) \(\mathstrut +\mathstrut 40q^{18} \) \(\mathstrut -\mathstrut 32q^{19} \) \(\mathstrut +\mathstrut 28q^{21} \) \(\mathstrut -\mathstrut 100q^{22} \) \(\mathstrut +\mathstrut 30q^{24} \) \(\mathstrut -\mathstrut 40q^{25} \) \(\mathstrut -\mathstrut 88q^{27} \) \(\mathstrut -\mathstrut 14q^{28} \) \(\mathstrut -\mathstrut 20q^{30} \) \(\mathstrut +\mathstrut 6q^{31} \) \(\mathstrut +\mathstrut 50q^{33} \) \(\mathstrut +\mathstrut 240q^{34} \) \(\mathstrut +\mathstrut 4q^{36} \) \(\mathstrut -\mathstrut 24q^{37} \) \(\mathstrut +\mathstrut 8q^{39} \) \(\mathstrut -\mathstrut 30q^{40} \) \(\mathstrut -\mathstrut 70q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut -\mathstrut 40q^{45} \) \(\mathstrut -\mathstrut 60q^{46} \) \(\mathstrut -\mathstrut 152q^{48} \) \(\mathstrut -\mathstrut 98q^{49} \) \(\mathstrut -\mathstrut 120q^{51} \) \(\mathstrut -\mathstrut 4q^{52} \) \(\mathstrut +\mathstrut 70q^{54} \) \(\mathstrut +\mathstrut 100q^{55} \) \(\mathstrut +\mathstrut 128q^{57} \) \(\mathstrut -\mathstrut 70q^{58} \) \(\mathstrut +\mathstrut 10q^{60} \) \(\mathstrut +\mathstrut 52q^{61} \) \(\mathstrut +\mathstrut 28q^{63} \) \(\mathstrut -\mathstrut 164q^{64} \) \(\mathstrut +\mathstrut 100q^{66} \) \(\mathstrut -\mathstrut 104q^{67} \) \(\mathstrut +\mathstrut 120q^{69} \) \(\mathstrut +\mathstrut 70q^{70} \) \(\mathstrut +\mathstrut 120q^{72} \) \(\mathstrut -\mathstrut 36q^{73} \) \(\mathstrut -\mathstrut 80q^{75} \) \(\mathstrut -\mathstrut 64q^{76} \) \(\mathstrut +\mathstrut 40q^{78} \) \(\mathstrut +\mathstrut 158q^{79} \) \(\mathstrut +\mathstrut 158q^{81} \) \(\mathstrut -\mathstrut 140q^{82} \) \(\mathstrut +\mathstrut 56q^{84} \) \(\mathstrut -\mathstrut 240q^{85} \) \(\mathstrut -\mathstrut 70q^{87} \) \(\mathstrut +\mathstrut 150q^{88} \) \(\mathstrut -\mathstrut 20q^{90} \) \(\mathstrut -\mathstrut 28q^{91} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut +\mathstrut 60q^{94} \) \(\mathstrut -\mathstrut 70q^{96} \) \(\mathstrut -\mathstrut 372q^{97} \) \(\mathstrut -\mathstrut 400q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/21\mathbb{Z}\right)^\times\).

\(n\) \(8\) \(10\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.93649 1.11803i 0.968246 0.559017i 0.0695448 0.997579i \(-0.477845\pi\)
0.898701 + 0.438562i \(0.144512\pi\)
\(3\) −2.93649 + 0.614017i −0.978831 + 0.204672i
\(4\) 0.500000 0.866025i 0.125000 0.216506i
\(5\) −1.93649 + 1.11803i −0.387298 + 0.223607i −0.680989 0.732294i \(-0.738450\pi\)
0.293691 + 0.955901i \(0.405116\pi\)
\(6\) −5.00000 + 4.47214i −0.833333 + 0.745356i
\(7\) 3.50000 6.06218i 0.500000 0.866025i
\(8\) 6.70820i 0.838525i
\(9\) 8.24597 3.60611i 0.916219 0.400679i
\(10\) −2.50000 + 4.33013i −0.250000 + 0.433013i
\(11\) −9.68246 5.59017i −0.880223 0.508197i −0.00949140 0.999955i \(-0.503021\pi\)
−0.870732 + 0.491758i \(0.836355\pi\)
\(12\) −0.936492 + 2.85008i −0.0780410 + 0.237507i
\(13\) −2.00000 −0.153846 −0.0769231 0.997037i \(-0.524510\pi\)
−0.0769231 + 0.997037i \(0.524510\pi\)
\(14\) 15.6525i 1.11803i
\(15\) 5.00000 4.47214i 0.333333 0.298142i
\(16\) 9.50000 + 16.4545i 0.593750 + 1.02841i
\(17\) 23.2379 + 13.4164i 1.36694 + 0.789200i 0.990535 0.137257i \(-0.0438286\pi\)
0.376400 + 0.926457i \(0.377162\pi\)
\(18\) 11.9365 16.2025i 0.663138 0.900137i
\(19\) −8.00000 13.8564i −0.421053 0.729285i 0.574990 0.818160i \(-0.305006\pi\)
−0.996043 + 0.0888758i \(0.971673\pi\)
\(20\) 2.23607i 0.111803i
\(21\) −6.55544 + 19.9506i −0.312164 + 0.950028i
\(22\) −25.0000 −1.13636
\(23\) −11.6190 + 6.70820i −0.505172 + 0.291661i −0.730847 0.682542i \(-0.760875\pi\)
0.225675 + 0.974203i \(0.427541\pi\)
\(24\) −4.11895 19.6986i −0.171623 0.820774i
\(25\) −10.0000 + 17.3205i −0.400000 + 0.692820i
\(26\) −3.87298 + 2.23607i −0.148961 + 0.0860026i
\(27\) −22.0000 + 15.6525i −0.814815 + 0.579721i
\(28\) −3.50000 6.06218i −0.125000 0.216506i
\(29\) 15.6525i 0.539741i −0.962897 0.269870i \(-0.913019\pi\)
0.962897 0.269870i \(-0.0869808\pi\)
\(30\) 4.68246 14.2504i 0.156082 0.475014i
\(31\) 1.50000 2.59808i 0.0483871 0.0838089i −0.840817 0.541319i \(-0.817925\pi\)
0.889205 + 0.457510i \(0.151259\pi\)
\(32\) 13.5554 + 7.82624i 0.423608 + 0.244570i
\(33\) 31.8649 + 10.4703i 0.965604 + 0.317282i
\(34\) 60.0000 1.76471
\(35\) 15.6525i 0.447214i
\(36\) 1.00000 8.94427i 0.0277778 0.248452i
\(37\) −6.00000 10.3923i −0.162162 0.280873i 0.773482 0.633819i \(-0.218513\pi\)
−0.935644 + 0.352946i \(0.885180\pi\)
\(38\) −30.9839 17.8885i −0.815365 0.470751i
\(39\) 5.87298 1.22803i 0.150589 0.0314880i
\(40\) −7.50000 12.9904i −0.187500 0.324760i
\(41\) 31.3050i 0.763535i −0.924258 0.381768i \(-0.875315\pi\)
0.924258 0.381768i \(-0.124685\pi\)
\(42\) 9.61088 + 45.9634i 0.228831 + 1.09437i
\(43\) 44.0000 1.02326 0.511628 0.859207i \(-0.329043\pi\)
0.511628 + 0.859207i \(0.329043\pi\)
\(44\) −9.68246 + 5.59017i −0.220056 + 0.127049i
\(45\) −11.9365 + 16.2025i −0.265255 + 0.360055i
\(46\) −15.0000 + 25.9808i −0.326087 + 0.564799i
\(47\) 11.6190 6.70820i 0.247212 0.142728i −0.371275 0.928523i \(-0.621079\pi\)
0.618487 + 0.785795i \(0.287746\pi\)
\(48\) −38.0000 42.4853i −0.791667 0.885110i
\(49\) −24.5000 42.4352i −0.500000 0.866025i
\(50\) 44.7214i 0.894427i
\(51\) −76.4758 25.1287i −1.49953 0.492720i
\(52\) −1.00000 + 1.73205i −0.0192308 + 0.0333087i
\(53\) 17.4284 + 10.0623i 0.328838 + 0.189855i 0.655325 0.755347i \(-0.272532\pi\)
−0.326487 + 0.945202i \(0.605865\pi\)
\(54\) −25.1028 + 54.9076i −0.464867 + 1.01681i
\(55\) 25.0000 0.454545
\(56\) 40.6663 + 23.4787i 0.726184 + 0.419263i
\(57\) 32.0000 + 35.7771i 0.561404 + 0.627668i
\(58\) −17.5000 30.3109i −0.301724 0.522602i
