Related objects

Learn more about

Show commands for: Magma / SageMath

Decomposition of \( S_{10}^{\mathrm{new}}(18) \) into irreducible Hecke orbits

magma: S := CuspForms(18,10);
magma: N := Newforms(S);
sage: N = Newforms(18,10,names="a")
Label Dimension Field $q$-expansion of eigenform
18.10.1.a 1 \(\Q\) \(q \) \(\mathstrut-\) \(16q^{2} \) \(\mathstrut+\) \(256q^{4} \) \(\mathstrut-\) \(870q^{5} \) \(\mathstrut-\) \(952q^{7} \) \(\mathstrut-\) \(4096q^{8} \) \(\mathstrut+O(q^{10}) \)
18.10.1.b 1 \(\Q\) \(q \) \(\mathstrut-\) \(16q^{2} \) \(\mathstrut+\) \(256q^{4} \) \(\mathstrut-\) \(384q^{5} \) \(\mathstrut+\) \(5852q^{7} \) \(\mathstrut-\) \(4096q^{8} \) \(\mathstrut+O(q^{10}) \)
18.10.1.c 1 \(\Q\) \(q \) \(\mathstrut+\) \(16q^{2} \) \(\mathstrut+\) \(256q^{4} \) \(\mathstrut-\) \(2694q^{5} \) \(\mathstrut-\) \(3544q^{7} \) \(\mathstrut+\) \(4096q^{8} \) \(\mathstrut+O(q^{10}) \)
18.10.1.d 1 \(\Q\) \(q \) \(\mathstrut+\) \(16q^{2} \) \(\mathstrut+\) \(256q^{4} \) \(\mathstrut+\) \(384q^{5} \) \(\mathstrut+\) \(5852q^{7} \) \(\mathstrut+\) \(4096q^{8} \) \(\mathstrut+O(q^{10}) \)

Decomposition of \( S_{10}^{\mathrm{old}}(18) \) into lower level spaces

\( S_{10}^{\mathrm{old}}(18) \) \(\cong\) $ \href{ /ModularForm/GL2/Q/holomorphic/9/10/1/ }{ S^{ new }_{ 10 }(\Gamma_0(9)) }^{\oplus 2 }\oplus \href{ /ModularForm/GL2/Q/holomorphic/6/10/1/ }{ S^{ new }_{ 10 }(\Gamma_0(6)) }^{\oplus 2 }\oplus \href{ /ModularForm/GL2/Q/holomorphic/3/10/1/ }{ S^{ new }_{ 10 }(\Gamma_0(3)) }^{\oplus 4 }\oplus \href{ /ModularForm/GL2/Q/holomorphic/2/10/1/ }{ S^{ new }_{ 10 }(\Gamma_0(2)) }^{\oplus 3 } $