Properties

 Label 170.2.b.c Level $170$ Weight $2$ Character orbit 170.b Analytic conductor $1.357$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$170 = 2 \cdot 5 \cdot 17$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 170.b (of order $$2$$, degree $$1$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$1.35745683436$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} + i q^{5} + 2 i q^{7} + q^{8} + 3 q^{9} +O(q^{10})$$ $$q + q^{2} + q^{4} + i q^{5} + 2 i q^{7} + q^{8} + 3 q^{9} + i q^{10} -4 i q^{11} -2 q^{13} + 2 i q^{14} + q^{16} + ( -1 - 4 i ) q^{17} + 3 q^{18} -8 q^{19} + i q^{20} -4 i q^{22} + 6 i q^{23} - q^{25} -2 q^{26} + 2 i q^{28} + 6 i q^{29} -10 i q^{31} + q^{32} + ( -1 - 4 i ) q^{34} -2 q^{35} + 3 q^{36} + 2 i q^{37} -8 q^{38} + i q^{40} -4 i q^{41} -8 q^{43} -4 i q^{44} + 3 i q^{45} + 6 i q^{46} + 3 q^{49} - q^{50} -2 q^{52} + 10 q^{53} + 4 q^{55} + 2 i q^{56} + 6 i q^{58} + 4 q^{59} -10 i q^{61} -10 i q^{62} + 6 i q^{63} + q^{64} -2 i q^{65} -4 q^{67} + ( -1 - 4 i ) q^{68} -2 q^{70} + 10 i q^{71} + 3 q^{72} + 12 i q^{73} + 2 i q^{74} -8 q^{76} + 8 q^{77} -6 i q^{79} + i q^{80} + 9 q^{81} -4 i q^{82} + ( 4 - i ) q^{85} -8 q^{86} -4 i q^{88} + 2 q^{89} + 3 i q^{90} -4 i q^{91} + 6 i q^{92} -8 i q^{95} + 16 i q^{97} + 3 q^{98} -12 i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 2q^{2} + 2q^{4} + 2q^{8} + 6q^{9} + O(q^{10})$$ $$2q + 2q^{2} + 2q^{4} + 2q^{8} + 6q^{9} - 4q^{13} + 2q^{16} - 2q^{17} + 6q^{18} - 16q^{19} - 2q^{25} - 4q^{26} + 2q^{32} - 2q^{34} - 4q^{35} + 6q^{36} - 16q^{38} - 16q^{43} + 6q^{49} - 2q^{50} - 4q^{52} + 20q^{53} + 8q^{55} + 8q^{59} + 2q^{64} - 8q^{67} - 2q^{68} - 4q^{70} + 6q^{72} - 16q^{76} + 16q^{77} + 18q^{81} + 8q^{85} - 16q^{86} + 4q^{89} + 6q^{98} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/170\mathbb{Z}\right)^\times$$.

 $$n$$ $$71$$ $$137$$ $$\chi(n)$$ $$-1$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
101.1
 − 1.00000i 1.00000i
1.00000 0 1.00000 1.00000i 0 2.00000i 1.00000 3.00000 1.00000i
101.2 1.00000 0 1.00000 1.00000i 0 2.00000i 1.00000 3.00000 1.00000i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 170.2.b.c 2
3.b odd 2 1 1530.2.c.a 2
4.b odd 2 1 1360.2.c.d 2
5.b even 2 1 850.2.b.e 2
5.c odd 4 1 850.2.d.d 2
5.c odd 4 1 850.2.d.e 2
17.b even 2 1 inner 170.2.b.c 2
17.c even 4 1 2890.2.a.f 1
17.c even 4 1 2890.2.a.g 1
51.c odd 2 1 1530.2.c.a 2
68.d odd 2 1 1360.2.c.d 2
85.c even 2 1 850.2.b.e 2
85.g odd 4 1 850.2.d.d 2
85.g odd 4 1 850.2.d.e 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.b.c 2 1.a even 1 1 trivial
170.2.b.c 2 17.b even 2 1 inner
850.2.b.e 2 5.b even 2 1
850.2.b.e 2 85.c even 2 1
850.2.d.d 2 5.c odd 4 1
850.2.d.d 2 85.g odd 4 1
850.2.d.e 2 5.c odd 4 1
850.2.d.e 2 85.g odd 4 1
1360.2.c.d 2 4.b odd 2 1
1360.2.c.d 2 68.d odd 2 1
1530.2.c.a 2 3.b odd 2 1
1530.2.c.a 2 51.c odd 2 1
2890.2.a.f 1 17.c even 4 1
2890.2.a.g 1 17.c even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3}$$ acting on $$S_{2}^{\mathrm{new}}(170, [\chi])$$.