Properties

Label 2007.1.d.c.1783.3
Level $2007$
Weight $1$
Character 2007.1783
Self dual yes
Analytic conductor $1.002$
Analytic rank $0$
Dimension $6$
Projective image $D_{14}$
CM discriminant -223
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2007,1,Mod(1783,2007)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2007, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2007.1783");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2007 = 3^{2} \cdot 223 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2007.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.00162348035\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{28})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 7x^{4} + 14x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{14}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{14} - \cdots)\)

Embedding invariants

Embedding label 1783.3
Root \(0.867767\) of defining polynomial
Character \(\chi\) \(=\) 2007.1783

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.867767 q^{2} -0.246980 q^{4} +0.445042 q^{7} +1.08209 q^{8} +O(q^{10})\) \(q-0.867767 q^{2} -0.246980 q^{4} +0.445042 q^{7} +1.08209 q^{8} -0.386193 q^{14} -0.692021 q^{16} -1.56366 q^{17} +1.24698 q^{19} +1.00000 q^{25} -0.109916 q^{28} +0.867767 q^{29} +1.80194 q^{31} -0.481575 q^{32} +1.35690 q^{34} -0.445042 q^{37} -1.08209 q^{38} -1.94986 q^{41} -1.80194 q^{43} +1.56366 q^{47} -0.801938 q^{49} -0.867767 q^{50} +1.56366 q^{53} +0.481575 q^{56} -0.753020 q^{58} -1.56366 q^{62} +1.10992 q^{64} +0.386193 q^{68} +1.80194 q^{73} +0.386193 q^{74} -0.307979 q^{76} +1.69202 q^{82} +0.867767 q^{83} +1.56366 q^{86} +1.94986 q^{89} -1.35690 q^{94} +0.695895 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 8 q^{4} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 8 q^{4} + 2 q^{7} + 6 q^{16} - 2 q^{19} + 6 q^{25} - 2 q^{28} + 2 q^{31} - 2 q^{37} - 2 q^{43} + 4 q^{49} - 14 q^{58} + 8 q^{64} + 2 q^{73} - 12 q^{76}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2007\mathbb{Z}\right)^\times\).

\(n\) \(226\) \(893\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.867767 −0.867767 −0.433884 0.900969i \(-0.642857\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(3\) 0 0
\(4\) −0.246980 −0.246980
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(8\) 1.08209 1.08209
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −0.386193 −0.386193
\(15\) 0 0
\(16\) −0.692021 −0.692021
\(17\) −1.56366 −1.56366 −0.781831 0.623490i \(-0.785714\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(18\) 0 0
\(19\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) −0.109916 −0.109916
\(29\) 0.867767 0.867767 0.433884 0.900969i \(-0.357143\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(30\) 0 0
\(31\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(32\) −0.481575 −0.481575
\(33\) 0 0
\(34\) 1.35690 1.35690
\(35\) 0 0
\(36\) 0 0
\(37\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(38\) −1.08209 −1.08209
\(39\) 0 0
\(40\) 0 0
\(41\) −1.94986 −1.94986 −0.974928 0.222521i \(-0.928571\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(42\) 0 0
\(43\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.56366 1.56366 0.781831 0.623490i \(-0.214286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(48\) 0 0
\(49\) −0.801938 −0.801938
\(50\) −0.867767 −0.867767
\(51\) 0 0
\(52\) 0 0
\(53\) 1.56366 1.56366 0.781831 0.623490i \(-0.214286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.481575 0.481575
\(57\) 0 0
\(58\) −0.753020 −0.753020
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −1.56366 −1.56366
\(63\) 0 0
\(64\) 1.10992 1.10992
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0.386193 0.386193
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(74\) 0.386193 0.386193
\(75\) 0 0
\(76\) −0.307979 −0.307979
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1.69202 1.69202
\(83\) 0.867767 0.867767 0.433884 0.900969i \(-0.357143\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.56366 1.56366
\(87\) 0 0
\(88\) 0 0
\(89\) 1.94986 1.94986 0.974928 0.222521i \(-0.0714286\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −1.35690 −1.35690
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0.695895 0.695895
\(99\) 0 0
\(100\) −0.246980 −0.246980
\(101\) 1.94986 1.94986 0.974928 0.222521i \(-0.0714286\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1.35690 −1.35690
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.307979 −0.307979
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.214321 −0.214321
\(117\) 0 0
\(118\) 0 0
\(119\) −0.695895 −0.695895
\(120\) 0 0
