Properties

Label 2.70.a.b
Level $2$
Weight $70$
Character orbit 2.a
Self dual yes
Analytic conductor $60.303$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2,70,Mod(1,2)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2, base_ring=CyclotomicField(1)) chi = DirichletCharacter(H, H._module([])) N = Newforms(chi, 70, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2.1"); S:= CuspForms(chi, 70); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2 \)
Weight: \( k \) \(=\) \( 70 \)
Character orbit: \([\chi]\) \(=\) 2.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,51539607552] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.3029906584\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 90823593763357992496952650x - 190864638684342453433100893828514036648 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{24}\cdot 3^{5}\cdot 5^{4}\cdot 7\cdot 23 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 17179869184 q^{2} + (\beta_1 - 78\!\cdots\!84) q^{3} + 29\!\cdots\!56 q^{4} + (\beta_{2} + 5321852 \beta_1 - 19\!\cdots\!50) q^{5} + (17179869184 \beta_1 - 13\!\cdots\!56) q^{6} + (110884 \beta_{2} + \cdots + 30\!\cdots\!72) q^{7}+ \cdots + ( - 17\!\cdots\!24 \beta_{2} + \cdots - 12\!\cdots\!44) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 51539607552 q^{2} - 23\!\cdots\!52 q^{3} + 88\!\cdots\!68 q^{4} - 58\!\cdots\!50 q^{5} - 40\!\cdots\!68 q^{6} + 92\!\cdots\!16 q^{7} + 15\!\cdots\!12 q^{8} + 36\!\cdots\!19 q^{9} - 10\!\cdots\!00 q^{10}+ \cdots - 38\!\cdots\!32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 90823593763357992496952650x - 190864638684342453433100893828514036648 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3840\nu - 1280 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 819200\nu^{2} - 2582307687984721920\nu - 49601792007294384199773079285760 ) / 21186639 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1280 ) / 3840 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 21186639\beta_{2} + 672475960412688\beta _1 + 49601792007295244969002407526400 ) / 819200 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.22262e12
−2.22233e12
1.04450e13
1.71799e10 −3.94412e16 2.95148e20 9.11410e23 −6.77595e26 2.34869e29 5.07060e30 7.21225e32 1.56579e34
1.2 1.71799e10 −1.64001e16 2.95148e20 −2.12060e24 −2.81752e26 −1.60552e29 5.07060e30 −5.65421e32 −3.64316e34
1.3 1.71799e10 3.22422e16 2.95148e20 6.21700e23 5.53917e26 1.85055e28 5.07060e30 2.05176e32 1.06807e34
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2.70.a.b 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.70.a.b 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + \cdots - 20\!\cdots\!96 \) acting on \(S_{70}^{\mathrm{new}}(\Gamma_0(2))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 17179869184)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + \cdots - 20\!\cdots\!96 \) Copy content Toggle raw display
$5$ \( T^{3} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots + 69\!\cdots\!52 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 98\!\cdots\!48 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots + 18\!\cdots\!24 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 11\!\cdots\!88 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 21\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 31\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 79\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 14\!\cdots\!68 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 34\!\cdots\!08 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 19\!\cdots\!08 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 15\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 37\!\cdots\!12 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 11\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 12\!\cdots\!72 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 19\!\cdots\!28 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 62\!\cdots\!08 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 27\!\cdots\!36 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 26\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 20\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 72\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 76\!\cdots\!28 \) Copy content Toggle raw display
show more
show less