Properties

Label 189.2.u.a
Level 189
Weight 2
Character orbit 189.u
Analytic conductor 1.509
Analytic rank 0
Dimension 132
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 189.u (of order \(9\) and degree \(6\))

Newform invariants

Self dual: No
Analytic conductor: \(1.5091725982\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(132q \) \(\mathstrut -\mathstrut 3q^{2} \) \(\mathstrut -\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 3q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut -\mathstrut 18q^{6} \) \(\mathstrut -\mathstrut 6q^{7} \) \(\mathstrut -\mathstrut 6q^{8} \) \(\mathstrut -\mathstrut 15q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(132q \) \(\mathstrut -\mathstrut 3q^{2} \) \(\mathstrut -\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut 3q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut -\mathstrut 18q^{6} \) \(\mathstrut -\mathstrut 6q^{7} \) \(\mathstrut -\mathstrut 6q^{8} \) \(\mathstrut -\mathstrut 15q^{9} \) \(\mathstrut +\mathstrut 3q^{10} \) \(\mathstrut -\mathstrut 15q^{11} \) \(\mathstrut -\mathstrut 3q^{12} \) \(\mathstrut -\mathstrut 12q^{13} \) \(\mathstrut -\mathstrut 30q^{14} \) \(\mathstrut +\mathstrut 9q^{16} \) \(\mathstrut +\mathstrut 27q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut +\mathstrut 3q^{19} \) \(\mathstrut -\mathstrut 18q^{20} \) \(\mathstrut +\mathstrut 15q^{21} \) \(\mathstrut -\mathstrut 12q^{22} \) \(\mathstrut -\mathstrut 36q^{23} \) \(\mathstrut -\mathstrut 72q^{24} \) \(\mathstrut -\mathstrut 3q^{25} \) \(\mathstrut +\mathstrut 30q^{26} \) \(\mathstrut -\mathstrut 12q^{27} \) \(\mathstrut -\mathstrut 12q^{28} \) \(\mathstrut -\mathstrut 30q^{29} \) \(\mathstrut -\mathstrut 3q^{30} \) \(\mathstrut -\mathstrut 3q^{31} \) \(\mathstrut -\mathstrut 75q^{32} \) \(\mathstrut +\mathstrut 15q^{33} \) \(\mathstrut -\mathstrut 18q^{34} \) \(\mathstrut +\mathstrut 15q^{35} \) \(\mathstrut -\mathstrut 60q^{36} \) \(\mathstrut -\mathstrut 6q^{37} \) \(\mathstrut +\mathstrut 69q^{38} \) \(\mathstrut +\mathstrut 51q^{39} \) \(\mathstrut +\mathstrut 51q^{40} \) \(\mathstrut -\mathstrut 39q^{42} \) \(\mathstrut -\mathstrut 12q^{43} \) \(\mathstrut -\mathstrut 6q^{44} \) \(\mathstrut -\mathstrut 21q^{45} \) \(\mathstrut -\mathstrut 6q^{46} \) \(\mathstrut -\mathstrut 21q^{47} \) \(\mathstrut +\mathstrut 90q^{48} \) \(\mathstrut -\mathstrut 42q^{49} \) \(\mathstrut -\mathstrut 39q^{50} \) \(\mathstrut +\mathstrut 33q^{51} \) \(\mathstrut +\mathstrut 9q^{52} \) \(\mathstrut +\mathstrut 9q^{53} \) \(\mathstrut -\mathstrut 9q^{54} \) \(\mathstrut -\mathstrut 24q^{55} \) \(\mathstrut +\mathstrut 111q^{56} \) \(\mathstrut -\mathstrut 18q^{57} \) \(\mathstrut -\mathstrut 