Defining parameters
Level: | \( N \) | \(=\) | \( 19 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 19.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(10\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(19))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 10 | 8 | 2 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(19\) | Dim. |
---|---|
\(+\) | \(3\) |
\(-\) | \(5\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(19))\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | 19 | |||||||
19.6.a.a | \(1\) | \(3.047\) | \(\Q\) | None | \(-6\) | \(4\) | \(54\) | \(248\) | \(-\) | \(q-6q^{2}+4q^{3}+4q^{4}+54q^{5}-24q^{6}+\cdots\) | |
19.6.a.b | \(1\) | \(3.047\) | \(\Q\) | None | \(-2\) | \(-1\) | \(-24\) | \(-167\) | \(+\) | \(q-2q^{2}-q^{3}-28q^{4}-24q^{5}+2q^{6}+\cdots\) | |
19.6.a.c | \(2\) | \(3.047\) | \(\Q(\sqrt{177}) \) | None | \(-7\) | \(-7\) | \(-133\) | \(72\) | \(+\) | \(q+(-3-\beta )q^{2}+(-5+3\beta )q^{3}+(21+\cdots)q^{4}+\cdots\) | |
19.6.a.d | \(4\) | \(3.047\) | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(9\) | \(6\) | \(90\) | \(-190\) | \(-\) | \(q+(3-\beta _{1}+\beta _{2})q^{2}+(3+3\beta _{2})q^{3}+(23+\cdots)q^{4}+\cdots\) |