\(59\) −17.4284 10.0623i −0.295397 0.170548i 0.344976 0.938611i \(-0.387887\pi\)
−0.640373 + 0.768064i \(0.721220\pi\)
\(60\) −1.37298 6.56619i −0.0228831 0.109437i
\(61\) 13.0000 + 22.5167i 0.213115 + 0.369126i 0.952688 0.303951i \(-0.0983058\pi\)
−0.739573 + 0.673076i \(0.764973\pi\)
\(62\) 6.70820i 0.108197i
\(63\) 7.00000 62.6099i 0.111111 0.993808i
\(64\) −41.0000 −0.640625
\(65\) 3.87298 2.23607i 0.0595844 0.0344010i
\(66\) 73.4123 15.3504i 1.11231 0.232582i
\(67\) −26.0000 + 45.0333i −0.388060 + 0.672139i −0.992189 0.124748i \(-0.960188\pi\)
0.604129 + 0.796887i \(0.293521\pi\)
\(68\) 23.2379 13.4164i 0.341734 0.197300i
\(69\) 30.0000 26.8328i 0.434783 0.388881i
\(70\) 17.5000 + 30.3109i 0.250000 + 0.433013i
\(71\) 93.9149i 1.32274i −0.750058 0.661372i \(-0.769974\pi\)
0.750058 0.661372i \(-0.230026\pi\)
\(72\) 24.1905 + 55.3156i 0.335980 + 0.768273i
\(73\) −9.00000 + 15.5885i −0.123288 + 0.213541i −0.921062 0.389415i \(-0.872677\pi\)
0.797775 + 0.602956i \(0.206010\pi\)
\(74\) −23.2379 13.4164i −0.314026 0.181303i
\(75\) 18.7298 57.0017i 0.249731 0.760023i
\(76\) −16.0000 −0.210526
\(77\) −67.7772 + 39.1312i −0.880223 + 0.508197i
\(78\) 10.0000 8.94427i 0.128205 0.114670i
\(79\) 39.5000 + 68.4160i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) −36.7933 21.2426i −0.459917 0.265533i
\(81\) 54.9919 59.4717i 0.678913 0.734219i
\(82\) −35.0000 60.6218i −0.426829 0.739290i
\(83\) 140.872i 1.69726i 0.528990 + 0.848628i \(0.322571\pi\)
−0.528990 + 0.848628i \(0.677429\pi\)
\(84\) 14.0000 + 15.6525i 0.166667 + 0.186339i
\(85\) −60.0000 −0.705882
\(86\) 85.2056 49.1935i 0.990763 0.572017i
\(87\) 9.61088 + 45.9634i 0.110470 + 0.528315i
\(88\) 37.5000 64.9519i 0.426136 0.738090i
\(89\) −42.6028 + 24.5967i −0.478683 + 0.276368i −0.719868 0.694111i \(-0.755798\pi\)
0.241184 + 0.970479i \(0.422464\pi\)
\(90\) −5.00000 + 44.7214i −0.0555556 + 0.496904i
\(91\) −7.00000 + 12.1244i −0.0769231 + 0.133235i
\(92\) 13.4164i 0.145831i
\(93\) −2.80948 + 8.55025i −0.0302094 + 0.0919382i
\(94\) 15.0000 25.9808i 0.159574 0.276391i
\(95\) 30.9839 + 17.8885i 0.326146 + 0.188300i
\(96\) −44.6109 14.6584i −0.464697 0.152692i
\(97\) −93.0000 −0.958763 −0.479381 0.877607i \(-0.659139\pi\)
−0.479381 + 0.877607i \(0.659139\pi\)
\(98\) −94.8881 54.7837i −0.968246 0.559017i
\(99\) −100.000 11.1803i −1.01010 0.112933i
\(100\) 10.0000 + 17.3205i 0.100000 + 0.173205i
\(101\) 50.3488 + 29.0689i 0.498503 + 0.287811i 0.728095 0.685476i \(-0.240406\pi\)
−0.229592 + 0.973287i \(0.573739\pi\)
\(102\) −176.190 + 36.8410i −1.72735 + 0.361186i
\(103\) 41.0000 + 71.0141i 0.398058 + 0.689457i 0.993486 0.113952i \(-0.0363509\pi\)
−0.595428 + 0.803409i \(0.703018\pi\)
\(104\) 13.4164i 0.129004i
\(105\) −9.61088 45.9634i −0.0915322 0.437746i
\(106\) 45.0000 0.424528
\(107\) 56.1583 32.4230i 0.524844 0.303019i −0.214071 0.976818i \(-0.568672\pi\)
0.738914 + 0.673800i \(0.235339\pi\)
\(108\) 2.55544 + 26.8788i 0.0236615 + 0.248878i
\(109\) 72.0000 124.708i 0.660550 1.14411i −0.319921 0.947444i \(-0.603656\pi\)
0.980471 0.196663i \(-0.0630104\pi\)
\(110\) 48.4123 27.9508i 0.440112 0.254099i
\(111\) 24.0000 + 26.8328i 0.216216 + 0.241737i
\(112\) 133.000 1.18750
\(113\) 31.3050i 0.277035i 0.990360 + 0.138517i \(0.0442337\pi\)
−0.990360 + 0.138517i \(0.955766\pi\)
\(114\) 101.968 + 33.5049i 0.894454 + 0.293903i
\(115\) 15.0000 25.9808i 0.130435 0.225920i
\(116\) −13.5554 7.82624i −0.116857 0.0674676i
\(117\) −16.4919 + 7.21222i −0.140957 + 0.0616429i
\(118\) −45.0000 −0.381356
\(119\) 162.665 93.9149i 1.36694 0.789200i
\(120\) 30.0000 + 33.5410i 0.250000 + 0.279508i
\(121\) 2.00000 + 3.46410i 0.0165289 + 0.0286289i
\(122\) 50.3488 + 29.0689i 0.412695 + 0.238270i
\(123\) 19.2218 + 91.9267i 0.156275 + 0.747372i
\(124\) −1.50000 2.59808i −0.0120968 0.0209522i
\(125\) 100.623i 0.804984i
\(126\) −56.4446 129.070i −0.447973 1.02436i
\(127\) 177.000 1.39370 0.696850 0.717217i \(-0.254584\pi\)
0.696850 + 0.717217i \(0.254584\pi\)
\(128\) −133.618 + 77.1443i −1.04389 + 0.602690i
\(129\) −129.206 + 27.0167i −1.00159 + 0.209432i
\(130\) 5.00000 8.66025i 0.0384615 0.0666173i
\(131\) −164.602 + 95.0329i −1.25650 + 0.725442i −0.972393 0.233350i \(-0.925031\pi\)
−0.284109 + 0.958792i \(0.591698\pi\)
\(132\) 25.0000 22.3607i 0.189394 0.169399i
\(133\) −112.000 −0.842105
\(134\) 116.276i 0.867728i
\(135\) 25.1028 54.9076i 0.185947 0.406723i
\(136\) −90.0000 + 155.885i −0.661765 + 1.14621i
\(137\) −185.903 107.331i −1.35696 0.783440i −0.367745 0.929927i \(-0.619870\pi\)
−0.989213 + 0.146487i \(0.953203\pi\)
\(138\) 28.0948 85.5025i 0.203585 0.619584i
\(139\) −114.000 −0.820144 −0.410072 0.912053i \(-0.634496\pi\)
−0.410072 + 0.912053i \(0.634496\pi\)
\(140\) 13.5554 + 7.82624i 0.0968246 + 0.0559017i
\(141\) −30.0000 + 26.8328i −0.212766 + 0.190304i
\(142\) −105.000 181.865i −0.739437 1.28074i
\(143\) 19.3649 + 11.1803i 0.135419 + 0.0781842i
\(144\) 137.673 + 101.425i 0.956065 + 0.704341i
\(145\) 17.5000 + 30.3109i 0.120690 + 0.209041i
\(146\) 40.2492i 0.275680i
\(147\) 98.0000 + 109.567i 0.666667 + 0.745356i
\(148\) −12.0000 −0.0810811
\(149\) −11.6190 + 6.70820i −0.0779795 + 0.0450215i −0.538483 0.842637i \(-0.681002\pi\)
0.460503 + 0.887658i \(0.347669\pi\)
\(150\) −27.4597 131.324i −0.183064 0.875493i
\(151\) −29.5000 + 51.0955i −0.195364 + 0.338381i −0.947020 0.321175i \(-0.895922\pi\)
0.751656 + 0.659556i \(0.229256\pi\)
\(152\) 92.9516 53.6656i 0.611524 0.353063i
\(153\) 240.000 + 26.8328i 1.56863 + 0.175378i
\(154\) −87.5000 + 151.554i −0.568182 + 0.984120i
\(155\) 6.70820i 0.0432787i
\(156\) 1.87298 5.70017i 0.0120063 0.0365395i
\(157\) 124.000 214.774i 0.789809 1.36799i −0.136275 0.990671i \(-0.543513\pi\)
