Properties

Label 189.2.w.a
Level 189
Weight 2
Character orbit 189.w
Analytic conductor 1.509
Analytic rank 0
Dimension 132
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 189.w (of order \(9\) and degree \(6\))

Newform invariants

Self dual: No
Analytic conductor: \(1.5091725982\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(132q \) \(\mathstrut -\mathstrut 3q^{2} \) \(\mathstrut -\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 3q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut -\mathstrut 18q^{6} \) \(\mathstrut -\mathstrut 6q^{7} \) \(\mathstrut -\mathstrut 6q^{8} \) \(\mathstrut +\mathstrut 3q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(132q \) \(\mathstrut -\mathstrut 3q^{2} \) \(\mathstrut -\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 3q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut -\mathstrut 18q^{6} \) \(\mathstrut -\mathstrut 6q^{7} \) \(\mathstrut -\mathstrut 6q^{8} \) \(\mathstrut +\mathstrut 3q^{9} \) \(\mathstrut -\mathstrut 6q^{10} \) \(\mathstrut +\mathstrut 3q^{11} \) \(\mathstrut -\mathstrut 3q^{12} \) \(\mathstrut -\mathstrut 12q^{13} \) \(\mathstrut +\mathstrut 15q^{14} \) \(\mathstrut -\mathstrut 9q^{16} \) \(\mathstrut -\mathstrut 54q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut -\mathstrut 6q^{19} \) \(\mathstrut -\mathstrut 18q^{20} \) \(\mathstrut -\mathstrut 21q^{21} \) \(\mathstrut -\mathstrut 12q^{22} \) \(\mathstrut +\mathstrut 45q^{24} \) \(\mathstrut -\mathstrut 3q^{25} \) \(\mathstrut +\mathstrut 30q^{26} \) \(\mathstrut -\mathstrut 12q^{27} \) \(\mathstrut -\mathstrut 12q^{28} \) \(\mathstrut -\mathstrut 30q^{29} \) \(\mathstrut -\mathstrut 57q^{30} \) \(\mathstrut -\mathstrut 3q^{31} \) \(\mathstrut +\mathstrut 51q^{32} \) \(\mathstrut +\mathstrut 15q^{33} \) \(\mathstrut -\mathstrut 18q^{34} \) \(\mathstrut -\mathstrut 12q^{35} \) \(\mathstrut -\mathstrut 60q^{36} \) \(\mathstrut +\mathstrut 3q^{37} \) \(\mathstrut -\mathstrut 57q^{38} \) \(\mathstrut -\mathstrut 66q^{39} \) \(\mathstrut -\mathstrut 66q^{40} \) \(\mathstrut +\mathstrut 33q^{42} \) \(\mathstrut -\mathstrut 12q^{43} \) \(\mathstrut +\mathstrut 3q^{44} \) \(\mathstrut +\mathstrut 33q^{45} \) \(\mathstrut +\mathstrut 3q^{46} \) \(\mathstrut -\mathstrut 21q^{47} \) \(\mathstrut +\mathstrut 90q^{48} \) \(\mathstrut +\mathstrut 12q^{49} \) \(\mathstrut -\mathstrut 39q^{50} \) \(\mathstrut -\mathstrut 48q^{51} \) \(\mathstrut +\mathstrut 9q^{52} \) \(\mathstrut +\mathstrut 9q^{53} \) \(\mathstrut -\mathstrut 63q^{54} \) \(\mathstrut -\mathstrut 24q^{55} \) \(\mathstrut +\mathstrut 57q^{56} \) \(\mathstrut -\mathstrut 