Properties

Label 2013.1.bm.b
Level 2013
Weight 1
Character orbit 2013.bm
Analytic conductor 1.005
Analytic rank 0
Dimension 4
Projective image \(D_{5}\)
CM disc. -183
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 2013 = 3 \cdot 11 \cdot 61 \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 2013.bm (of order \(10\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(1.00461787043\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Projective image \(D_{5}\)
Projective field Galois closure of 5.1.490312449.1

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q\) \( + ( 1 - \zeta_{10} ) q^{2} \) \( + \zeta_{10}^{4} q^{3} \) \( + ( 1 - \zeta_{10} + \zeta_{10}^{2} ) q^{4} \) \( + ( 1 + \zeta_{10}^{4} ) q^{6} \) \( + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{8} \) \( -\zeta_{10}^{3} q^{9} \) \(+O(q^{10})\) \( q\) \( + ( 1 - \zeta_{10} ) q^{2} \) \( + \zeta_{10}^{4} q^{3} \) \( + ( 1 - \zeta_{10} + \zeta_{10}^{2} ) q^{4} \) \( + ( 1 + \zeta_{10}^{4} ) q^{6} \) \( + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{8} \) \( -\zeta_{10}^{3} q^{9} \) \( -\zeta_{10} q^{11} \) \( + ( 1 - \zeta_{10} + \zeta_{10}^{4} ) q^{12} \) \( + ( 1 - \zeta_{10} ) q^{13} \) \( + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} + \zeta_{10}^{4} ) q^{16} \) \( + ( -\zeta_{10} - \zeta_{10}^{3} ) q^{17} \) \( + ( -\zeta_{10}^{3} + \zeta_{10}^{4} ) q^{18} \) \( + ( 1 - \zeta_{10}^{3} ) q^{19} \) \( + ( -\zeta_{10} + \zeta_{10}^{2} ) q^{22} \) \( + ( \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{23} \) \( + ( 1 - \zeta_{10} + \zeta_{10}^{2} + \zeta_{10}^{4} ) q^{24} \) \( + \zeta_{10}^{4} q^{25} \) \( + ( 1 - 2 \zeta_{10} + \zeta_{10}^{2} ) q^{26} \) \( + \zeta_{10}^{2} q^{27} \) \( + ( -\zeta_{10}^{3} + \zeta_{10}^{4} ) q^{29} \) \( + ( 2 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} + \zeta_{10}^{4} ) q^{32} \) \(+ q^{33}\) \( + ( -\zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} + \zeta_{10}^{4} ) q^{34} \) \( + ( 1 - \zeta_{10}^{3} + \zeta_{10}^{4} ) q^{36} \) \( + ( 1 - \zeta_{10} - \zeta_{10}^{3} + \zeta_{10}^{4} ) q^{38} \) \( + ( 1 + \zeta_{10}^{4} ) q^{39} \) \( + ( -\zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{44} \) \( + ( \zeta_{10}^{2} - 2 \zeta_{10}^{3} + \zeta_{10}^{4} ) q^{46} \) \( + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} + \zeta_{10}^{4} ) q^{48} \) \( + \zeta_{10}^{2} q^{49} \) \( + ( 1 + \zeta_{10}^{4} ) q^{50} \) \( + ( 1 + \zeta_{10}^{2} ) q^{51} \) \( + ( 1 - 2 \zeta_{10} + 2 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{52} \) \( + ( 1 - \zeta_{10} ) q^{53} \) \( + ( \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{54} \) \( + ( \zeta_{10}^{2} + \zeta_{10}^{4} ) q^{57} \) \( + ( 1 - \zeta_{10}^{3} + 2 \zeta_{10}^{4} ) q^{58} \) \( + ( 1 + \zeta_{10}^{2} ) q^{59} \) \( + \zeta_{10}^{2} q^{61} \) \( + ( 2 - 2 \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} + \zeta_{10}^{4} ) q^{64} \) \( + ( 1 - \zeta_{10} ) q^{66} \) \( + ( 1 - \zeta_{10} + \zeta_{10}^{2} - 2 \zeta_{10}^{3} + \zeta_{10}^{4} ) q^{68} \) \( + ( -\zeta_{10} + \zeta_{10}^{2} ) q^{69} \) \( + 2 \zeta_{10}^{2} q^{71} \) \( + ( 1 - \zeta_{10} - \zeta_{10}^{3} + \zeta_{10}^{4} ) q^{72} \) \( + ( -\zeta_{10}^{3} + \zeta_{10}^{4} ) q^{73} \) \( -\zeta_{10}^{3} q^{75} \) \( + ( 2 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} + \zeta_{10}^{4} ) q^{76} \) \( + ( 2 - \zeta_{10} + \zeta_{10}^{4} ) q^{78} \) \( -\zeta_{10} q^{81} \) \( + ( \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{87} \) \( + ( -\zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} + \zeta_{10}^{4} ) q^{88} \) \( + ( -\zeta_{10} + \zeta_{10}^{4} ) q^{89} \) \( + ( 1 + \zeta_{10}^{2} - 2 \zeta_{10}^{3} + 2 \zeta_{10}^{4} ) q^{92} \) \( + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} + 2 \zeta_{10}^{4} ) q^{96} \) \( -2 \zeta_{10}^{3} q^{97} \) \( + ( \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{98} \) \( + \zeta_{10}^{4} q^{99} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut +\mathstrut 3q^{2} \) \(\mathstrut -\mathstrut q^{3} \) \(\mathstrut +\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut 3q^{6} \) \(\mathstrut +\mathstrut q^{8} \) \(\mathstrut -\mathstrut q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut +\mathstrut 3q^{2} \) \(\mathstrut -\mathstrut q^{3} \) \(\mathstrut +\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut 3q^{6} \) \(\mathstrut +\mathstrut q^{8} \) \(\mathstrut -\mathstrut q^{9} \) \(\mathstrut -\mathstrut q^{11} \) \(\mathstrut +\mathstrut 2q^{12} \) \(\mathstrut +\mathstrut 3q^{13} \) \(\mathstrut -\mathstrut 2q^{17} \) \(\mathstrut -\mathstrut 2q^{18} \) \(\mathstrut +\mathstrut 3q^{19} \) \(\mathstrut -\mathstrut 2q^{22} \) \(\mathstrut -\mathstrut 2q^{23} \) \(\mathstrut +\mathstrut q^{24} \) \(\mathstrut -\mathstrut q^{25} \) \(\mathstrut +\mathstrut q^{26} \) \(\mathstrut -\mathstrut q^{27} \) \(\mathstrut -\mathstrut 2q^{29} \) \(\mathstrut +\mathstrut 4q^{32} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 4q^{34} \) \(\mathstrut +\mathstrut 2q^{36} \) \(\mathstrut +\mathstrut q^{38} \) \(\mathstrut +\mathstrut 3q^{39} \) \(\mathstrut -\mathstrut 3q^{44} \) \(\mathstrut -\mathstrut 4q^{46} \) \(\mathstrut -\mathstrut q^{49} \) \(\mathstrut +\mathstrut 3q^{50} \) \(\mathstrut +\mathstrut 3q^{51} \) \(\mathstrut -\mathstrut q^{52} \) \(\mathstrut +\mathstrut 3q^{53} \) \(\mathstrut -\mathstrut 2q^{54} \) \(\mathstrut -\mathstrut 2q^{57} \) \(\mathstrut +\mathstrut q^{58} \) \(\mathstrut +\mathstrut 3q^{59} \) \(\mathstrut -\mathstrut q^{61} \) \(\mathstrut +\mathstrut 3q^{64} \) \(\mathstrut +\mathstrut 3q^{66} \) \(\mathstrut -\mathstrut q^{68} \) \(\mathstrut -\mathstrut 2q^{69} \) \(\mathstrut -\mathstrut 2q^{71} \) \(\mathstrut +\mathstrut q^{72} \) \(\mathstrut -\mathstrut 2q^{73} \) \(\mathstrut -\mathstrut q^{75} \) \(\mathstrut +\mathstrut 4q^{76} \) \(\mathstrut +\mathstrut 6q^{78} \) \(\mathstrut -\mathstrut q^{81} \) \(\mathstrut -\mathstrut 2q^{87} \) \(\mathstrut -\mathstrut 4q^{88} \) \(\mathstrut -\mathstrut 2q^{89} \) \(\mathstrut -\mathstrut q^{92} \) \(\mathstrut -\mathstrut q^{96} \) \(\mathstrut -\mathstrut 2q^{97} \) \(\mathstrut -\mathstrut 2q^{98} \) \(\mathstrut -\mathstrut q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2013\mathbb{Z}\right)^\times\).