0.926084 0.377318i \(-0.123154\pi\)
\(158\) 152.983 + 88.3247i 0.968246 + 0.559017i
\(159\) −57.3569 18.8465i −0.360735 0.118532i
\(160\) −35.0000 −0.218750
\(161\) 93.9149i 0.583322i
\(162\) 40.0000 176.649i 0.246914 1.09043i
\(163\) 1.00000 + 1.73205i 0.00613497 + 0.0106261i 0.869077 0.494678i \(-0.164714\pi\)
−0.862942 + 0.505304i \(0.831380\pi\)
\(164\) −27.1109 15.6525i −0.165310 0.0954419i
\(165\) −73.4123 + 15.3504i −0.444923 + 0.0930329i
\(166\) 157.500 + 272.798i 0.948795 + 1.64336i
\(167\) 250.440i 1.49964i −0.661643 0.749819i \(-0.730140\pi\)
0.661643 0.749819i \(-0.269860\pi\)
\(168\) −133.833 43.9752i −0.796623 0.261757i
\(169\) −165.000 −0.976331
\(170\) −116.190 + 67.0820i −0.683468 + 0.394600i
\(171\) −115.935 85.4106i −0.677985 0.499477i
\(172\) 22.0000 38.1051i 0.127907 0.221541i
\(173\) 228.506 131.928i 1.32084 0.762590i 0.336981 0.941512i \(-0.390594\pi\)
0.983863 + 0.178922i \(0.0572609\pi\)
\(174\) 70.0000 + 78.2624i 0.402299 + 0.449784i
\(175\) 70.0000 + 121.244i 0.400000 + 0.692820i
\(176\) 212.426i 1.20697i
\(177\) 57.3569 + 18.8465i 0.324050 + 0.106478i
\(178\) −55.0000 + 95.2628i −0.308989 + 0.535184i
\(179\) 166.538 + 96.1509i 0.930381 + 0.537156i 0.886932 0.461900i \(-0.152832\pi\)
0.0434493 + 0.999056i \(0.486165\pi\)
\(180\) 8.06351 + 18.4385i 0.0447973 + 0.102436i
\(181\) 82.0000 0.453039 0.226519 0.974007i \(-0.427265\pi\)
0.226519 + 0.974007i \(0.427265\pi\)
\(182\) 31.3050i 0.172005i
\(183\) −52.0000 58.1378i −0.284153 0.317693i
\(184\) −45.0000 77.9423i −0.244565 0.423599i
\(185\) 23.2379 + 13.4164i 0.125610 + 0.0725211i
\(186\) 4.11895 + 19.6986i 0.0221449 + 0.105906i
\(187\) −150.000 259.808i −0.802139 1.38935i
\(188\) 13.4164i 0.0713639i
\(189\) 17.8881 + 188.152i 0.0946460 + 0.995511i
\(190\) 80.0000 0.421053
\(191\) −147.173 + 84.9706i −0.770541 + 0.444872i −0.833068 0.553171i \(-0.813418\pi\)
0.0625264 + 0.998043i \(0.480084\pi\)
\(192\) 120.396 25.1747i 0.627063 0.131118i
\(193\) −29.5000 + 51.0955i −0.152850 + 0.264744i −0.932274 0.361753i \(-0.882178\pi\)
0.779424 + 0.626496i \(0.215512\pi\)
\(194\) −180.094 + 103.977i −0.928318 + 0.535965i
\(195\) −10.0000 + 8.94427i −0.0512821 + 0.0458681i
\(196\) −49.0000 −0.250000
\(197\) 219.135i 1.11236i 0.831062 + 0.556179i \(0.187733\pi\)
−0.831062 + 0.556179i \(0.812267\pi\)
\(198\) −206.149 + 90.1528i −1.04116 + 0.455317i
\(199\) 117.000 202.650i 0.587940 1.01834i −0.406562 0.913623i \(-0.633273\pi\)
0.994502 0.104718i \(-0.0333941\pi\)
\(200\) −116.190 67.0820i −0.580948 0.335410i
\(201\) 48.6976 148.204i 0.242276 0.737335i
\(202\) 130.000 0.643564
\(203\) −94.8881 54.7837i −0.467429 0.269870i
\(204\) −60.0000 + 53.6656i −0.294118 + 0.263067i
\(205\) 35.0000 + 60.6218i 0.170732 + 0.295716i
\(206\) 158.792 + 91.6788i 0.770836 + 0.445043i
\(207\) −71.6190 + 97.2148i −0.345985 + 0.469637i
\(208\) −19.0000 32.9090i −0.0913462 0.158216i
\(209\) 178.885i 0.855911i
\(210\) −70.0000 78.2624i −0.333333 0.372678i
\(211\) −26.0000 −0.123223 −0.0616114 0.998100i \(-0.519624\pi\)
−0.0616114 + 0.998100i \(0.519624\pi\)
\(212\) 17.4284 10.0623i 0.0822096 0.0474637i
\(213\) 57.6653 + 275.780i 0.270729 + 1.29474i
\(214\) 72.5000 125.574i 0.338785 0.586793i
\(215\) −85.2056 + 49.1935i −0.396305 + 0.228807i
\(216\) −105.000 147.580i −0.486111 0.683243i
\(217\) −10.5000 18.1865i −0.0483871 0.0838089i
\(218\) 321.994i 1.47704i
\(219\) 16.8569 51.3015i 0.0769719 0.234254i
\(220\) 12.5000 21.6506i 0.0568182 0.0984120i
\(221\) −46.4758 26.8328i −0.210298 0.121415i
\(222\) 76.4758 + 25.1287i 0.344486 + 0.113192i
\(223\) −107.000 −0.479821 −0.239910 0.970795i \(-0.577118\pi\)
−0.239910 + 0.970795i \(0.577118\pi\)
\(224\) 94.8881 54.7837i 0.423608 0.244570i
\(225\) −20.0000 + 178.885i −0.0888889 + 0.795046i
\(226\) 35.0000 + 60.6218i 0.154867 + 0.268238i
\(227\) −261.426 150.935i −1.15166 0.664910i −0.202367 0.979310i \(-0.564863\pi\)
−0.949291 + 0.314400i \(0.898197\pi\)
\(228\) 46.9839 9.82427i 0.206070 0.0430889i
\(229\) 167.000 + 289.252i 0.729258 + 1.26311i 0.957197 + 0.289436i \(0.0934678\pi\)
−0.227940 + 0.973675i \(0.573199\pi\)
\(230\) 67.0820i 0.291661i
\(231\) 175.000 156.525i 0.757576 0.677596i
\(232\) 105.000 0.452586
\(233\) 232.379 134.164i 0.997335 0.575811i 0.0898761 0.995953i \(-0.471353\pi\)
0.907459 + 0.420141i \(0.138020\pi\)
\(234\) −23.8730 + 32.4049i −0.102021 + 0.138483i
\(235\) −15.0000 + 25.9808i −0.0638298 + 0.110556i
\(236\) −17.4284 + 10.0623i −0.0738493 + 0.0426369i
\(237\) −158.000 176.649i −0.666667 0.745356i
\(238\) 210.000 363.731i 0.882353 1.52828i
\(239\) 281.745i 1.17885i 0.807824 + 0.589424i \(0.200645\pi\)
−0.807824 + 0.589424i \(0.799355\pi\)
\(240\) 121.087 + 39.7871i 0.504528 + 0.165780i
\(241\) −89.5000 + 155.019i −0.371369 + 0.643230i −0.989776 0.142627i \(-0.954445\pi\)
0.618407 + 0.785858i \(0.287778\pi\)
\(242\) 7.74597 + 4.47214i 0.0320081 + 0.0184799i
\(243\) −124.967 + 208.404i −0.514266 + 0.857631i
\(244\) 26.0000 0.106557
\(245\) 94.8881 + 54.7837i 0.387298 + 0.223607i
\(246\) 140.000 + 156.525i 0.569106 + 0.636280i
\(247\) 16.0000 + 27.7128i 0.0647773 + 0.112198i
\(248\) 17.4284 + 10.0623i 0.0702759 + 0.0405738i
\(249\) −86.4980 413.670i −0.347381 1.66133i
\(250\) −112.500 194.856i −0.450000 0.779423i
\(251\) 172.177i 0.685965i 0.939342 + 0.342983i \(0.111437\pi\)
−0.939342 + 0.342983i \(0.888563\pi\)
\(252\) −50.7218 37.3671i −0.201277 0.148282i
\(253\) 150.000 0.592885
\(254\) 342.759 197.892i 1.34944 0.779102i
\(255\) 176.190 36.8410i 0.690939 0.144475i
\(256\) −90.5000 + 156.751i −0.353516 + 0.612307i
\(257\) 228.506 131.928i 0.889128 0.513339i 0.0154711 0.999880i \(-0.495075\pi\)
0.873657 + 0.486542i \(0.161742\pi\)
