Properties

Label 1890.2
Level 1890
Weight 2
Dimension 21592
Nonzero newspaces 48
Sturm bound 373248
Trace bound 16

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1890 = 2 \cdot 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 48 \)
Sturm bound: \(373248\)
Trace bound: \(16\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1890))\).

Total New Old
Modular forms 96192 21592 74600
Cusp forms 90433 21592 68841
Eisenstein series 5759 0 5759

Trace form

\(21592q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 4q^{4} \) \(\mathstrut -\mathstrut 12q^{5} \) \(\mathstrut -\mathstrut 24q^{6} \) \(\mathstrut -\mathstrut 8q^{7} \) \(\mathstrut -\mathstrut 20q^{8} \) \(\mathstrut -\mathstrut 48q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(21592q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 4q^{4} \) \(\mathstrut -\mathstrut 12q^{5} \) \(\mathstrut -\mathstrut 24q^{6} \) \(\mathstrut -\mathstrut 8q^{7} \) \(\mathstrut -\mathstrut 20q^{8} \) \(\mathstrut -\mathstrut 48q^{9} \) \(\mathstrut -\mathstrut 28q^{10} \) \(\mathstrut -\mathstrut 104q^{11} \) \(\mathstrut -\mathstrut 12q^{12} \) \(\mathstrut -\mathstrut 80q^{13} \) \(\mathstrut -\mathstrut 48q^{14} \) \(\mathstrut -\mathstrut 36q^{15} \) \(\mathstrut -\mathstrut 4q^{16} \) \(\mathstrut -\mathstrut 144q^{17} \) \(\mathstrut +\mathstrut 24q^{18} \) \(\mathstrut -\mathstrut 80q^{19} \) \(\mathstrut -\mathstrut 4q^{20} \) \(\mathstrut +\mathstrut 48q^{21} \) \(\mathstrut -\mathstrut 64q^{22} \) \(\mathstrut -\mathstrut 48q^{23} \) \(\mathstrut -\mathstrut 60q^{25} \) \(\mathstrut +\mathstrut 80q^{26} \) \(\mathstrut +\mathstrut 108q^{27} \) \(\mathstrut -\mathstrut 4q^{28} \) \(\mathstrut +\mathstrut 48q^{29} \) \(\mathstrut +\mathstrut 72q^{30} \) \(\mathstrut -\mathstrut 80q^{31} \) \(\mathstrut +\mathstrut 4q^{32} \) \(\mathstrut +\mathstrut 156q^{33} \) \(\mathstrut +\mathstrut 40q^{34} \) \(\mathstrut +\mathstrut 66q^{35} \) \(\mathstrut +\mathstrut 72q^{36} \) \(\mathstrut +\mathstrut 188q^{38} \) \(\mathstrut +\mathstrut 72q^{39} \) \(\mathstrut +\mathstrut 52q^{40} \) \(\mathstrut +\mathstrut 184q^{41} \) \(\mathstrut +\mathstrut 48q^{42} \) \(\mathstrut +\mathstrut 96q^{43} \) \(\mathstrut +\mathstrut 80q^{44} \) \(\mathstrut +\mathstrut 240q^{45} \) \(\mathstrut +\mathstrut 96q^{46} \) \(\mathstrut +\mathstrut 288q^{47} \) \(\mathstrut +\mathstrut 24q^{48} \) \(\mathstrut +\mathstrut 92q^{49} \) \(\mathstrut +\mathstrut 348q^{50} \) \(\mathstrut +\mathstrut 408q^{51} \) \(\mathstrut +\mathstrut 112q^{52} \) \(\mathstrut +\mathstrut 744q^{53} \) \(\mathstrut +\mathstrut 216q^{54} \) \(\mathstrut +\mathstrut 208q^{55} \) \(\mathstrut +\mathstrut 32q^{56} \) \(\mathstrut +\mathstrut 396q^{57} \) \(\mathstrut +\mathstrut 256q^{58} \) \(\mathstrut +\mathstrut 652q^{59} \) \(\mathstrut +\mathstrut 72q^{60} \) \(\mathstrut +\mathstrut 128q^{61} \) \(\mathstrut +\mathstrut 368q^{62} \) \(\mathstrut +\mathstrut 492q^{63} \) \(\mathstrut -\mathstrut 20q^{64} \) \(\mathstrut +\mathstrut 320q^{65} \) \(\mathstrut +\mathstrut 288q^{66} \) \(\mathstrut +\mathstrut 