18q^{57} \) \(\mathstrut -\mathstrut 3q^{58} \) \(\mathstrut -\mathstrut 18q^{59} \) \(\mathstrut +\mathstrut 81q^{60} \) \(\mathstrut +\mathstrut 33q^{61} \) \(\mathstrut +\mathstrut 75q^{62} \) \(\mathstrut +\mathstrut 63q^{63} \) \(\mathstrut -\mathstrut 30q^{64} \) \(\mathstrut +\mathstrut 81q^{65} \) \(\mathstrut +\mathstrut 69q^{66} \) \(\mathstrut -\mathstrut 3q^{67} \) \(\mathstrut +\mathstrut 6q^{68} \) \(\mathstrut -\mathstrut 6q^{69} \) \(\mathstrut -\mathstrut 42q^{70} \) \(\mathstrut -\mathstrut 18q^{71} \) \(\mathstrut -\mathstrut 105q^{72} \) \(\mathstrut +\mathstrut 21q^{73} \) \(\mathstrut -\mathstrut 93q^{74} \) \(\mathstrut +\mathstrut 18q^{75} \) \(\mathstrut -\mathstrut 24q^{76} \) \(\mathstrut +\mathstrut 87q^{77} \) \(\mathstrut -\mathstrut 30q^{78} \) \(\mathstrut +\mathstrut 15q^{79} \) \(\mathstrut +\mathstrut 102q^{80} \) \(\mathstrut +\mathstrut 39q^{81} \) \(\mathstrut -\mathstrut 6q^{82} \) \(\mathstrut -\mathstrut 42q^{83} \) \(\mathstrut -\mathstrut 36q^{84} \) \(\mathstrut -\mathstrut 63q^{85} \) \(\mathstrut +\mathstrut 159q^{86} \) \(\mathstrut +\mathstrut 30q^{87} \) \(\mathstrut +\mathstrut 57q^{88} \) \(\mathstrut -\mathstrut 150q^{89} \) \(\mathstrut -\mathstrut 39q^{90} \) \(\mathstrut +\mathstrut 6q^{91} \) \(\mathstrut -\mathstrut 66q^{92} \) \(\mathstrut -\mathstrut 27q^{93} \) \(\mathstrut +\mathstrut 33q^{94} \) \(\mathstrut -\mathstrut 147q^{95} \) \(\mathstrut +\mathstrut 81q^{96} \) \(\mathstrut -\mathstrut 12q^{97} \) \(\mathstrut +\mathstrut 99q^{98} \) \(\mathstrut +\mathstrut 24q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1 −2.58171 + 0.939667i −1.71864 + 0.215106i 4.25019 3.56633i 0.335317 + 0.122045i 4.23491 2.17029i −0.921726 + 2.48000i −4.87420 + 8.44237i 2.90746 0.739379i −0.980375
25.2 −2.28724 + 0.832486i 1.36942 1.06052i 3.00633 2.52261i 4.14290 + 1.50789i −2.24932 + 3.56567i −1.33708 2.28303i −2.34212 + 4.05668i 0.750612 2.90458i −10.7311
25.3 −2.11851 + 0.771075i 1.70797 + 0.287798i 2.36145 1.98149i −1.51793 0.552482i −3.84028 + 0.707271i 2.02397 + 1.70398i −1.22040 + 2.11380i 2.83434 + 0.983104i 3.64176
25.4 −2.06527 + 0.751697i −0.131292 + 1.72707i 2.16820 1.81934i −1.77012 0.644271i −1.02708 3.66555i −0.610341 2.57439i −0.912517 + 1.58053i −2.96552 0.453502i 4.14007
25.5 −1.47150 + 0.535583i 0.0586596 + 1.73106i 0.346382 0.290649i 3.26769 + 1.18934i −1.01344 2.51584i −0.172863 + 2.64010i 1.21191 2.09908i −2.99312 + 0.203086i −5.44540
25.6 −1.36957 + 0.498483i 0.717145 1.57661i 0.0951481 0.0798388i −1.88092 0.684598i −0.196268 + 2.51676i −1.86025 + 1.88135i 1.36695 2.36763i −1.97140 2.26132i 2.91731