\(258\) −220.000 + 196.774i −0.852713 + 0.762690i
\(259\) −84.0000 −0.324324
\(260\) 4.47214i 0.0172005i
\(261\) −56.4446 129.070i −0.216263 0.494520i
\(262\) −212.500 + 368.061i −0.811069 + 1.40481i
\(263\) 30.9839 + 17.8885i 0.117809 + 0.0680173i 0.557747 0.830011i \(-0.311666\pi\)
−0.439937 + 0.898028i \(0.644999\pi\)
\(264\) −70.2369 + 213.756i −0.266049 + 0.809683i
\(265\) −45.0000 −0.169811
\(266\) −216.887 + 125.220i −0.815365 + 0.470751i
\(267\) 110.000 98.3870i 0.411985 0.368491i
\(268\) 26.0000 + 45.0333i 0.0970149 + 0.168035i
\(269\) −342.759 197.892i −1.27420 0.735658i −0.298422 0.954434i \(-0.596460\pi\)
−0.975775 + 0.218776i \(0.929794\pi\)
\(270\) −12.7772 134.394i −0.0473230 0.497755i
\(271\) −228.500 395.774i −0.843173 1.46042i −0.887198 0.461389i \(-0.847351\pi\)
0.0440246 0.999030i \(-0.485982\pi\)
\(272\) 509.823i 1.87435i
\(273\) 13.1109 39.9012i 0.0480252 0.146158i
\(274\) −480.000 −1.75182
\(275\) 193.649 111.803i 0.704179 0.406558i
\(276\) −8.23790 39.3972i −0.0298475 0.142743i
\(277\) −26.0000 + 45.0333i −0.0938628 + 0.162575i −0.909133 0.416505i \(-0.863255\pi\)
0.815271 + 0.579080i \(0.196588\pi\)
\(278\) −220.760 + 127.456i −0.794101 + 0.458474i
\(279\) 3.00000 26.8328i 0.0107527 0.0961750i
\(280\) −105.000 −0.375000
\(281\) 125.220i 0.445622i −0.974862 0.222811i \(-0.928477\pi\)
0.974862 0.222811i \(-0.0715233\pi\)
\(282\) −28.0948 + 85.5025i −0.0996268 + 0.303201i
\(283\) −44.0000 + 76.2102i −0.155477 + 0.269294i −0.933233 0.359273i \(-0.883025\pi\)
0.777756 + 0.628567i \(0.216358\pi\)
\(284\) −81.3327 46.9574i −0.286383 0.165343i
\(285\) −101.968 33.5049i −0.357782 0.117561i
\(286\) 50.0000 0.174825
\(287\) −189.776 109.567i −0.661241 0.381768i
\(288\) 140.000 + 15.6525i 0.486111 + 0.0543489i
\(289\) 215.500 + 373.257i 0.745675 + 1.29155i
\(290\) 67.7772 + 39.1312i 0.233715 + 0.134935i
\(291\) 273.094 57.1036i 0.938466 0.196232i
\(292\) 9.00000 + 15.5885i 0.0308219 + 0.0533851i
\(293\) 15.6525i 0.0534214i 0.999643 + 0.0267107i \(0.00850329\pi\)
−0.999643 + 0.0267107i \(0.991497\pi\)
\(294\) 312.276 + 102.609i 1.06216 + 0.349010i
\(295\) 45.0000 0.152542
\(296\) 69.7137 40.2492i 0.235519 0.135977i
\(297\) 300.514 28.5707i 1.01183 0.0961977i
\(298\) −15.0000 + 25.9808i −0.0503356 + 0.0871838i
\(299\) 23.2379 13.4164i 0.0777187 0.0448709i
\(300\) −40.0000 44.7214i −0.133333 0.149071i
\(301\) 154.000 266.736i 0.511628 0.886166i
\(302\) 131.928i 0.436848i
\(303\) −165.698 54.4455i −0.546857 0.179688i
\(304\) 152.000 263.272i 0.500000 0.866025i
\(305\) −50.3488 29.0689i −0.165078 0.0953078i
\(306\) 494.758 216.367i 1.61686 0.707081i
\(307\) 166.000 0.540717 0.270358 0.962760i \(-0.412858\pi\)
0.270358 + 0.962760i \(0.412858\pi\)
\(308\) 78.2624i 0.254099i
\(309\) −164.000 183.358i −0.530744 0.593390i
\(310\) 7.50000 + 12.9904i 0.0241935 + 0.0419045i
\(311\) 267.236 + 154.289i 0.859279 + 0.496105i 0.863771 0.503885i \(-0.168096\pi\)
−0.00449160 + 0.999990i \(0.501430\pi\)
\(312\) 8.23790 + 39.3972i 0.0264035 + 0.126273i
\(313\) 135.500 + 234.693i 0.432907 + 0.749818i 0.997122 0.0758104i \(-0.0241544\pi\)
−0.564215 + 0.825628i \(0.690821\pi\)
\(314\) 554.545i 1.76607i
\(315\) 56.4446 + 129.070i 0.179189 + 0.409745i
\(316\) 79.0000 0.250000
\(317\) −377.616 + 218.017i −1.19122 + 0.687750i −0.958583 0.284815i \(-0.908068\pi\)
−0.232635 + 0.972564i \(0.574735\pi\)
\(318\) −132.142 + 27.6308i −0.415541 + 0.0868892i
\(319\) −87.5000 + 151.554i −0.274295 + 0.475092i
\(320\) 79.3962 45.8394i 0.248113 0.143248i
\(321\) −145.000 + 129.692i −0.451713 + 0.404025i
\(322\) 105.000 + 181.865i 0.326087 + 0.564799i
\(323\) 429.325i 1.32918i
\(324\) −24.0081 77.3603i −0.0740990 0.238766i
\(325\) 20.0000 34.6410i 0.0615385 0.106588i
\(326\) 3.87298 + 2.23607i 0.0118803 + 0.00685910i
\(327\) −134.855 + 410.412i −0.412400 + 1.25508i
\(328\) 210.000 0.640244
\(329\) 93.9149i 0.285455i
\(330\) −125.000 + 111.803i −0.378788 + 0.338798i
\(331\) 8.00000 + 13.8564i 0.0241692 + 0.0418623i 0.877857 0.478923i \(-0.158973\pi\)
−0.853688 + 0.520785i \(0.825639\pi\)
\(332\) 121.999 + 70.4361i 0.367467 + 0.212157i
\(333\) −86.9516 64.0579i −0.261116 0.192366i
\(334\) −280.000 484.974i −0.838323 1.45202i
\(335\) 116.276i 0.347091i
\(336\) −390.553 + 81.6642i −1.16236 + 0.243048i
\(337\) −509.000 −1.51039 −0.755193 0.655503i \(-0.772457\pi\)
−0.755193 + 0.655503i \(0.772457\pi\)
\(338\) −319.521 + 184.476i −0.945329 + 0.545786i
\(339\) −19.2218 91.9267i −0.0567014 0.271170i
\(340\) −30.0000 + 51.9615i −0.0882353 + 0.152828i
\(341\) −29.0474 + 16.7705i −0.0851829 + 0.0491804i
\(342\) −320.000 35.7771i −0.935673 0.104611i
\(343\) −343.000 −1.00000
\(344\) 295.161i 0.858026i
\(345\) −28.0948 + 85.5025i −0.0814341 + 0.247833i
\(346\) 295.000 510.955i 0.852601 1.47675i
\(347\) 329.204 + 190.066i 0.948713 + 0.547740i 0.892681 0.450689i \(-0.148822\pi\)
0.0560324 + 0.998429i \(0.482155\pi\)
\(348\) 44.6109 + 14.6584i 0.128192 + 0.0421219i
\(349\) 628.000 1.79943 0.899713 0.436481i \(-0.143775\pi\)
0.899713 + 0.436481i \(0.143775\pi\)
\(350\) 271.109 + 156.525i 0.774597 + 0.447214i
\(351\) 44.0000 31.3050i 0.125356 0.0891879i
\(352\) −87.5000 151.554i −0.248580 0.430552i
\(353\) 402.790 + 232.551i 1.14105 + 0.658785i 0.946690 0.322146i \(-0.104404\pi\)
0.194359 + 0.980931i \(0.437737\pi\)
\(354\) 132.142 27.6308i 0.373283 0.0780530i
\(355\) 105.000 + 181.865i 0.295775 + 0.512297i
\(356\) 49.1935i 0.138184i
\(357\) −420.000 + 375.659i −1.17647 + 1.05227i
\(358\) 430.000 1.20112
\(359\) −201.395 + 116.276i −0.560989 + 0.323887i −0.753542 0.657399i \(-0.771657\pi\)
0.192553 + 0.981287i \(0.438323\pi\)
\(360\) −108.690 80.0724i −0.301915 0.222423i
