Properties

Label 2011.1.b.a
Level $2011$
Weight $1$
Character orbit 2011.b
Self dual yes
Analytic conductor $1.004$
Analytic rank $0$
Dimension $3$
Projective image $D_{7}$
CM discriminant -2011
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2011,1,Mod(2010,2011)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2011, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2011.2010");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2011 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2011.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.00361974040\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{7}\)
Projective field: Galois closure of 7.1.8132727331.1
Artin image: $D_7$
Artin field: Galois closure of 7.1.8132727331.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{4} - \beta_1 q^{5} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{4} - \beta_1 q^{5} + q^{9} + ( - \beta_{2} + \beta_1 - 1) q^{13} + q^{16} - \beta_1 q^{20} + \beta_{2} q^{23} + (\beta_{2} + 1) q^{25} + \beta_{2} q^{31} + q^{36} + ( - \beta_{2} + \beta_1 - 1) q^{41} + ( - \beta_{2} + \beta_1 - 1) q^{43} - \beta_1 q^{45} + q^{49} + ( - \beta_{2} + \beta_1 - 1) q^{52} + q^{64} + (\beta_1 - 1) q^{65} + ( - \beta_{2} + \beta_1 - 1) q^{71} - \beta_1 q^{80} + q^{81} + \beta_{2} q^{83} + \beta_{2} q^{89} + \beta_{2} q^{92}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{4} - q^{5} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{4} - q^{5} + 3 q^{9} - q^{13} + 3 q^{16} - q^{20} - q^{23} + 2 q^{25} - q^{31} + 3 q^{36} - q^{41} - q^{43} - q^{45} + 3 q^{49} - q^{52} + 3 q^{64} - 2 q^{65} - q^{71} - q^{80} + 3 q^{81} - q^{83} - q^{89} - q^{92}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2011\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2010.1
1.80194
0.445042
−1.24698
0 0 1.00000 −1.80194 0 0 0 1.00000 0
2010.2 0 0 1.00000 −0.445042 0 0 0 1.00000 0
2010.3 0 0 1.00000 1.24698 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
2011.b odd 2 1 CM by \(\Q(\sqrt{-2011}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2011.1.b.a 3
2011.b odd 2 1 CM 2011.1.b.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2011.1.b.a 3 1.a even 1 1 trivial
2011.1.b.a 3 2011.b odd 2 1 CM

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(2011, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$29$ \( T^{3} \) Copy content Toggle raw display
$31$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$37$ \( T^{3} \) Copy content Toggle raw display
$41$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$43$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$47$ \( T^{3} \) Copy content Toggle raw display
$53$ \( T^{3} \) Copy content Toggle raw display
$59$ \( T^{3} \) Copy content Toggle raw display
$61$ \( T^{3} \) Copy content Toggle raw display
$67$ \( T^{3} \) Copy content Toggle raw display
$71$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$73$ \( T^{3} \) Copy content Toggle raw display
$79$ \( T^{3} \) Copy content Toggle raw display
$83$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$89$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$97$ \( T^{3} \) Copy content Toggle raw display
show more
show less