\(121\) 1.00000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) −0.445042 −0.445042
\(125\) 0 0
\(126\) 0 0
\(127\) −1.24698 −1.24698 −0.623490 0.781831i \(-0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(128\) −0.481575 −0.481575
\(129\) 0 0
\(130\) 0 0
\(131\) −1.94986 −1.94986 −0.974928 0.222521i \(-0.928571\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(132\) 0 0
\(133\) 0.554958 0.554958
\(134\) 0 0
\(135\) 0 0
\(136\) −1.69202 −1.69202
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) −1.56366 −1.56366
\(147\) 0 0
\(148\) 0.109916 0.109916
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 1.34934 1.34934
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0.481575 0.481575
\(165\) 0 0
\(166\) −0.753020 −0.753020
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0.445042 0.445042
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0.445042 0.445042
\(176\) 0 0
\(177\) 0 0
\(178\) −1.69202 −1.69202
\(179\) 1.94986 1.94986 0.974928 0.222521i \(-0.0714286\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(180\) 0 0
\(181\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −0.386193 −0.386193
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.198062 0.198062
\(197\) −1.94986 −1.94986 −0.974928 0.222521i \(-0.928571\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(198\) 0 0
\(199\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(200\) 1.08209 1.08209
\(201\) 0 0
\(202\) −1.69202 −1.69202
\(203\) 0.386193 0.386193
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.24698 −1.24698 −0.623490 0.781831i \(-0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(212\) −0.386193 −0.386193
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.801938 0.801938
\(218\) −1.08209 −1.08209
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.00000 −1.00000
\(224\) −0.214321 −0.214321
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.939001 0.939001
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0.603875 0.603875
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −1.24698 −1.24698 −0.623490 0.781831i \(-0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(242\) −0.867767 −0.867767
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 1.94986 1.94986
\(249\) 0 0
\(250\) 0 0
\(251\) −0.867767 −0.867767 −0.433884 0.900969i \(-0.642857\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 1.08209 1.08209
\(255\) 0 0
\(256\) −0.692021 −0.692021
\(257\) −0.867767 −0.867767 −0.433884 0.900969i \(-0.642857\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(258\) 0 0
\(259\) −0.198062 −0.198062
\(260\) 0 0
\(261\) 0 0
\(262\) 1.69202 1.69202
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.481575 −0.481575
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 1.08209 1.08209
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0.386193 0.386193
\(279\) 0 0
\(280\) 0 0
\(281\) 0.867767 0.867767 0.433884 0.900969i \(-0.357143\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(282\) 0 0
\(283\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.867767 −0.867767
\(288\) 0 0
\(289\) 1.44504 1.44504
\(290\) 0 0
\(291\) 0 0
\(292\) −0.445042 −0.445042
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −0.481575 −0.481575
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −0.801938 −0.801938
\(302\) 0 0
\(303\) 0 0
\(304\) −0.862937 −0.862937
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.867767 −0.867767 −0.433884 0.900969i \(-0.642857\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.94986 −1.94986
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) −2.10992 −2.10992
\(329\) 0.695895 0.695895
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) −0.214321 −0.214321
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −0.867767 −0.867767
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −0.801938 −0.801938
\(344\) −1.94986 −1.94986
\(345\) 0 0
\(346\) 0 0
\(347\) 1.56366 1.56366 0.781831 0.623490i \(-0.214286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(348\) 0 0
\(349\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(350\) −0.386193 −0.386193
\(351\) 0 0
\(352\) 0 0
\(353\) 0.867767 0.867767 0.433884 0.900969i \(-0.357143\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.481575 −0.481575
\(357\) 0 0
\(358\) −1.69202 −1.69202
\(359\) −1.56366 −1.56366 −0.781831 0.623490i \(-0.785714\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(360\) 0 0
\(361\) 0.554958 0.554958
\(362\) 1.56366 1.56366
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.695895 0.695895
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.69202 1.69202
\(377\) 0 0
\(378\) 0 0