\(361\) 52.5000 90.9327i 0.145429 0.251891i
\(362\) 158.792 91.6788i 0.438653 0.253256i
\(363\) −8.00000 8.94427i −0.0220386 0.0246399i
\(364\) 7.00000 + 12.1244i 0.0192308 + 0.0333087i
\(365\) 40.2492i 0.110272i
\(366\) −165.698 54.4455i −0.452726 0.148758i
\(367\) −250.500 + 433.879i −0.682561 + 1.18223i 0.291635 + 0.956530i \(0.405801\pi\)
−0.974197 + 0.225701i \(0.927533\pi\)
\(368\) −220.760 127.456i −0.599891 0.346347i
\(369\) −112.889 258.140i −0.305933 0.699565i
\(370\) 60.0000 0.162162
\(371\) 121.999 70.4361i 0.328838 0.189855i
\(372\) 6.00000 + 6.70820i 0.0161290 + 0.0180328i
\(373\) −349.000 604.486i −0.935657 1.62061i −0.773458 0.633847i \(-0.781475\pi\)
−0.162198 0.986758i \(-0.551858\pi\)
\(374\) −580.948 335.410i −1.55334 0.896819i
\(375\) 61.7843 + 295.479i 0.164758 + 0.787943i
\(376\) 45.0000 + 77.9423i 0.119681 + 0.207293i
\(377\) 31.3050i 0.0830370i
\(378\) 245.000 + 344.354i 0.648148 + 0.910991i
\(379\) 366.000 0.965699 0.482850 0.875703i \(-0.339602\pi\)
0.482850 + 0.875703i \(0.339602\pi\)
\(380\) 30.9839 17.8885i 0.0815365 0.0470751i
\(381\) −519.759 + 108.681i −1.36420 + 0.285252i
\(382\) −190.000 + 329.090i −0.497382 + 0.861491i
\(383\) 11.6190 6.70820i 0.0303367 0.0175149i −0.484755 0.874650i \(-0.661091\pi\)
0.515092 + 0.857135i \(0.327758\pi\)
\(384\) 345.000 308.577i 0.898438 0.803587i
\(385\) 87.5000 151.554i 0.227273 0.393648i
\(386\) 131.928i 0.341782i
\(387\) 362.823 158.669i 0.937526 0.409997i
\(388\) −46.5000 + 80.5404i −0.119845 + 0.207578i
\(389\) 58.0948 + 33.5410i 0.149344 + 0.0862237i 0.572810 0.819688i \(-0.305853\pi\)
−0.423466 + 0.905912i \(0.639187\pi\)
\(390\) −9.36492 + 28.5008i −0.0240126 + 0.0730791i
\(391\) −360.000 −0.920716
\(392\) 284.664 164.351i 0.726184 0.419263i
\(393\) 425.000 380.132i 1.08142 0.967256i
\(394\) 245.000 + 424.352i 0.621827 + 1.07704i
\(395\) −152.983 88.3247i −0.387298 0.223607i
\(396\) −59.6825 + 81.0124i −0.150713 + 0.204577i
\(397\) 132.000 + 228.631i 0.332494 + 0.575896i 0.983000 0.183605i \(-0.0587766\pi\)
−0.650506 + 0.759501i \(0.725443\pi\)
\(398\) 523.240i 1.31467i
\(399\) 328.887 68.7699i 0.824278 0.172356i
\(400\) −380.000 −0.950000
\(401\) −92.9516 + 53.6656i −0.231800 + 0.133830i −0.611402 0.791320i \(-0.709394\pi\)
0.379602 + 0.925150i \(0.376061\pi\)
\(402\) −71.3951 341.442i −0.177600 0.849359i
\(403\) −3.00000 + 5.19615i −0.00744417 + 0.0128937i
\(404\) 50.3488 29.0689i 0.124626 0.0719527i
\(405\) −40.0000 + 176.649i −0.0987654 + 0.436171i
\(406\) −245.000 −0.603448
\(407\) 134.164i 0.329641i
\(408\) 168.569 513.015i 0.413158 1.25739i
\(409\) 99.5000 172.339i 0.243276 0.421367i −0.718369 0.695662i \(-0.755111\pi\)
0.961646 + 0.274295i \(0.0884445\pi\)
\(410\) 135.554 + 78.2624i 0.330621 + 0.190884i
\(411\) 611.806 + 201.030i 1.48858 + 0.489123i
\(412\) 82.0000 0.199029
\(413\) −121.999 + 70.4361i −0.295397 + 0.170548i
\(414\) −30.0000 + 268.328i −0.0724638 + 0.648136i
\(415\) −157.500 272.798i −0.379518 0.657345i
\(416\) −27.1109 15.6525i −0.0651704 0.0376261i
\(417\) 334.760 69.9979i 0.802782 0.167861i
\(418\) 200.000 + 346.410i 0.478469 + 0.828732i
\(419\) 93.9149i 0.224140i 0.993700 + 0.112070i \(0.0357482\pi\)
−0.993700 + 0.112070i \(0.964252\pi\)
\(420\) −44.6109 14.6584i −0.106216 0.0349010i
\(421\) 254.000 0.603325 0.301663 0.953415i \(-0.402458\pi\)
0.301663 + 0.953415i \(0.402458\pi\)
\(422\) −50.3488 + 29.0689i −0.119310 + 0.0688836i
\(423\) 71.6190 97.2148i 0.169312 0.229822i
\(424\) −67.5000 + 116.913i −0.159198 + 0.275739i
\(425\) −464.758 + 268.328i −1.09355 + 0.631360i
\(426\) 420.000 + 469.574i 0.985915 + 1.10229i
\(427\) 182.000 0.426230
\(428\) 64.8460i 0.151509i
\(429\) −63.7298 20.9406i −0.148554 0.0488126i
\(430\) −110.000 + 190.526i −0.255814 + 0.443083i
\(431\) −104.571 60.3738i −0.242623 0.140079i 0.373759 0.927526i \(-0.378069\pi\)
−0.616382 + 0.787447i \(0.711402\pi\)
\(432\) −466.553 213.300i −1.07998 0.493750i
\(433\) −506.000 −1.16859 −0.584296 0.811541i \(-0.698629\pi\)
−0.584296 + 0.811541i \(0.698629\pi\)
\(434\) −40.6663 23.4787i −0.0937012 0.0540984i
\(435\) −70.0000 78.2624i −0.160920 0.179914i
\(436\) −72.0000 124.708i −0.165138 0.286027i
\(437\) 185.903 + 107.331i 0.425408 + 0.245609i
\(438\) −24.7137 118.192i −0.0564240 0.269844i
\(439\) −235.500 407.898i −0.536446 0.929153i −0.999092 0.0426091i \(-0.986433\pi\)
0.462645 0.886543i \(-0.346900\pi\)
\(440\) 167.705i 0.381148i
\(441\) −355.052 261.570i −0.805107 0.593129i
\(442\) −120.000 −0.271493
\(443\) −52.2853 + 30.1869i −0.118025 + 0.0681420i −0.557851 0.829941i \(-0.688374\pi\)
0.439825 + 0.898083i \(0.355040\pi\)
\(444\) 35.2379 7.36820i 0.0793646 0.0165950i
\(445\) 55.0000 95.2628i 0.123596 0.214074i
\(446\) −207.205 + 119.630i −0.464584 + 0.268228i
\(447\) 30.0000 26.8328i 0.0671141 0.0600287i
\(448\) −143.500 + 248.549i −0.320312 + 0.554798i
\(449\) 281.745i 0.627493i 0.949507 + 0.313747i \(0.101584\pi\)
−0.949507 + 0.313747i \(0.898416\pi\)
\(450\) 161.270 + 368.771i 0.358378 + 0.819491i
\(451\) −175.000 + 303.109i −0.388027 + 0.672082i
\(452\) 27.1109 + 15.6525i 0.0599798 + 0.0346294i
\(453\) 55.2530 168.155i 0.121971 0.371203i
\(454\) −675.000 −1.48678
\(455\) 31.3050i 0.0688021i
\(456\) −240.000 + 214.663i −0.526316 + 0.470751i
\(457\) 11.5000 + 19.9186i 0.0251641 + 0.0435855i 0.878333 0.478049i \(-0.158656\pi\)
−0.853169 + 0.521634i \(0.825323\pi\)
\(458\) 646.788 + 373.423i 1.41220 + 0.815335i
\(459\) −721.234 + 68.5697i −1.57132 + 0.149389i
\(460\) −15.0000 25.9808i −0.0326087 0.0564799i
\(461\) 594.794i 1.29023i −0.764087 0.645113i \(-0.776810\pi\)
0.764087 0.645113i \(-0.223190\pi\)
\(462\) 163.886 498.765i 0.354732 1.07958i