328q^{67} \) \(\mathstrut +\mathstrut 252q^{68} \) \(\mathstrut +\mathstrut 432q^{69} \) \(\mathstrut +\mathstrut 142q^{70} \) \(\mathstrut +\mathstrut 432q^{71} \) \(\mathstrut +\mathstrut 96q^{72} \) \(\mathstrut +\mathstrut 320q^{73} \) \(\mathstrut +\mathstrut 384q^{74} \) \(\mathstrut +\mathstrut 228q^{75} \) \(\mathstrut +\mathstrut 116q^{76} \) \(\mathstrut +\mathstrut 480q^{77} \) \(\mathstrut +\mathstrut 288q^{78} \) \(\mathstrut +\mathstrut 512q^{79} \) \(\mathstrut +\mathstrut 24q^{80} \) \(\mathstrut +\mathstrut 192q^{81} \) \(\mathstrut +\mathstrut 56q^{82} \) \(\mathstrut +\mathstrut 264q^{83} \) \(\mathstrut +\mathstrut 216q^{85} \) \(\mathstrut +\mathstrut 16q^{86} \) \(\mathstrut +\mathstrut 384q^{87} \) \(\mathstrut +\mathstrut 116q^{88} \) \(\mathstrut +\mathstrut 356q^{89} \) \(\mathstrut +\mathstrut 36q^{90} \) \(\mathstrut +\mathstrut 100q^{91} \) \(\mathstrut +\mathstrut 264q^{93} \) \(\mathstrut +\mathstrut 152q^{94} \) \(\mathstrut +\mathstrut 536q^{95} \) \(\mathstrut +\mathstrut 24q^{96} \) \(\mathstrut +\mathstrut 280q^{97} \) \(\mathstrut +\mathstrut 148q^{98} \) \(\mathstrut +\mathstrut 96q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1890))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1890.2.a \(\chi_{1890}(1, \cdot)\) 1890.2.a.a 1 1
1890.2.a.b 1
1890.2.a.c 1
1890.2.a.d 1
1890.2.a.e 1
1890.2.a.f 1
1890.2.a.g 1
1890.2.a.h 1
1890.2.a.i 1
1890.2.a.j 1
1890.2.a.k 1
1890.2.a.l 1
1890.2.a.m 1
1890.2.a.n 1
1890.2.a.o 1
1890.2.a.p 1
1890.2.a.q 1
1890.2.a.r 1
1890.2.a.s 1
1890.2.a.t 1
1890.2.a.u 1
1890.2.a.v 1
1890.2.a.w 1
1890.2.a.x 1
1890.2.a.y 2
1890.2.a.z 2
1890.2.a.ba 2
1890.2.a.bb 2
1890.2.b \(\chi_{1890}(1511, \cdot)\) 1890.2.b.a 8 1
1890.2.b.b 8
1890.2.b.c 12
1890.2.b.d 12
1890.2.d \(\chi_{1890}(1889, \cdot)\) 1890.2.d.a 8 1
1890.2.d.b 8
1890.2.d.c 8
1890.2.d.d 8
1890.2.d.e 16
1890.2.d.f 16
1890.2.g \(\chi_{1890}(379, \cdot)\) 1890.2.g.a 2 1
1890.2.g.b 2
1890.2.g.c 2
1890.2.g.d 2
1890.2.g.e 2
1890.2.g.f 2
1890.2.g.g 2
1890.2.g.h 2
1890.2.g.i 2
1890.2.g.j 2
1890.2.g.k 2
1890.2.g.l 2
1890.2.g.m 4
1890.2.g.n 4
1890.2.g.o 4
1890.2.g.p 4
1890.2.g.q 4
1890.2.g.r 4
1890.2.i \(\chi_{1890}(991, \cdot)\) 1890.2.i.a 2 2
1890.2.i.b 2
1890.2.i.c 2
1890.2.i.d 2
1890.2.i.e 4
1890.2.i.f 12
1890.2.i.g 12
1890.2.i.h 12
1890.2.i.i 16
1890.2.j \(\chi_{1890}(631, \cdot)\) 1890.2.j.a 2 2
1890.2.j.b 2
1890.2.j.c 2
1890.2.j.d 2
1890.2.j.e 2
1890.2.j.f 4
1890.2.j.g 4
1890.2.j.h 4
1890.2.j.i 6
1890.2.j.j 6
1890.2.j.k 6
1890.2.j.l 8
1890.2.k \(\chi_{1890}(541, \cdot)\) 1890.2.k.a 2 2
1890.2.k.b 2
1890.2.k.c 2
1890.2.k.d 2
1890.2.k.e 2
1890.2.k.f 2
1890.2.k.g 2
1890.2.k.h 2
1890.2.k.i 2
1890.2.k.j 2
1890.2.k.k 2
1890.2.k.l 2
1890.2.k.m 2
1890.2.k.n 2
1890.2.k.o 2
1890.2.k.p 2
1890.2.k.q 2
1890.2.k.r 2
1890.2.k.s 2
1890.2.k.t 2
1890.2.k.u 2
1890.2.k.v 2
1890.2.k.w 2
1890.2.k.x 2
1890.2.k.y 2
1890.2.k.z 2
1890.2.k.ba 2
1890.2.k.bb 2
1890.2.k.bc 2
1890.2.k.bd 2
1890.2.k.be 2
1890.2.k.bf 2
1890.2.k.bg 4
1890.2.k.bh 4
1890.2.k.bi 4
1890.2.k.bj 4
1890.2.k.bk 4
1890.2.k.bl 4
1890.2.l \(\chi_{1890}(361, \cdot)\) 1890.2.l.a 2 2
1890.2.l.b 2
1890.2.l.c 2