3q^{58} \) \(\mathstrut +\mathstrut 27q^{59} \) \(\mathstrut -\mathstrut 63q^{60} \) \(\mathstrut -\mathstrut 21q^{61} \) \(\mathstrut +\mathstrut 75q^{62} \) \(\mathstrut +\mathstrut 63q^{63} \) \(\mathstrut -\mathstrut 30q^{64} \) \(\mathstrut -\mathstrut 90q^{65} \) \(\mathstrut -\mathstrut 3q^{66} \) \(\mathstrut -\mathstrut 3q^{67} \) \(\mathstrut -\mathstrut 30q^{68} \) \(\mathstrut -\mathstrut 6q^{69} \) \(\mathstrut +\mathstrut 39q^{70} \) \(\mathstrut -\mathstrut 18q^{71} \) \(\mathstrut +\mathstrut 183q^{72} \) \(\mathstrut -\mathstrut 42q^{73} \) \(\mathstrut +\mathstrut 51q^{74} \) \(\mathstrut -\mathstrut 45q^{75} \) \(\mathstrut -\mathstrut 24q^{76} \) \(\mathstrut +\mathstrut 15q^{77} \) \(\mathstrut -\mathstrut 30q^{78} \) \(\mathstrut +\mathstrut 15q^{79} \) \(\mathstrut +\mathstrut 102q^{80} \) \(\mathstrut -\mathstrut 87q^{81} \) \(\mathstrut -\mathstrut 6q^{82} \) \(\mathstrut -\mathstrut 42q^{83} \) \(\mathstrut +\mathstrut 135q^{84} \) \(\mathstrut -\mathstrut 63q^{85} \) \(\mathstrut -\mathstrut 93q^{86} \) \(\mathstrut +\mathstrut 75q^{87} \) \(\mathstrut -\mathstrut 51q^{88} \) \(\mathstrut +\mathstrut 75q^{89} \) \(\mathstrut -\mathstrut 39q^{90} \) \(\mathstrut -\mathstrut 21q^{91} \) \(\mathstrut -\mathstrut 66q^{92} \) \(\mathstrut +\mathstrut 81q^{93} \) \(\mathstrut +\mathstrut 33q^{94} \) \(\mathstrut +\mathstrut 15q^{95} \) \(\mathstrut -\mathstrut 171q^{96} \) \(\mathstrut -\mathstrut 12q^{97} \) \(\mathstrut -\mathstrut 36q^{98} \) \(\mathstrut +\mathstrut 24q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4.1 −0.467294 2.65016i 1.66541 + 0.475808i −4.92558 + 1.79277i 2.75387 1.00233i 0.482727 4.63595i −0.609446 2.57460i 4.36176 + 7.55480i 2.54721 + 1.58484i −3.94319 6.82980i
4.2 −0.460894 2.61386i −1.36647 + 1.06432i −4.74046 + 1.72539i −0.528985 + 0.192535i 3.41177 + 3.08122i 0.317729 + 2.62660i 4.04059 + 6.99852i 0.734460 2.90871i 0.747066 + 1.29396i
4.3 −0.422628 2.39684i −0.118761 1.72797i −3.68685 + 1.34190i −2.38847 + 0.869333i −4.09149 + 1.01494i 2.35689 1.20212i 2.34068 + 4.05418i −2.97179 + 0.410433i 3.09309 + 5.35738i
4.4 −0.324131 1.83824i 0.743955 1.56414i −1.39467 + 0.507617i 1.37479 0.500384i −3.11640 0.860580i −2.42382 + 1.06071i −0.481419 0.833843i −1.89306 2.32730i −1.36544 2.36501i
4.5 −0.310937 1.76341i 0.625951 + 1.61499i −1.13356 + 0.412582i −0.00172074 0.000626297i 2.65326 1.60597i 2.59651 + 0.508047i −0.710598 1.23079i −2.21637 + 2.02181i 0.00163946 + 0.00283963i
4.6 −0.279530 1.58529i −1.44281 + 0.958286i −0.555633 + 0.202234i 0.230811 0.0840085i 1.92247 + 2.01940i −1.31413 2.29631i −1.13383 1.96386i 1.16338 2.76524i −0.197697 0.342421i