\(379\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.94986 −1.94986 −0.974928 0.222521i \(-0.928571\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.867767 −0.867767
\(393\) 0 0
\(394\) 1.69202 1.69202
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 1.56366 1.56366
\(399\) 0 0
\(400\) −0.692021 −0.692021
\(401\) 1.56366 1.56366 0.781831 0.623490i \(-0.214286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.481575 −0.481575
\(405\) 0 0
\(406\) −0.335126 −0.335126
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 1.08209 1.08209
\(423\) 0 0
\(424\) 1.69202 1.69202
\(425\) −1.56366 −1.56366
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(434\) −0.695895 −0.695895
\(435\) 0 0
\(436\) −0.307979 −0.307979
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.94986 −1.94986 −0.974928 0.222521i \(-0.928571\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0.867767 0.867767
\(447\) 0 0
\(448\) 0.493959 0.493959
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −0.867767 −0.867767 −0.433884 0.900969i \(-0.642857\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(462\) 0 0
\(463\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(464\) −0.600514 −0.600514
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1.24698 1.24698
\(476\) 0.171872 0.171872
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.08209 1.08209
\(483\) 0 0
\(484\) −0.246980 −0.246980
\(485\) 0 0
\(486\) 0 0
\(487\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) −1.35690 −1.35690
\(494\) 0 0
\(495\) 0 0
\(496\) −1.24698 −1.24698
\(497\) 0 0
\(498\) 0 0
\(499\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.753020 0.753020
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0.307979 0.307979
\(509\) −1.56366 −1.56366 −0.781831 0.623490i \(-0.785714\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(510\) 0 0
\(511\) 0.801938 0.801938
\(512\) 1.08209 1.08209
\(513\) 0 0
\(514\) 0.753020 0.753020
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0.171872 0.171872
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0.481575 0.481575
\(525\) 0 0
\(526\) 0 0
\(527\) −2.81762 −2.81762
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) −0.137063 −0.137063
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.753020 0.753020
\(545\) 0 0
\(546\) 0 0
\(547\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.08209 1.08209
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.109916 0.109916
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −0.753020 −0.753020
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.386193 0.386193
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0.753020 0.753020
\(575\) 0 0
\(576\) 0 0
\(577\) −1.24698 −1.24698 −0.623490 0.781831i \(-0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(578\) −1.25396 −1.25396
\(579\) 0 0
\(580\) 0 0
\(581\) 0.386193 0.386193
\(582\) 0 0
\(583\) 0 0
\(584\) 1.94986 1.94986
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 2.24698 2.24698
\(590\) 0 0
\(591\) 0 0
\(592\) 0.307979 0.307979
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.94986 1.94986 0.974928 0.222521i \(-0.0714286\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0.695895 0.695895
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) −0.600514 −0.600514
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.94986 1.94986 0.974928 0.222521i \(-0.0714286\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.867767 0.867767
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.695895 0.695895
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0.753020 0.753020
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) −1.24698 −1.24698 −0.623490 0.781831i \(-0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.69202 1.69202
\(647\) −1.94986 −1.94986 −0.974928 0.222521i \(-0.928571\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.34934 1.34934
\(657\) 0 0
\(658\) −0.603875 −0.603875
\(659\) 1.94986 1.94986 0.974928 0.222521i \(-0.0714286\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0.939001 0.939001
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −0.246980 −0.246980
\(677\) −1.56366 −1.56366 −0.781831 0.623490i \(-0.785714\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.56366 −1.56366 −0.781831 0.623490i \(-0.785714\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.695895 0.695895
\(687\) 0 0
\(688\) 1.24698 1.24698
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.35690 −1.35690
\(695\) 0 0
\(696\) 0 0
\(697\) 3.04892 3.04892
\(698\) −1.08209 −1.08209
\(699\) 0 0
\(700\) −0.109916 −0.109916
\(701\) 1.56366 1.56366 0.781831 0.623490i \(-0.214286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(702\) 0 0
