Properties

Label 2000.1.x
Level 2000
Weight 1
Character orbit x
Rep. character \(\chi_{2000}(399,\cdot)\)
Character field \(\Q(\zeta_{10})\)
Dimension 4
Newforms 1
Sturm bound 300
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2000 = 2^{4} \cdot 5^{3} \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 2000.x (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 100 \)
Character field: \(\Q(\zeta_{10})\)
Newforms: \( 1 \)
Sturm bound: \(300\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2000, [\chi])\).

Total New Old
Modular forms 156 4 152
Cusp forms 36 4 32
Eisenstein series 120 0 120

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\(4q \) \(\mathstrut +\mathstrut q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut +\mathstrut q^{9} \) \(\mathstrut -\mathstrut 2q^{29} \) \(\mathstrut +\mathstrut 5q^{37} \) \(\mathstrut +\mathstrut 2q^{41} \) \(\mathstrut -\mathstrut 4q^{49} \) \(\mathstrut +\mathstrut 5q^{53} \) \(\mathstrut +\mathstrut 2q^{61} \) \(\mathstrut -\mathstrut q^{81} \) \(\mathstrut +\mathstrut 3q^{89} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(2000, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
2000.1.x.a \(4\) \(0.998\) \(\Q(\zeta_{10})\) \(D_{10}\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{10}^{2}q^{9}+(\zeta_{10}-\zeta_{10}^{3})q^{13}+(-\zeta_{10}+\cdots)q^{17}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2000, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2000, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(500, [\chi])\)\(^{\oplus 3}\)