4.7 −0.266701 1.51254i −1.44858 0.949540i −0.337258 + 0.122752i 3.71318 1.35149i −1.04988 + 2.44427i 2.56740 + 0.639091i −1.26026 2.18283i 1.19675 + 2.75096i −3.03449 5.25589i
4.8 −0.203963 1.15673i −1.51129 0.846167i 0.582964 0.212181i −3.41115 + 1.24156i −0.670539 + 1.92074i −1.99948 + 1.73265i −1.53891 2.66548i 1.56800 + 2.55761i 2.13189 + 3.69255i
4.9 −0.165988 0.941364i 1.70872 0.283332i 1.02077 0.371530i −2.75749 + 1.00364i −0.550345 1.56150i 0.0940141 2.64408i −1.47507 2.55489i 2.83945 0.968269i 1.40250 + 2.42921i
4.10 −0.134854 0.764795i 1.54799 + 0.776991i 1.31266 0.477769i 1.10529 0.402293i 0.385486 1.28868i −0.975813 + 2.45923i −1.31901 2.28459i 1.79257 + 2.40555i −0.456725 0.791071i
4.11 −0.0305699 0.173370i −0.226706 + 1.71715i 1.85026 0.673440i 2.52551 0.919210i 0.304634 0.0131890i −1.78991 1.94839i −0.349362 0.605113i −2.89721 0.778577i −0.236568 0.409748i
4.12 0.0290601 + 0.164808i 0.733837 1.56891i 1.85307 0.674462i −0.999212 + 0.363683i 0.279894 + 0.0753494i 1.97858 + 1.75648i 0.332357 + 0.575660i −1.92297 2.30265i −0.0889751 0.154109i
4.13 0.0570934 + 0.323793i −0.691412 1.58806i 1.77780 0.647067i 1.85642 0.675680i 0.474729 0.314543i −2.33644 1.24140i 0.639805 + 1.10817i −2.04390 + 2.19601i 0.324770 + 0.562517i
4.14 0.0954712 + 0.541444i −1.72856 0.109886i 1.59534 0.580656i −0.969531 + 0.352880i −0.105531 0.946411i 2.17686 1.50376i 1.01650 + 1.76063i 2.97585 + 0.379890i −0.283627 0.491257i
4.15 0.101938 + 0.578121i −0.121715 + 1.72777i 1.55555 0.566175i −3.06658 + 1.11614i −1.01127 + 0.105760i −1.48906 + 2.18694i 1.07293 + 1.85836i −2.97037 0.420592i −0.957867 1.65908i
4.16 0.241593 + 1.37014i 1.22928 + 1.22020i 0.0604707 0.0220095i −1.40760 + 0.512324i −1.37486 + 1.97907i 1.17416 2.37094i 1.43604 + 2.48730i 0.0222396 + 2.99992i −1.04202 1.80483i
4.17 0.246187 + 1.39619i −1.04527 + 1.38109i −0.00936568 + 0.00340883i 3.04103 1.10685i −2.18560 1.11939i 1.78778 + 1.95034i 1.41067 + 2.44335i −0.814825 2.88722i 2.29403 + 3.97338i
4.18 0.340870 + 1.93317i −0.913186 1.47176i −1.74157 + 0.633879i 1.35943 0.494793i 2.53389 2.26702i −0.147009 + 2.64166i 0.143948 + 0.249325i −1.33218 + 2.68799i 1.41991 + 2.45935i
4.19 0.371090 + 2.10456i 0.871315 1.49693i −2.41207 + 0.877922i 2.18602 0.795646i 3.47372 + 1.27824i 1.27150 2.32019i −0.605711 1.04912i −1.48162 2.60860i 2.48569 + 4.30535i
4.20 0.373934 + 2.12069i −1.62126 + 0.609530i −2.47810 + 0.901956i −1.18205 + 0.430229i −1.89887 3.21026i −2.62839 0.302569i −0.686013 1.18821i 2.25695 1.97641i −1.35439 2.34587i
See next 80 embeddings (of 132 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 142.22
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Hecke kernels

There are no other newforms in \(S_{2}^{\mathrm{new}}(189, [\chi])\).