\(703\) −0.554958 −0.554958
\(704\) 0 0
\(705\) 0 0
\(706\) −0.753020 −0.753020
\(707\) 0.867767 0.867767
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 2.10992 2.10992
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −0.481575 −0.481575
\(717\) 0 0
\(718\) 1.35690 1.35690
\(719\) 1.56366 1.56366 0.781831 0.623490i \(-0.214286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.481575 −0.481575
\(723\) 0 0
\(724\) 0.445042 0.445042
\(725\) 0.867767 0.867767
\(726\) 0 0
\(727\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.81762 2.81762
\(732\) 0 0
\(733\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(734\) 1.73553 1.73553
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.603875 −0.603875
\(743\) 1.56366 1.56366 0.781831 0.623490i \(-0.214286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(752\) −1.08209 −1.08209
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −1.56366 −1.56366
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0.554958 0.554958
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 1.80194 1.80194
\(776\) 0 0
\(777\) 0 0
\(778\) 1.69202 1.69202
\(779\) −2.43143 −2.43143
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.554958 0.554958
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0.481575 0.481575
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0.445042 0.445042
\(797\) −1.94986 −1.94986 −0.974928 0.222521i \(-0.928571\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(798\) 0 0
\(799\) −2.44504 −2.44504
\(800\) −0.481575 −0.481575
\(801\) 0 0
\(802\) −1.35690 −1.35690
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 2.10992 2.10992
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) −0.0953818 −0.0953818
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −2.24698 −2.24698
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.56366 −1.56366 −0.781831 0.623490i \(-0.785714\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.25396 1.25396
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −0.246980 −0.246980
\(842\) 0 0
\(843\) 0 0
\(844\) 0.307979 0.307979
\(845\) 0 0
\(846\) 0 0
\(847\) 0.445042 0.445042
\(848\) −1.08209 −1.08209
\(849\) 0 0
\(850\) 1.35690 1.35690
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.94986 −1.94986 −0.974928 0.222521i \(-0.928571\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −0.386193 −0.386193
\(867\) 0 0
\(868\) −0.198062 −0.198062
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 1.34934 1.34934
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −0.867767 −0.867767 −0.433884 0.900969i \(-0.642857\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.69202 1.69202
\(887\) 0.867767 0.867767 0.433884 0.900969i \(-0.357143\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(888\) 0 0
\(889\) −0.554958 −0.554958
\(890\) 0 0
\(891\) 0 0
\(892\) 0.246980 0.246980
\(893\) 1.94986 1.94986
\(894\) 0 0
\(895\) 0 0
\(896\) −0.214321 −0.214321
\(897\) 0 0
\(898\) 0 0
\(899\) 1.56366 1.56366
\(900\) 0 0
\(901\) −2.44504 −2.44504
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.94986 −1.94986 −0.974928 0.222521i \(-0.928571\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.867767 −0.867767
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.753020 0.753020
\(923\) 0 0
\(924\) 0 0
\(925\) −0.445042 −0.445042
\(926\) 1.56366 1.56366
\(927\) 0 0
\(928\) −0.417895 −0.417895
\(929\) 1.56366 1.56366 0.781831 0.623490i \(-0.214286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(930\) 0 0
\(931\) −1.00000 −1.00000
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.56366 1.56366 0.781831 0.623490i \(-0.214286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −1.08209 −1.08209
\(951\) 0 0
\(952\) −0.753020 −0.753020
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 2.24698 2.24698
\(962\) 0 0
\(963\) 0 0
\(964\) 0.307979 0.307979
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 1.08209 1.08209
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) −0.198062 −0.198062
\(974\) −1.08209 −1.08209
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 1.17747 1.17747
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) −0.867767 −0.867767
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(998\) 0.386193 0.386193
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2007.1.d.c.1783.3 6
3.2 odd 2 inner 2007.1.d.c.1783.4 yes 6
223.222 odd 2 CM 2007.1.d.c.1783.3 6
669.668 even 2 inner 2007.1.d.c.1783.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2007.1.d.c.1783.3 6 1.1 even 1 trivial
2007.1.d.c.1783.3 6 223.222 odd 2 CM
2007.1.d.c.1783.4 yes 6 3.2 odd 2 inner
2007.1.d.c.1783.4 yes 6 669.668 even 2 inner