Properties

Label 2009.2.a.h
Level $2009$
Weight $2$
Character orbit 2009.a
Self dual yes
Analytic conductor $16.042$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2009 = 7^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2009.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(16.0419457661\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
Defining polynomial: \(x^{3} - x^{2} - 4 x + 3\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{2} q^{2} + ( -1 - \beta_{2} ) q^{3} + ( 1 + \beta_{1} - \beta_{2} ) q^{4} + ( 3 + \beta_{1} ) q^{6} + ( 3 - \beta_{2} ) q^{8} + ( 1 + \beta_{1} + \beta_{2} ) q^{9} +O(q^{10})\) \( q -\beta_{2} q^{2} + ( -1 - \beta_{2} ) q^{3} + ( 1 + \beta_{1} - \beta_{2} ) q^{4} + ( 3 + \beta_{1} ) q^{6} + ( 3 - \beta_{2} ) q^{8} + ( 1 + \beta_{1} + \beta_{2} ) q^{9} + ( -2 - 2 \beta_{1} ) q^{11} + ( 2 - \beta_{1} - 2 \beta_{2} ) q^{12} + ( 2 - \beta_{1} - 2 \beta_{2} ) q^{13} + ( 1 - \beta_{1} - 2 \beta_{2} ) q^{16} + ( 2 + \beta_{1} - \beta_{2} ) q^{17} + ( -3 - 2 \beta_{1} - \beta_{2} ) q^{18} + ( 4 + \beta_{1} + \beta_{2} ) q^{19} + ( 2 \beta_{1} + 4 \beta_{2} ) q^{22} + ( -1 + 2 \beta_{1} - \beta_{2} ) q^{23} + ( \beta_{1} - 3 \beta_{2} ) q^{24} -5 q^{25} + ( 6 + 3 \beta_{1} - 3 \beta_{2} ) q^{26} + ( -1 - 3 \beta_{1} + \beta_{2} ) q^{27} -2 \beta_{2} q^{29} + ( -2 + 4 \beta_{1} ) q^{31} + 3 \beta_{1} q^{32} + ( 2 + 4 \beta_{1} + 4 \beta_{2} ) q^{33} + ( 3 - 4 \beta_{2} ) q^{34} + ( 1 + \beta_{1} + 2 \beta_{2} ) q^{36} + ( -4 - \beta_{1} - 2 \beta_{2} ) q^{37} + ( -3 - 2 \beta_{1} - 4 \beta_{2} ) q^{38} + ( 4 + 4 \beta_{1} - \beta_{2} ) q^{39} - q^{41} + ( -\beta_{1} + \beta_{2} ) q^{43} + ( -8 - 2 \beta_{1} + 2 \beta_{2} ) q^{44} + ( 3 - \beta_{1} - 2 \beta_{2} ) q^{46} + ( -2 - 3 \beta_{1} ) q^{47} + ( 5 + 4 \beta_{1} ) q^{48} + 5 \beta_{2} q^{50} + ( 1 - \beta_{1} - 3 \beta_{2} ) q^{51} + ( 5 + 2 \beta_{1} - 8 \beta_{2} ) q^{52} + ( -2 - 2 \beta_{1} ) q^{53} + ( -3 + 2 \beta_{1} + 5 \beta_{2} ) q^{54} + ( -7 - 3 \beta_{1} - 5 \beta_{2} ) q^{57} + ( 6 + 2 \beta_{1} - 2 \beta_{2} ) q^{58} + ( -4 \beta_{1} - 2 \beta_{2} ) q^{59} + ( -6 \beta_{1} + 4 \beta_{2} ) q^{61} + ( -4 \beta_{1} - 2 \beta_{2} ) q^{62} + ( -2 - \beta_{1} + \beta_{2} ) q^{64} + ( -12 - 8 \beta_{1} - 2 \beta_{2} ) q^{66} + ( 4 - 4 \beta_{1} - 2 \beta_{2} ) q^{67} + ( 8 + 2 \beta_{1} - 5 \beta_{2} ) q^{68} + ( 4 - 3 \beta_{1} - \beta_{2} ) q^{69} + ( -4 + 2 \beta_{1} + 2 \beta_{2} ) q^{71} + ( \beta_{1} + 2 \beta_{2} ) q^{72} + ( -4 + 2 \beta_{1} + 4 \beta_{2} ) q^{73} + ( 6 + 3 \beta_{1} + 3 \beta_{2} ) q^{74} + ( 5 + 5 \beta_{2} ) q^{75} + ( 4 + 4 \beta_{1} - \beta_{2} ) q^{76} + ( 3 - 3 \beta_{1} - 9 \beta_{2} ) q^{78} -6 q^{79} + ( -5 + 2 \beta_{1} + \beta_{2} ) q^{81} + \beta_{2} q^{82} + ( 4 + 2 \beta_{1} - 2 \beta_{2} ) q^{83} + ( -3 + 2 \beta_{2} ) q^{86} + ( 6 + 2 \beta_{1} ) q^{87} + ( -6 - 4 \beta_{1} + 4 \beta_{2} ) q^{88} + ( 2 - \beta_{1} - 2 \beta_{2} ) q^{89} + ( 8 - \beta_{1} - 2 \beta_{2} ) q^{92} + ( 2 - 8 \beta_{1} - 2 \beta_{2} ) q^{93} + ( 3 \beta_{1} + 5 \beta_{2} ) q^{94} + ( -6 \beta_{1} - 3 \beta_{2} ) q^{96} + ( 7 - 2 \beta_{1} - \beta_{2} ) q^{97} + ( -8 - 6 \beta_{1} - 6 \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 3q^{3} + 4q^{4} + 10q^{6} + 9q^{8} + 4q^{9} + O(q^{10}) \) \( 3q - 3q^{3} + 4q^{4} + 10q^{6} + 9q^{8} + 4q^{9} - 8q^{11} + 5q^{12} + 5q^{13} + 2q^{16} + 7q^{17} - 11q^{18} + 13q^{19} + 2q^{22} - q^{23} + q^{24} - 15q^{25} + 21q^{26} - 6q^{27} - 2q^{31} + 3q^{32} + 10q^{33} + 9q^{34} + 4q^{36} - 13q^{37} - 11q^{38} + 16q^{39} - 3q^{41} - q^{43} - 26q^{44} + 8q^{46} - 9q^{47} + 19q^{48} + 2q^{51} + 17q^{52} - 8q^{53} - 7q^{54} - 24q^{57} + 20q^{58} - 4q^{59} - 6q^{61} - 4q^{62} - 7q^{64} - 44q^{66} + 8q^{67} + 26q^{68} + 9q^{69} - 10q^{71} + q^{72} - 10q^{73} + 21q^{74} + 15q^{75} + 16q^{76} + 6q^{78} - 18q^{79} - 13q^{81} + 14q^{83} - 9q^{86} + 20q^{87} - 22q^{88} + 5q^{89} + 23q^{92} - 2q^{93} + 3q^{94} - 6q^{96} + 19q^{97} - 30q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - x^{2} - 4 x + 3\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 3\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.19869
−1.91223
0.713538
−1.83424 −2.83424 1.36445 0 5.19869 0 1.16576 5.03293 0
1.2 −0.656620 −1.65662 −1.56885 0 1.08777 0 2.34338 −0.255609 0
1.3 2.49086 1.49086 4.20440 0 3.71354 0 5.49086 −0.777326 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \(-1\)
\(41\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2009.2.a.h 3
7.b odd 2 1 2009.2.a.i yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2009.2.a.h 3 1.a even 1 1 trivial
2009.2.a.i yes 3 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2009))\):

\( T_{2}^{3} - 5 T_{2} - 3 \)
\( T_{3}^{3} + 3 T_{3}^{2} - 2 T_{3} - 7 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -3 - 5 T + T^{3} \)
$3$ \( -7 - 2 T + 3 T^{2} + T^{3} \)
$5$ \( T^{3} \)
$7$ \( T^{3} \)
$11$ \( -40 + 4 T + 8 T^{2} + T^{3} \)
$13$ \( 63 - 18 T - 5 T^{2} + T^{3} \)
$17$ \( 7 + 8 T - 7 T^{2} + T^{3} \)
$19$ \( -49 + 46 T - 13 T^{2} + T^{3} \)
$23$ \( 25 - 20 T + T^{2} + T^{3} \)
$29$ \( -24 - 20 T + T^{3} \)
$31$ \( 56 - 68 T + 2 T^{2} + T^{3} \)
$37$ \( -9 + 30 T + 13 T^{2} + T^{3} \)
$41$ \( ( 1 + T )^{3} \)
$43$ \( -3 - 8 T + T^{2} + T^{3} \)
$47$ \( -133 - 12 T + 9 T^{2} + T^{3} \)
$53$ \( -40 + 4 T + 8 T^{2} + T^{3} \)
$59$ \( 168 - 92 T + 4 T^{2} + T^{3} \)
$61$ \( -1176 - 200 T + 6 T^{2} + T^{3} \)
$67$ \( 536 - 76 T - 8 T^{2} + T^{3} \)
$71$ \( -200 - 8 T + 10 T^{2} + T^{3} \)
$73$ \( -504 - 72 T + 10 T^{2} + T^{3} \)
$79$ \( ( 6 + T )^{3} \)
$83$ \( 56 + 32 T - 14 T^{2} + T^{3} \)
$89$ \( 63 - 18 T - 5 T^{2} + T^{3} \)
$97$ \( -63 + 96 T - 19 T^{2} + T^{3} \)
show more
show less