Properties

Label 189.2.ba.a
Level 189
Weight 2
Character orbit 189.ba
Analytic conductor 1.509
Analytic rank 0
Dimension 132
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 189.ba (of order \(18\) and degree \(6\))

Newform invariants

Self dual: No
Analytic conductor: \(1.5091725982\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(132q \) \(\mathstrut -\mathstrut 3q^{2} \) \(\mathstrut -\mathstrut 9q^{3} \) \(\mathstrut -\mathstrut 3q^{4} \) \(\mathstrut -\mathstrut 9q^{5} \) \(\mathstrut -\mathstrut 18q^{6} \) \(\mathstrut -\mathstrut 6q^{7} \) \(\mathstrut -\mathstrut 18q^{8} \) \(\mathstrut +\mathstrut 3q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(132q \) \(\mathstrut -\mathstrut 3q^{2} \) \(\mathstrut -\mathstrut 9q^{3} \) \(\mathstrut -\mathstrut 3q^{4} \) \(\mathstrut -\mathstrut 9q^{5} \) \(\mathstrut -\mathstrut 18q^{6} \) \(\mathstrut -\mathstrut 6q^{7} \) \(\mathstrut -\mathstrut 18q^{8} \) \(\mathstrut +\mathstrut 3q^{9} \) \(\mathstrut -\mathstrut 9q^{11} \) \(\mathstrut -\mathstrut 9q^{12} \) \(\mathstrut +\mathstrut 3q^{14} \) \(\mathstrut -\mathstrut 24q^{15} \) \(\mathstrut +\mathstrut 3q^{16} \) \(\mathstrut -\mathstrut 18q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut +\mathstrut 18q^{20} \) \(\mathstrut -\mathstrut 21q^{21} \) \(\mathstrut -\mathstrut 12q^{22} \) \(\mathstrut -\mathstrut 6q^{23} \) \(\mathstrut -\mathstrut 9q^{24} \) \(\mathstrut -\mathstrut 3q^{25} \) \(\mathstrut -\mathstrut 12q^{28} \) \(\mathstrut +\mathstrut 6q^{29} \) \(\mathstrut +\mathstrut 51q^{30} \) \(\mathstrut -\mathstrut 9q^{31} \) \(\mathstrut +\mathstrut 3q^{32} \) \(\mathstrut -\mathstrut 9q^{33} \) \(\mathstrut -\mathstrut 18q^{34} \) \(\mathstrut +\mathstrut 18q^{35} \) \(\mathstrut +\mathstrut 3q^{37} \) \(\mathstrut -\mathstrut 99q^{38} \) \(\mathstrut -\mathstrut 36q^{39} \) \(\mathstrut -\mathstrut 54q^{40} \) \(\mathstrut -\mathstrut 45q^{42} \) \(\mathstrut -\mathstrut 12q^{43} \) \(\mathstrut -\mathstrut 9q^{44} \) \(\mathstrut -\mathstrut 9q^{45} \) \(\mathstrut +\mathstrut 3q^{46} \) \(\mathstrut +\mathstrut 45q^{47} \) \(\mathstrut -\mathstrut 24q^{49} \) \(\mathstrut -\mathstrut 9q^{50} \) \(\mathstrut -\mathstrut 48q^{51} \) \(\mathstrut -\mathstrut 9q^{52} \) \(\mathstrut -\mathstrut 45q^{53} \) \(\mathstrut +\mathstrut 171q^{54} \) \(\mathstrut +\mathstrut 3q^{56} \) \(\mathstrut -\mathstrut 3q^{58} \) \(\mathstrut +\mathstrut 36q^{59} \) \(\mathstrut +\mathstrut 57q^{60} \) \(\mathstrut -\mathstrut 9q^{61} \) \(\mathstrut -\mathstrut 99q^{62} \) \(\mathstrut -\mathstrut 33q^{63} \) \(\mathstrut +\mathstrut 18q^{64} \) \(\mathstrut +\mathstrut 69q^{65} \) \(\mathstrut -\mathstrut 9q^{66} \) \(\mathstrut -\mathstrut 3q^{67} \) \(\mathstrut +\mathstrut 36q^{68} \) \(\mathstrut +\mathstrut 108q^{69} \) \(\mathstrut +\mathstrut 66q^{70} \) \(\mathstrut +\mathstrut 18q^{71} \) \(\mathstrut -\mathstrut 129q^{72} \) \(\mathstrut -\mathstrut 9q^{73} \) \(\mathstrut +\mathstrut 75q^{74} \) \(\mathstrut +\mathstrut 36q^{75} \) \(\mathstrut +\mathstrut 36q^{76} \) \(\mathstrut +\mathstrut 15q^{77} \) \(\mathstrut +\mathstrut 66q^{78} \) \(\mathstrut -\mathstrut 21q^{79} \) \(\mathstrut +\mathstrut 72q^{80} \) \(\mathstrut -\mathstrut 33q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 90q^{83} \) \(\mathstrut -\mathstrut 120q^{84} \) \(\mathstrut +\mathstrut 9q^{85} \) \(\mathstrut -\mathstrut 105q^{86} \) \(\mathstrut -\mathstrut 54q^{87} \) \(\mathstrut -\mathstrut 63q^{88} \) \(\mathstrut -\mathstrut 18q^{89} \) \(\mathstrut +\mathstrut 81q^{90} \) \(\mathstrut +\mathstrut 6q^{91} \) \(\mathstrut +\mathstrut 150q^{92} \) \(\mathstrut +\mathstrut 21q^{93} \) \(\mathstrut -\mathstrut 9q^{94} \) \(\mathstrut +\mathstrut 45q^{95} \) \(\mathstrut -\mathstrut 81q^{96} \) \(\mathstrut +\mathstrut 27q^{98} \) \(\mathstrut +\mathstrut 96q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1 −2.51634 + 0.443699i −1.35749 + 1.07574i 4.25573 1.54896i −0.181827 + 1.03119i 2.93860 3.30926i 2.00134 1.73050i −5.59594 + 3.23082i 0.685547 2.92062i 2.67551i
