Properties

 Label 170.2.o.b Level $170$ Weight $2$ Character orbit 170.o Analytic conductor $1.357$ Analytic rank $0$ Dimension $40$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$170 = 2 \cdot 5 \cdot 17$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 170.o (of order $$16$$, degree $$8$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$1.35745683436$$ Analytic rank: $$0$$ Dimension: $$40$$ Relative dimension: $$5$$ over $$\Q(\zeta_{16})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic $$q$$-expansion, but we have computed the trace expansion.

 $$\operatorname{Tr}(f)(q) =$$ $$40q + O(q^{10})$$ $$\operatorname{Tr}(f)(q) =$$ $$40q + 8q^{10} - 8q^{15} - 16q^{18} - 16q^{20} - 8q^{25} - 8q^{26} + 24q^{27} + 8q^{28} - 8q^{29} - 16q^{31} + 32q^{33} - 8q^{34} - 32q^{35} + 16q^{37} + 32q^{39} + 8q^{40} - 56q^{41} - 8q^{42} - 48q^{43} - 16q^{44} - 24q^{45} - 96q^{47} - 16q^{49} - 32q^{51} - 16q^{52} - 40q^{53} + 24q^{54} + 8q^{55} - 8q^{56} - 8q^{57} + 16q^{58} + 24q^{61} - 24q^{62} - 24q^{63} + 16q^{65} - 16q^{67} + 24q^{68} + 8q^{70} + 24q^{71} + 16q^{73} - 32q^{74} + 184q^{75} + 40q^{77} + 16q^{78} + 104q^{79} + 8q^{80} + 48q^{81} + 56q^{82} + 16q^{83} - 8q^{85} + 96q^{86} - 8q^{87} + 16q^{88} + 16q^{89} + 40q^{90} + 48q^{91} + 8q^{92} + 136q^{93} + 8q^{94} + 8q^{95} + 144q^{97} - 160q^{99} + O(q^{100})$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
3.1 0.382683 0.923880i −1.65666 2.47936i −0.707107 0.707107i 0.488119 2.18214i −2.92460 + 0.581740i 0.420899 + 2.11600i −0.923880 + 0.382683i −2.25467 + 5.44325i −1.82924 1.28603i
3.2 0.382683 0.923880i −0.419918 0.628452i −0.707107 0.707107i 2.19553 + 0.423862i −0.741309 + 0.147456i −0.252926 1.27154i −0.923880 + 0.382683i 0.929430 2.24384i 1.23179 1.86620i
3.3 0.382683 0.923880i −0.288849 0.432293i −0.707107 0.707107i −2.21991 0.268322i −0.509925 + 0.101430i −0.618262 3.10821i −0.923880 + 0.382683i 1.04461 2.52190i −1.09742 + 1.94825i
3.4 0.382683 0.923880i 0.942312 + 1.41027i −0.707107 0.707107i −0.577195 + 2.16029i 1.66353 0.330896i 0.999670 + 5.02568i −0.923880 + 0.382683i 0.0471409 0.113808i 1.77496 + 1.35996i
3.5 0.382683 0.923880i 1.42311 + 2.12983i −0.707107 0.707107i 0.986476 2.00671i 2.51231 0.499730i −0.00818577 0.0411526i −0.923880 + 0.382683i −1.36290 + 3.29034i −1.47645 1.67932i
7.1 0.923880 0.382683i −0.664558 3.34096i 0.707107 0.707107i 1.48512 + 1.67165i −1.89250 2.83233i 0.923351 0.616963i 0.382683 0.923880i −7.94873 + 3.29247i 2.01179 + 0.976070i
7.2 0.923880 0.382683i −0.302197 1.51925i 0.707107 0.707107i −1.88843 1.19743i −0.860584 1.28795i −0.201119 + 0.134383i 0.382683 0.923880i 0.554854 0.229828i −2.20292 0.383608i
7.3 0.923880 0.382683i 0.140490 + 0.706293i 0.707107 0.707107i 1.66820 + 1.48900i 0.400083 + 0.598766i −2.55439 + 1.70679i 0.382683 0.923880i 2.29253 0.949595i 2.11103 + 0.737267i
7.4 0.923880 0.382683i 0.253568 + 1.27477i 0.707107 0.707107i 0.580724 2.15934i 0.722100 + 1.08070i 0.192645 0.128721i 0.382683 0.923880i 1.21089 0.501569i −0.289826 2.21721i