\(463\) 58.0000 0.125270 0.0626350 0.998037i \(-0.480050\pi\)
0.0626350 + 0.998037i \(0.480050\pi\)
\(464\) 257.553 148.699i 0.555072 0.320471i
\(465\) −4.11895 19.6986i −0.00885796 0.0423625i
\(466\) 300.000 519.615i 0.643777 1.11505i
\(467\) 499.615 288.453i 1.06984 0.617672i 0.141702 0.989909i \(-0.454743\pi\)
0.928137 + 0.372238i \(0.121409\pi\)
\(468\) −2.00000 + 17.8885i −0.00427350 + 0.0382234i
\(469\) 182.000 + 315.233i 0.388060 + 0.672139i
\(470\) 67.0820i 0.142728i
\(471\) −232.250 + 706.821i −0.493100 + 1.50068i
\(472\) 67.5000 116.913i 0.143008 0.247698i
\(473\) −426.028 245.967i −0.900694 0.520016i
\(474\) −503.466 165.431i −1.06216 0.349010i
\(475\) 320.000 0.673684
\(476\) 187.830i 0.394600i
\(477\) 180.000 + 20.1246i 0.377358 + 0.0421900i
\(478\) 315.000 + 545.596i 0.658996 + 1.14141i
\(479\) 294.347 + 169.941i 0.614503 + 0.354783i 0.774726 0.632298i \(-0.217888\pi\)
−0.160223 + 0.987081i \(0.551221\pi\)
\(480\) 102.777 21.4906i 0.214119 0.0447721i
\(481\) 12.0000 + 20.7846i 0.0249480 + 0.0432112i
\(482\) 400.256i 0.830407i
\(483\) −57.6653 275.780i −0.119390 0.570973i
\(484\) 4.00000 0.00826446
\(485\) 180.094 103.977i 0.371327 0.214386i
\(486\) −8.99398 + 543.290i −0.0185061 + 1.11788i
\(487\) 404.500 700.615i 0.830595 1.43863i −0.0669712 0.997755i \(-0.521334\pi\)
0.897567 0.440879i \(-0.145333\pi\)
\(488\) −151.046 + 87.2067i −0.309521 + 0.178702i
\(489\) −4.00000 4.47214i −0.00817996 0.00914547i
\(490\) 245.000 0.500000
\(491\) 453.922i 0.924484i −0.886754 0.462242i \(-0.847045\pi\)
0.886754 0.462242i \(-0.152955\pi\)
\(492\) 89.2218 + 29.3168i 0.181345 + 0.0595870i
\(493\) 210.000 363.731i 0.425963 0.737790i
\(494\) 61.9677 + 35.7771i 0.125441 + 0.0724233i
\(495\) 206.149 90.1528i 0.416463 0.182127i
\(496\) 57.0000 0.114919
\(497\) −569.329 328.702i −1.14553 0.661372i
\(498\) −630.000 704.361i −1.26506 1.41438i
\(499\) 127.000 + 219.970i 0.254509 + 0.440823i 0.964762 0.263124i \(-0.0847528\pi\)
−0.710253 + 0.703946i \(0.751419\pi\)
\(500\) −87.1421 50.3115i −0.174284 0.100623i
\(501\) 153.774 + 735.414i 0.306934 + 1.46789i
\(502\) 192.500 + 333.420i 0.383466 + 0.664183i
\(503\) 939.149i 1.86709i 0.358454 + 0.933547i \(0.383304\pi\)
−0.358454 + 0.933547i \(0.616696\pi\)
\(504\) 420.000 + 46.9574i 0.833333 + 0.0931695i
\(505\) −130.000 −0.257426
\(506\) 290.474 167.705i 0.574059 0.331433i
\(507\) 484.521 101.313i 0.955663 0.199828i
\(508\) 88.5000 153.286i 0.174213 0.301745i
\(509\) 350.505 202.364i 0.688615 0.397572i −0.114478 0.993426i \(-0.536520\pi\)
0.803093 + 0.595854i \(0.203186\pi\)
\(510\) 300.000 268.328i 0.588235 0.526134i
\(511\) 63.0000 + 109.119i 0.123288 + 0.213541i
\(512\) 212.426i 0.414895i
\(513\) 392.887 + 179.621i 0.765862 + 0.350139i
\(514\) 295.000 510.955i 0.573930 0.994076i
\(515\) −158.792 91.6788i −0.308335 0.178017i
\(516\) −41.2056 + 125.404i −0.0798559 + 0.243030i
\(517\) −150.000 −0.290135
\(518\) −162.665 + 93.9149i −0.314026 + 0.181303i
\(519\) −590.000 + 527.712i −1.13680 + 1.01679i
\(520\) 15.0000 + 25.9808i 0.0288462 + 0.0499630i
\(521\) −302.093 174.413i −0.579832 0.334766i 0.181234 0.983440i \(-0.441991\pi\)
−0.761067 + 0.648674i \(0.775324\pi\)
\(522\) −253.609 186.836i −0.485841 0.357923i
\(523\) −197.000 341.214i −0.376673 0.652417i 0.613903 0.789382i \(-0.289599\pi\)
−0.990576 + 0.136965i \(0.956265\pi\)
\(524\) 190.066i 0.362721i
\(525\) −280.000 313.050i −0.533333 0.596285i
\(526\) 80.0000 0.152091
\(527\) 69.7137 40.2492i 0.132284 0.0763742i
\(528\) 130.433 + 623.789i 0.247033 + 1.18142i
\(529\) −174.500 + 302.243i −0.329868 + 0.571348i
\(530\) −87.1421 + 50.3115i −0.164419 + 0.0949274i
\(531\) −180.000 20.1246i −0.338983 0.0378995i
\(532\) −56.0000 + 96.9948i −0.105263 + 0.182321i
\(533\) 62.6099i 0.117467i
\(534\) 103.014 313.509i 0.192910 0.587096i
\(535\) −72.5000 + 125.574i −0.135514 + 0.234717i
\(536\) −302.093 174.413i −0.563606 0.325398i
\(537\) −548.077 180.089i −1.02063 0.335361i
\(538\) −885.000 −1.64498
\(539\) 547.837i 1.01639i
\(540\) −35.0000 49.1935i −0.0648148 0.0910991i
\(541\) −202.000 349.874i −0.373383 0.646718i 0.616701 0.787198i \(-0.288469\pi\)
−0.990084 + 0.140480i \(0.955135\pi\)
\(542\) −884.977 510.942i −1.63280 0.942697i
\(543\) −240.792 + 50.3494i −0.443448 + 0.0927245i
\(544\) 210.000 + 363.731i 0.386029 + 0.668623i
\(545\) 321.994i 0.590814i
\(546\) −19.2218 91.9267i −0.0352047 0.168364i
\(547\) 16.0000 0.0292505 0.0146252 0.999893i \(-0.495344\pi\)
0.0146252 + 0.999893i \(0.495344\pi\)
\(548\) −185.903 + 107.331i −0.339239 + 0.195860i
\(549\) 188.395 + 138.792i 0.343161 + 0.252809i
\(550\) 250.000 433.013i 0.454545 0.787296i
\(551\) −216.887 + 125.220i −0.393624 + 0.227259i
\(552\) 180.000 + 201.246i 0.326087 + 0.364576i
\(553\) 553.000 1.00000
\(554\) 116.276i 0.209884i
\(555\) −76.4758 25.1287i −0.137794 0.0452770i
\(556\) −57.0000 + 98.7269i −0.102518 + 0.177566i
\(557\) 640.979 + 370.069i 1.15077 + 0.664397i 0.949075 0.315051i \(-0.102022\pi\)
0.201695 + 0.979448i \(0.435355\pi\)
\(558\) −24.1905 55.3156i −0.0433522 0.0991319i
\(559\) −88.0000 −0.157424
\(560\) −257.553 + 148.699i −0.459917 + 0.265533i
\(561\) 600.000 + 670.820i 1.06952 + 1.19576i
\(562\) −140.000 242.487i −0.249110 0.431472i
\(563\) −207.205 119.630i −0.368037 0.212486i 0.304564 0.952492i \(-0.401489\pi\)
−0.672600 + 0.740006i \(0.734823\pi\)
\(564\) 8.23790 + 39.3972i 0.0146062 + 0.0698531i
\(565\) −35.0000 60.6218i −0.0619469 0.107295i
\(566\) 196.774i 0.347657i
\(567\) −168.056 541.522i −0.296396 0.955065i
\(568\) 630.000 1.10915
\(569\) 828.818 478.519i 1.45662 0.840982i 0.457780 0.889066i \(-0.348645\pi\)
0.998843 + 0.0480841i \(0.0153115\pi\)
\(570\) −234.919 + 49.1213i −0.412139 + 0.0861778i