1890.2.l.d 2
1890.2.l.e 4
1890.2.l.f 12
1890.2.l.g 12
1890.2.l.h 12
1890.2.l.i 16
1890.2.m \(\chi_{1890}(323, \cdot)\) 1890.2.m.a 24 2
1890.2.m.b 24
1890.2.m.c 24
1890.2.m.d 24
1890.2.p \(\chi_{1890}(433, \cdot)\) n/a 128 2
1890.2.r \(\chi_{1890}(89, \cdot)\) 1890.2.r.a 48 2
1890.2.r.b 48
1890.2.t \(\chi_{1890}(1151, \cdot)\) 1890.2.t.a 4 2
1890.2.t.b 28
1890.2.t.c 32
1890.2.u \(\chi_{1890}(109, \cdot)\) n/a 128 2
1890.2.z \(\chi_{1890}(1009, \cdot)\) 1890.2.z.a 4 2
1890.2.z.b 24
1890.2.z.c 44
1890.2.ba \(\chi_{1890}(1369, \cdot)\) 1890.2.ba.a 96 2
1890.2.be \(\chi_{1890}(971, \cdot)\) 1890.2.be.a 4 2
1890.2.be.b 4
1890.2.be.c 8
1890.2.be.d 8
1890.2.be.e 8
1890.2.be.f 8
1890.2.be.g 12
1890.2.be.h 12
1890.2.be.i 12
1890.2.be.j 12
1890.2.bf \(\chi_{1890}(629, \cdot)\) 1890.2.bf.a 8 2
1890.2.bf.b 8
1890.2.bf.c 8
1890.2.bf.d 8
1890.2.bf.e 32
1890.2.bf.f 32
1890.2.bi \(\chi_{1890}(719, \cdot)\) 1890.2.bi.a 48 2
1890.2.bi.b 48
1890.2.bk \(\chi_{1890}(341, \cdot)\) 1890.2.bk.a 4 2
1890.2.bk.b 28
1890.2.bk.c 32
1890.2.bl \(\chi_{1890}(251, \cdot)\) 1890.2.bl.a 32 2
1890.2.bl.b 32
1890.2.bo \(\chi_{1890}(269, \cdot)\) n/a 128 2
1890.2.bq \(\chi_{1890}(289, \cdot)\) 1890.2.bq.a 96 2
1890.2.bs \(\chi_{1890}(211, \cdot)\) n/a 432 6
1890.2.bt \(\chi_{1890}(331, \cdot)\) n/a 576 6
1890.2.bu \(\chi_{1890}(121, \cdot)\) n/a 576 6
1890.2.bw \(\chi_{1890}(557, \cdot)\) n/a 192 4
1890.2.by \(\chi_{1890}(703, \cdot)\) n/a 256 4
1890.2.bz \(\chi_{1890}(73, \cdot)\) n/a 192 4
1890.2.cc \(\chi_{1890}(307, \cdot)\) n/a 192 4
1890.2.cd \(\chi_{1890}(197, \cdot)\) n/a 144 4
1890.2.cg \(\chi_{1890}(233, \cdot)\) n/a 192 4
1890.2.ch \(\chi_{1890}(53, \cdot)\) n/a 256 4
1890.2.cj \(\chi_{1890}(397, \cdot)\) n/a 192 4
1890.2.cm \(\chi_{1890}(479, \cdot)\) n/a 864 6
1890.2.co \(\chi_{1890}(499, \cdot)\) n/a 864 6
1890.2.cs \(\chi_{1890}(41, \cdot)\) n/a 576 6
1890.2.cu \(\chi_{1890}(311, \cdot)\) n/a 576 6
1890.2.cv \(\chi_{1890}(79, \cdot)\) n/a 864 6
1890.2.cx \(\chi_{1890}(169, \cdot)\) n/a 648 6
1890.2.cz \(\chi_{1890}(59, \cdot)\) n/a 864 6
1890.2.db \(\chi_{1890}(209, \cdot)\) n/a 864 6
1890.2.dd \(\chi_{1890}(101, \cdot)\) n/a 576 6
1890.2.dh \(\chi_{1890}(23, \cdot)\) n/a 1728 12
1890.2.di \(\chi_{1890}(13, \cdot)\) n/a 1728 12
1890.2.dj \(\chi_{1890}(157, \cdot)\) n/a 1728 12
1890.2.do \(\chi_{1890}(113, \cdot)\) n/a 1296 12
1890.2.dp \(\chi_{1890}(317, \cdot)\) n/a 1728 12
1890.2.dq \(\chi_{1890}(103, \cdot)\) n/a 1728 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1890))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1890)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(105))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(135))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(189))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(210))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(270))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(315))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(378))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(630))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(945))\)\(^{\oplus 2}\)