\(n\) \(1222\) \(1343\) \(1465\)
\(\chi(n)\) \(-1\) \(-1\) \(-\zeta_{10}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
548.1
0.809017 + 0.587785i
0.809017 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
0.190983 0.587785i −0.809017 + 0.587785i 0.500000 + 0.363271i 0 0.190983 + 0.587785i 0 0.809017 0.587785i 0.309017 0.951057i 0
731.1 0.190983 + 0.587785i −0.809017 0.587785i 0.500000 0.363271i 0 0.190983 0.587785i 0 0.809017 + 0.587785i 0.309017 + 0.951057i 0
1280.1 1.30902 + 0.951057i 0.309017 0.951057i 0.500000 + 1.53884i 0 1.30902 0.951057i 0 −0.309017 + 0.951057i −0.809017 0.587785i 0
1829.1 1.30902 0.951057i 0.309017 + 0.951057i 0.500000 1.53884i 0 1.30902 + 0.951057i 0 −0.309017 0.951057i −0.809017 + 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
183.d Odd 1 CM by \(\Q(\sqrt{-183}) \) yes
11.c Even 1 yes
2013.bm Odd 1 yes

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{2}^{4} \) \(\mathstrut -\mathstrut 3 T_{2}^{3} \) \(\mathstrut +\mathstrut 4 T_{2}^{2} \) \(\mathstrut -\mathstrut 2 T_{2} \) \(\mathstrut +\mathstrut 1 \) acting on \(S_{1}^{\mathrm{new}}(2013, [\chi])\).