5.2 −2.44999 + 0.431999i 1.58275 0.703494i 3.93642 1.43274i 0.403704 2.28952i −3.57380 + 2.40730i −0.412545 2.61339i −4.71627 + 2.72294i 2.01019 2.22691i 5.78368i
5.3 −2.31815 + 0.408753i −0.111866 1.72843i 3.32736 1.21106i −0.175778 + 0.996886i 0.965825 + 3.96105i 1.63463 + 2.08038i −3.14120 + 1.81358i −2.97497 + 0.386707i 2.38278i
5.4 −2.27453 + 0.401061i 1.22609 + 1.22340i 3.13325 1.14041i −0.595188 + 3.37548i −3.27944 2.29092i −2.64569 + 0.0174348i −2.66893 + 1.54091i 0.00659757 + 2.99999i 7.91633i
5.5 −1.98316 + 0.349685i −1.71808 0.219557i 1.93127 0.702926i 0.521105 2.95533i 3.48401 0.165370i −1.49002 + 2.18628i −0.0963007 + 0.0555993i 2.90359 + 0.754431i 6.04313i
5.6 −1.27749 + 0.225257i 1.73184 0.0269248i −0.298135 + 0.108512i 0.194492 1.10302i −2.20635 + 0.424505i 0.0727513 + 2.64475i 2.60324 1.50298i 2.99855 0.0932590i 1.45291i
5.7 −1.25823 + 0.221860i 0.0538771 + 1.73121i −0.345469 + 0.125740i 0.640361 3.63167i −0.451876 2.16631i −1.30830 2.29964i 2.61972 1.51249i −2.99419 + 0.186545i 4.71154i
5.8 −1.21351 + 0.213974i −1.60161 0.659440i −0.452565 + 0.164720i −0.378134 + 2.14451i 2.08467 + 0.457534i −0.671624 2.55909i 2.64823 1.52896i 2.13028 + 2.11232i 2.68329i
5.9 −1.19961 + 0.211524i −0.0787989 + 1.73026i −0.485062 + 0.176548i −0.243175 + 1.37911i −0.271462 2.09230i 2.41247 + 1.08628i 2.65438 1.53251i −2.98758 0.272685i 1.70584i
5.10 −0.408566 + 0.0720413i 1.12900 1.31353i −1.71765 + 0.625173i 0.0312679 0.177329i −0.366645 + 0.617997i 1.82229 1.91814i 1.37531 0.794036i −0.450699 2.96595i 0.0747032i
5.11 0.220121 0.0388132i −0.104309 1.72891i −1.83244 + 0.666953i 0.595276 3.37598i −0.0900651 0.376520i −2.47857 + 0.925586i −0.764613 + 0.441450i −2.97824 + 0.360682i 0.766227i
5.12 0.284285 0.0501271i 1.43787 + 0.965670i −1.80108 + 0.655540i −0.499509 + 2.83286i 0.457172 + 0.202449i 0.989753 2.45365i −0.979151 + 0.565313i 1.13496 + 2.77702i 0.830377i
5.13 0.357086 0.0629638i −1.26279 1.18548i −1.75584 + 0.639073i −0.363271 + 2.06021i −0.525567 0.343807i 1.11830 + 2.39779i −1.21478 + 0.701352i 0.189288 + 2.99402i 0.758545i
5.14 0.491776 0.0867134i −1.45806 + 0.934910i −1.64506 + 0.598753i 9.76251e−5 0 0.000553660i −0.635971 + 0.586200i −2.32328 1.26584i −1.62200 + 0.936464i 1.25189 2.72631i 0 0.000280742i
5.15 0.826512 0.145736i 0.181944 + 1.72247i −1.21750 + 0.443135i −0.133334 + 0.756174i 0.401405 + 1.39712i −1.31947 + 2.29325i −2.39534 + 1.38295i −2.93379 + 0.626786i 0.644419i
5.16 1.10969 0.195669i 1.47374 + 0.909998i −0.686257 + 0.249777i 0.705645 4.00191i 1.81345 + 0.721453i 2.51373 + 0.825312i −2.66435 + 1.53826i 1.34381 + 2.68220i 4.57896i
5.17 1.72891 0.304854i 1.65859 0.499066i 1.01682 0.370091i −0.0612092 + 0.347134i 2.71542 1.36847i −2.64149 + 0.150064i −1.39560 + 0.805749i 2.50187 1.65549i 0.618825i
5.18 1.77439 0.312873i 0.626754 1.61468i 1.17119 0.426279i −0.155940 + 0.884381i 0.606919 3.06116i 2.64257 0.129722i −1.17597 + 0.678945i −2.21436 2.02401i 1.61803i
5.19 1.77697 0.313327i −1.53787 0.796838i 1.18006 0.429505i 0.415679 2.35743i −2.98242 0.934099i 0.444023 2.60823i −1.16293 + 0.671420i 1.73010 + 2.45087i 4.31932i
5.20 1.95754 0.345166i −1.39494 + 1.02672i 1.83342 0.667310i −0.649669 + 3.68445i −2.37625 + 2.49133i 2.58740 0.552593i −0.0842052 + 0.0486159i 0.891690 2.86442i 7.43669i
See next 80 embeddings (of 132 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 164.22
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Hecke kernels

There are no other newforms in \(S_{2}^{\mathrm{new}}(189, [\chi])\).