\(571\) 23.0000 39.8372i 0.0402802 0.0697674i −0.845182 0.534478i \(-0.820508\pi\)
0.885463 + 0.464711i \(0.153842\pi\)
\(572\) 19.3649 11.1803i 0.0338547 0.0195460i
\(573\) 380.000 339.882i 0.663176 0.593163i
\(574\) −490.000 −0.853659
\(575\) 268.328i 0.466658i
\(576\) −338.085 + 147.851i −0.586952 + 0.256685i
\(577\) −495.500 + 858.231i −0.858752 + 1.48740i 0.0143677 + 0.999897i \(0.495426\pi\)
−0.873120 + 0.487506i \(0.837907\pi\)
\(578\) 834.628 + 481.873i 1.44399 + 0.833690i
\(579\) 55.2530 168.155i 0.0954283 0.290423i
\(580\) 35.0000 0.0603448
\(581\) 853.993 + 493.053i 1.46987 + 0.848628i
\(582\) 465.000 415.909i 0.798969 0.714620i
\(583\) −112.500 194.856i −0.192967 0.334229i
\(584\) −104.571 60.3738i −0.179059 0.103380i
\(585\) 23.8730 32.4049i 0.0408085 0.0553931i
\(586\) 17.5000 + 30.3109i 0.0298635 + 0.0517251i
\(587\) 766.971i 1.30660i −0.757101 0.653298i \(-0.773385\pi\)
0.757101 0.653298i \(-0.226615\pi\)
\(588\) 143.888 30.0868i 0.244708 0.0511681i
\(589\) −48.0000 −0.0814941
\(590\) 87.1421 50.3115i 0.147699 0.0852738i
\(591\) −134.552 643.487i −0.227669 1.08881i
\(592\) 114.000 197.454i 0.192568 0.333537i
\(593\) −151.046 + 87.2067i −0.254716 + 0.147060i −0.621922 0.783080i \(-0.713648\pi\)
0.367206 + 0.930140i \(0.380314\pi\)
\(594\) 550.000 391.312i 0.925926 0.658774i
\(595\) −210.000 + 363.731i −0.352941 + 0.611312i
\(596\) 13.4164i 0.0225108i
\(597\) −219.139 + 666.920i −0.367067 + 1.11712i
\(598\) 30.0000 51.9615i 0.0501672 0.0868922i
\(599\) −836.564 482.991i −1.39660 0.806328i −0.402567 0.915391i \(-0.631882\pi\)
−0.994035 + 0.109062i \(0.965215\pi\)
\(600\) 382.379 + 125.644i 0.637298 + 0.209406i
\(601\) −471.000 −0.783694 −0.391847 0.920030i \(-0.628164\pi\)
−0.391847 + 0.920030i \(0.628164\pi\)
\(602\) 688.709i 1.14403i
\(603\) −52.0000 + 465.102i −0.0862355 + 0.771314i
\(604\) 29.5000 + 51.0955i 0.0488411 + 0.0845952i
\(605\) −7.74597 4.47214i −0.0128033 0.00739196i
\(606\) −381.744 + 79.8222i −0.629940 + 0.131720i
\(607\) 471.500 + 816.662i 0.776771 + 1.34541i 0.933794 + 0.357812i \(0.116477\pi\)
−0.157023 + 0.987595i \(0.550190\pi\)
\(608\) 250.440i 0.411907i
\(609\) 312.276 + 102.609i 0.512769 + 0.168488i
\(610\) −130.000 −0.213115
\(611\) −23.2379 + 13.4164i −0.0380326 + 0.0219581i
\(612\) 143.238 194.430i 0.234049 0.317696i
\(613\) −467.000 + 808.868i −0.761827 + 1.31952i 0.180081 + 0.983652i \(0.442364\pi\)
−0.941908 + 0.335871i \(0.890969\pi\)
\(614\) 321.458 185.594i 0.523547 0.302270i
\(615\) −140.000 156.525i −0.227642 0.254512i
\(616\) −262.500 454.663i −0.426136 0.738090i
\(617\) 93.9149i 0.152212i −0.997100 0.0761060i \(-0.975751\pi\)
0.997100 0.0761060i \(-0.0242488\pi\)
\(618\) −522.585 171.713i −0.845606 0.277852i
\(619\) 61.0000 105.655i 0.0985460 0.170687i −0.812537 0.582910i \(-0.801914\pi\)
0.911083 + 0.412223i \(0.135247\pi\)
\(620\) 5.80948 + 3.35410i 0.00937012 + 0.00540984i
\(621\) 150.617 329.446i 0.242539 0.530509i
\(622\) 690.000 1.10932
\(623\) 344.354i 0.552736i
\(624\) 76.0000 + 84.9706i 0.121795 + 0.136171i
\(625\) −137.500 238.157i −0.220000 0.381051i
\(626\) 524.789 + 302.987i 0.838321 + 0.484005i
\(627\) −109.839 525.296i −0.175181 0.837792i
\(628\) −124.000 214.774i −0.197452 0.341997i
\(629\) 321.994i 0.511914i
\(630\) 253.609 + 186.836i 0.402554 + 0.296565i
\(631\) −61.0000 −0.0966719 −0.0483360 0.998831i \(-0.515392\pi\)
−0.0483360 + 0.998831i \(0.515392\pi\)
\(632\) −458.949 + 264.974i −0.726184 + 0.419263i
\(633\) 76.3488 15.9644i 0.120614 0.0252203i
\(634\) −487.500 + 844.375i −0.768927 + 1.33182i
\(635\) −342.759 + 197.892i −0.539778 + 0.311641i
\(636\) −45.0000 + 40.2492i −0.0707547 + 0.0632849i
\(637\) 49.0000 + 84.8705i 0.0769231 + 0.133235i
\(638\) 391.312i 0.613342i
\(639\) −338.667 774.419i −0.529996 1.21192i
\(640\) 172.500 298.779i 0.269531 0.466842i
\(641\) 708.756 + 409.200i 1.10570 + 0.638378i 0.937713 0.347410i \(-0.112939\pi\)
0.167990 + 0.985789i \(0.446272\pi\)
\(642\) −135.791 + 413.262i −0.211513 + 0.643711i
\(643\) 908.000 1.41213 0.706065 0.708147i \(-0.250468\pi\)
0.706065 + 0.708147i \(0.250468\pi\)
\(644\) 81.3327 + 46.9574i 0.126293 + 0.0729153i
\(645\) 220.000 196.774i 0.341085 0.305076i
\(646\) −480.000 831.384i −0.743034 1.28697i
\(647\) −274.982 158.761i −0.425011 0.245380i 0.272208 0.962238i \(-0.412246\pi\)
−0.697219 + 0.716858i \(0.745579\pi\)
\(648\) 398.949 + 368.897i 0.615661 + 0.569286i
\(649\) 112.500 + 194.856i 0.173344 + 0.300240i
\(650\) 89.4427i 0.137604i
\(651\) 42.0000 + 46.9574i 0.0645161 + 0.0721312i
\(652\) 2.00000 0.00306748
\(653\) −865.612 + 499.761i −1.32559 + 0.765331i −0.984615 0.174740i \(-0.944091\pi\)
−0.340978 + 0.940071i \(0.610758\pi\)
\(654\) 197.710 + 945.532i 0.302308 + 1.44577i
\(655\) 212.500 368.061i 0.324427 0.561925i
\(656\) 515.107 297.397i 0.785224 0.453349i
\(657\) −18.0000 + 160.997i −0.0273973 + 0.245049i
\(658\) −105.000 181.865i −0.159574 0.276391i
\(659\) 657.404i 0.997578i 0.866723 + 0.498789i \(0.166222\pi\)
−0.866723 + 0.498789i \(0.833778\pi\)
\(660\) −23.4123 + 71.2521i −0.0354732 + 0.107958i
\(661\) 418.000 723.997i 0.632375 1.09531i −0.354690 0.934984i \(-0.615413\pi\)
0.987065 0.160322i \(-0.0512532\pi\)
\(662\) 30.9839 + 17.8885i 0.0468034 + 0.0270220i
\(663\) 152.952 + 50.2574i 0.230696 + 0.0758030i
\(664\) −945.000 −1.42319
\(665\) 216.887 125.220i 0.326146 0.188300i
\(666\) −240.000 26.8328i −0.360360 0.0402895i
\(667\) 105.000 + 181.865i 0.157421 + 0.272662i
\(668\) −216.887 125.220i −0.324681 0.187455i
\(669\) 314.205 65.6998i 0.469663 0.0982060i
\(670\) −130.000 225.167i −0.194030 0.336070i
\(671\) 290.689i 0.433217i
\(672\) −245.000 + 219.135i −0.364583 + 0.326093i