25.7 −1.30907 + 0.476464i −1.39125 1.03171i −0.0454330 + 0.0381228i 1.40139 + 0.510065i 2.31282 + 0.687701i −2.64009 0.173054i 1.43440 2.48445i 0.871157 + 2.87073i −2.07755
25.8 −0.928908 + 0.338095i −1.69366 + 0.362654i −0.783527 + 0.657458i −3.08847 1.12411i 1.45064 0.909490i 2.54716 + 0.715520i 1.49406 2.58780i 2.73696 1.22843i 3.24896
25.9 −0.606828 + 0.220867i 1.44289 + 0.958162i −1.21263 + 1.01752i 1.46866 + 0.534550i −1.08721 0.262753i 1.88474 1.85681i 1.15690 2.00380i 1.16385 + 2.76504i −1.00929
25.10 −0.332947 + 0.121183i −1.35881 + 1.07408i −1.43592 + 1.20488i 0.672463 + 0.244756i 0.322250 0.522275i −2.22176 1.43659i 0.686389 1.18886i 0.692708 2.91893i −0.253554
25.11 −0.328890 + 0.119706i 0.434559 1.67665i −1.43825 + 1.20683i 2.13988 + 0.778854i 0.0577835 + 0.603453i 2.62809 + 0.305198i 0.678558 1.17530i −2.62232 1.45721i −0.797020
25.12 0.0303128 0.0110329i 0.919170 + 1.46804i −1.53129 + 1.28491i −3.70820 1.34968i 0.0440593 + 0.0343591i −2.47092 + 0.945798i −0.0644996 + 0.111717i −1.31025 + 2.69875i −0.127297
25.13 0.456477 0.166144i 1.72709 0.131048i −1.35132 + 1.13389i 1.44421 + 0.525651i 0.766603 0.346766i −1.09247 + 2.40967i −0.914231 + 1.58349i 2.96565 0.452662i 0.746585
25.14 0.562011 0.204555i −0.692899 1.58742i −1.25807 + 1.05565i −2.61250 0.950872i −0.714132 0.750410i −0.229775 2.63575i −1.08919 + 1.88654i −2.03978 + 2.19984i −1.66276
25.15 1.00414 0.365478i −0.803391 + 1.53446i −0.657360 + 0.551590i 0.354797 + 0.129136i −0.245908 + 1.83444i 1.55771 + 2.13859i −1.52708 + 2.64497i −1.70913 2.46554i 0.403463
25.16 1.17974 0.429388i −1.72810 0.116945i −0.324689 + 0.272446i 3.35074 + 1.21957i −2.08891 + 0.604061i 1.13056 2.39204i −1.52151 + 2.63533i 2.97265 + 0.404186i 4.47665
25.17 1.45469 0.529465i 1.56527 0.741574i 0.303710 0.254843i 0.0676746 + 0.0246315i 1.88435 1.90752i −1.36843 2.26438i −1.24118 + 2.14978i 1.90014 2.32153i 0.111487
25.18 1.68235 0.612324i 1.10447 + 1.33422i 0.923259 0.774706i −1.38133 0.502765i 2.67508 + 1.56832i 2.29659 1.31364i −0.711445 + 1.23226i −0.560272 + 2.94722i −2.63174
25.19 1.90772 0.694353i 0.482660 1.66344i 1.62518 1.36369i −2.38896 0.869509i −0.234236 3.50852i 1.31108 + 2.29806i 0.123353 0.213653i −2.53408 1.60575i −5.16121
25.20 2.03199 0.739583i −0.528499 1.64945i 2.04991 1.72008i 3.15692 + 1.14902i −2.29381 2.96080i −2.22776 + 1.42726i 0.730849 1.26587i −2.44138 + 1.74347i 7.26462
See next 80 embeddings (of 132 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 184.22
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Hecke kernels

There are no other newforms in \(S_{2}^{\mathrm{new}}(189, [\chi])\).