7.5 0.923880 0.382683i 0.572697 + 2.87914i 0.707107 0.707107i −1.95326 + 1.08847i 1.63090 + 2.44082i 0.332949 0.222469i 0.382683 0.923880i −5.18983 + 2.14970i −1.38804 + 1.75310i
27.1 −0.923880 + 0.382683i −2.97990 + 0.592739i 0.707107 0.707107i −0.552685 + 2.16669i 2.52624 1.68798i −0.562808 0.842302i −0.382683 + 0.923880i 5.75684 2.38456i −0.318541 2.21326i
27.2 −0.923880 + 0.382683i −1.83338 + 0.364682i 0.707107 0.707107i −0.482408 2.18341i 1.55427 1.03853i 2.66660 + 3.99085i −0.382683 + 0.923880i 0.456659 0.189154i 1.28124 + 1.83260i
27.3 −0.923880 + 0.382683i 0.0897304 0.0178485i 0.707107 0.707107i −1.64234 1.51747i −0.0760698 + 0.0508282i −2.58379 3.86692i −0.382683 + 0.923880i −2.76391 + 1.14485i 2.09804 + 0.773458i
27.4 −0.923880 + 0.382683i 1.87274 0.372511i 0.707107 0.707107i 2.15442 0.598743i −1.58763 + 1.06082i −0.622065 0.930986i −0.382683 + 0.923880i 0.596748 0.247181i −1.76129 + 1.37763i
27.5 −0.923880 + 0.382683i 2.85081 0.567062i 0.707107 0.707107i −2.19776 + 0.412156i −2.41680 + 1.61486i 2.40863 + 3.60477i −0.382683 + 0.923880i 5.03395 2.08513i 1.87274 1.22183i
57.1 0.382683 + 0.923880i −1.65666 + 2.47936i −0.707107 + 0.707107i 0.488119 + 2.18214i −2.92460 0.581740i 0.420899 2.11600i −0.923880 0.382683i −2.25467 5.44325i −1.82924 + 1.28603i
57.2 0.382683 + 0.923880i −0.419918 + 0.628452i −0.707107 + 0.707107i 2.19553 0.423862i −0.741309 0.147456i −0.252926 + 1.27154i −0.923880 0.382683i 0.929430 + 2.24384i 1.23179 + 1.86620i
57.3 0.382683 + 0.923880i −0.288849 + 0.432293i −0.707107 + 0.707107i −2.21991 + 0.268322i −0.509925 0.101430i −0.618262 + 3.10821i −0.923880 0.382683i 1.04461 + 2.52190i −1.09742 1.94825i
57.4 0.382683 + 0.923880i 0.942312 1.41027i −0.707107 + 0.707107i −0.577195 2.16029i 1.66353 + 0.330896i 0.999670 5.02568i −0.923880 0.382683i 0.0471409 + 0.113808i 1.77496 1.35996i
57.5 0.382683 + 0.923880i 1.42311 2.12983i −0.707107 + 0.707107i 0.986476 + 2.00671i 2.51231 + 0.499730i −0.00818577 + 0.0411526i −0.923880 0.382683i −1.36290 3.29034i −1.47645 + 1.67932i
See all 40 embeddings
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 147.5 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
85.o even 16 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 170.2.o.b 40
5.b even 2 1 850.2.s.d 40
5.c odd 4 1 170.2.r.b yes 40
5.c odd 4 1 850.2.v.d 40
17.e odd 16 1 170.2.r.b yes 40
85.o even 16 1 inner 170.2.o.b 40
85.p odd 16 1 850.2.v.d 40
85.r even 16 1 850.2.s.d 40

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.o.b 40 1.a even 1 1 trivial
170.2.o.b 40 85.o even 16 1 inner
170.2.r.b yes 40 5.c odd 4 1
170.2.r.b yes 40 17.e odd 16 1
850.2.s.d 40 5.b even 2 1
850.2.s.d 40 85.r even 16 1
850.2.v.d 40 5.c odd 4 1
850.2.v.d 40 85.p odd 16 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3}^{40} - \cdots$$ acting on $$S_{2}^{\mathrm{new}}(170, [\chi])$$.