\(673\) −677.000 −1.00594 −0.502972 0.864303i \(-0.667760\pi\)
−0.502972 + 0.864303i \(0.667760\pi\)
\(674\) −985.674 + 569.079i −1.46242 + 0.844331i
\(675\) −51.1088 537.576i −0.0757168 0.796409i
\(676\) −82.5000 + 142.894i −0.122041 + 0.211382i
\(677\) −923.707 + 533.302i −1.36441 + 0.787743i −0.990208 0.139603i \(-0.955417\pi\)
−0.374204 + 0.927346i \(0.622084\pi\)
\(678\) −140.000 156.525i −0.206490 0.230862i
\(679\) −325.500 + 563.783i −0.479381 + 0.830313i
\(680\) 402.492i 0.591900i
\(681\) 860.353 + 282.698i 1.26337 + 0.415122i
\(682\) −37.5000 + 64.9519i −0.0549853 + 0.0952374i
\(683\) −551.900 318.640i −0.808053 0.466530i 0.0382264 0.999269i \(-0.487829\pi\)
−0.846279 + 0.532740i \(0.821163\pi\)
\(684\) −131.935 + 57.6978i −0.192888 + 0.0843535i
\(685\) 480.000 0.700730
\(686\) −664.217 + 383.486i −0.968246 + 0.559017i
\(687\) −668.000 746.847i −0.972344 1.08711i
\(688\) 418.000 + 723.997i 0.607558 + 1.05232i
\(689\) −34.8569 20.1246i −0.0505905 0.0292084i
\(690\) 41.1895 + 196.986i 0.0596949 + 0.285487i
\(691\) −337.000 583.701i −0.487699 0.844719i 0.512201 0.858866i \(-0.328830\pi\)
−0.999900 + 0.0141462i \(0.995497\pi\)
\(692\) 263.856i 0.381295i
\(693\) −417.777 + 567.087i −0.602853 + 0.818307i
\(694\) 850.000 1.22478
\(695\) 220.760 127.456i 0.317640 0.183390i
\(696\) −308.332 + 64.4718i −0.443005 + 0.0926318i
\(697\) 420.000 727.461i 0.602582 1.04370i
\(698\) 1216.12 702.125i 1.74229 1.00591i
\(699\) −600.000 + 536.656i −0.858369 + 0.767749i
\(700\) 140.000 0.200000
\(701\) 1080.02i 1.54069i −0.637630 0.770343i \(-0.720085\pi\)
0.637630 0.770343i \(-0.279915\pi\)
\(702\) 50.2056 109.815i 0.0715180 0.156432i
\(703\) −96.0000 + 166.277i −0.136558 + 0.236525i
\(704\) 396.981 + 229.197i 0.563893 + 0.325564i
\(705\) 28.0948 85.5025i 0.0398507 0.121280i
\(706\) 1040.00 1.47309
\(707\) 352.441 203.482i 0.498503 0.287811i
\(708\) 45.0000 40.2492i 0.0635593 0.0568492i
\(709\) 57.0000 + 98.7269i 0.0803949 + 0.139248i 0.903420 0.428757i \(-0.141049\pi\)
−0.823025 + 0.568006i \(0.807715\pi\)
\(710\) 406.663 + 234.787i 0.572765 + 0.330686i
\(711\) 572.431 + 421.715i 0.805107 + 0.593129i
\(712\) −165.000 285.788i −0.231742 0.401388i
\(713\) 40.2492i 0.0564505i
\(714\) −393.327 + 1197.04i −0.550877 + 1.67652i
\(715\) −50.0000 −0.0699301
\(716\) 166.538 96.1509i 0.232595 0.134289i
\(717\) −172.996 827.341i −0.241277 1.15389i
\(718\) −260.000 + 450.333i −0.362117 + 0.627205i
\(719\) 336.950 194.538i 0.468636 0.270567i −0.247032 0.969007i \(-0.579455\pi\)
0.715669 + 0.698440i \(0.246122\pi\)
\(720\) −380.000 42.4853i −0.527778 0.0590073i
\(721\) 574.000 0.796117
\(722\) 234.787i 0.325190i
\(723\) 167.632 510.165i 0.231856 0.705623i
\(724\) 41.0000 71.0141i 0.0566298 0.0980858i
\(725\) 271.109 + 156.525i 0.373943 + 0.215896i
\(726\) −25.4919 8.37624i −0.0351129 0.0115375i
\(727\) 1307.00 1.79780 0.898900 0.438155i \(-0.144368\pi\)
0.898900 + 0.438155i \(0.144368\pi\)
\(728\) −81.3327 46.9574i −0.111721 0.0645020i
\(729\) 239.000 688.709i 0.327846 0.944731i
\(730\) −45.0000 77.9423i −0.0616438 0.106770i
\(731\) 1022.47 + 590.322i 1.39872 + 0.807554i
\(732\) −76.3488 + 15.9644i −0.104302 + 0.0218093i
\(733\) −204.000 353.338i −0.278308 0.482044i 0.692656 0.721268i \(-0.256440\pi\)
−0.970964 + 0.239224i \(0.923107\pi\)
\(734\) 1120.27i 1.52625i
\(735\) −312.276 102.609i −0.424866 0.139604i
\(736\) −210.000 −0.285326
\(737\) 503.488 290.689i 0.683159 0.394422i
\(738\) −507.218 373.671i −0.687287 0.506330i
\(739\) 177.000 306.573i 0.239513 0.414848i −0.721062 0.692871i \(-0.756346\pi\)
0.960575 + 0.278022i \(0.0896789\pi\)
\(740\) 23.2379 13.4164i 0.0314026 0.0181303i
\(741\) −64.0000 71.5542i −0.0863698 0.0965643i
\(742\) 157.500 272.798i 0.212264 0.367652i
\(743\) 751.319i 1.01120i 0.862769 + 0.505598i \(0.168728\pi\)
−0.862769 + 0.505598i \(0.831272\pi\)
\(744\) −57.3569 18.8465i −0.0770925 0.0253314i
\(745\) 15.0000 25.9808i 0.0201342 0.0348735i
\(746\) −1351.67 780.388i −1.81189 1.04610i
\(747\) 508.001 + 1161.63i 0.680055 + 1.55506i
\(748\) −300.000 −0.401070
\(749\) 453.922i 0.606037i
\(750\) 450.000 + 503.115i 0.600000 + 0.670820i
\(751\) 515.500 + 892.872i 0.686418 + 1.18891i 0.972989 + 0.230852i \(0.0741513\pi\)
−0.286571 + 0.958059i \(0.592515\pi\)
\(752\) 220.760 + 127.456i 0.293564 + 0.169489i
\(753\) −105.720 505.597i −0.140398 0.671444i
\(754\) 35.0000 + 60.6218i 0.0464191 + 0.0804002i
\(755\) 131.928i 0.174739i
\(756\) 171.888 + 78.5842i 0.227365 + 0.103947i
\(757\) −1258.00 −1.66182 −0.830911 0.556405i \(-0.812180\pi\)
−0.830911 + 0.556405i \(0.812180\pi\)
\(758\) 708.756 409.200i 0.935034 0.539842i
\(759\) −440.474 + 92.1025i −0.580334 + 0.121347i
\(760\) −120.000 + 207.846i −0.157895 + 0.273482i
\(761\) −801.708 + 462.866i −1.05349 + 0.608234i −0.923625 0.383297i \(-0.874788\pi\)
−0.129867 + 0.991531i \(0.541455\pi\)
\(762\) −885.000 + 791.568i −1.16142 + 1.03880i
\(763\) −504.000 872.954i −0.660550 1.14411i
\(764\) 169.941i 0.222436i
\(765\) −494.758 + 216.367i −0.646742 + 0.282832i
\(766\) 15.0000 25.9808i 0.0195822 0.0339174i
\(767\) 34.8569 + 20.1246i 0.0454457 + 0.0262381i
\(768\) 169.505 515.865i 0.220710 0.671700i
\(769\) −877.000 −1.14044 −0.570221 0.821491i \(-0.693142\pi\)
−0.570221 + 0.821491i \(0.693142\pi\)
\(770\) 391.312i 0.508197i
\(771\) −590.000 + 527.712i −0.765240 + 0.684451i
\(772\) 29.5000 + 51.0955i 0.0382124 + 0.0661859i
\(773\) −437.647 252.676i −0.566167 0.326877i 0.189450 0.981890i \(-0.439330\pi\)
−0.755617 + 0.655014i \(0.772663\pi\)
\(774\) 525.206 712.909i 0.678560 0.921071i
\(775\) 30.0000 + 51.9615i 0.0387097 + 0.0670471i
\(776\) 623.863i 0.803947i
\(777\) 246.665 51.5774i 0.317459 0.0663802i
\(778\)