Properties

Label 170.2.a.c
Level $170$
Weight $2$
Character orbit 170.a
Self dual yes
Analytic conductor $1.357$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 170 = 2 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 170.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(1.35745683436\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} + 2q^{7} - q^{8} - 2q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} + 2q^{7} - q^{8} - 2q^{9} - q^{10} + q^{12} + 5q^{13} - 2q^{14} + q^{15} + q^{16} - q^{17} + 2q^{18} - q^{19} + q^{20} + 2q^{21} + 6q^{23} - q^{24} + q^{25} - 5q^{26} - 5q^{27} + 2q^{28} - 9q^{29} - q^{30} - q^{31} - q^{32} + q^{34} + 2q^{35} - 2q^{36} - 4q^{37} + q^{38} + 5q^{39} - q^{40} - 6q^{41} - 2q^{42} + 2q^{43} - 2q^{45} - 6q^{46} - 9q^{47} + q^{48} - 3q^{49} - q^{50} - q^{51} + 5q^{52} - 9q^{53} + 5q^{54} - 2q^{56} - q^{57} + 9q^{58} + 3q^{59} + q^{60} - 7q^{61} + q^{62} - 4q^{63} + q^{64} + 5q^{65} + 14q^{67} - q^{68} + 6q^{69} - 2q^{70} + 3q^{71} + 2q^{72} + 11q^{73} + 4q^{74} + q^{75} - q^{76} - 5q^{78} + 8q^{79} + q^{80} + q^{81} + 6q^{82} + 2q^{84} - q^{85} - 2q^{86} - 9q^{87} - 9q^{89} + 2q^{90} + 10q^{91} + 6q^{92} - q^{93} + 9q^{94} - q^{95} - q^{96} - 7q^{97} + 3q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 1.00000 −1.00000 2.00000 −1.00000 −2.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(-1\)
\(17\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 170.2.a.c 1
3.b odd 2 1 1530.2.a.l 1
4.b odd 2 1 1360.2.a.e 1
5.b even 2 1 850.2.a.g 1
5.c odd 4 2 850.2.c.c 2
7.b odd 2 1 8330.2.a.d 1
8.b even 2 1 5440.2.a.i 1
8.d odd 2 1 5440.2.a.p 1
15.d odd 2 1 7650.2.a.i 1
17.b even 2 1 2890.2.a.e 1
17.c even 4 2 2890.2.b.h 2
20.d odd 2 1 6800.2.a.s 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.a.c 1 1.a even 1 1 trivial
850.2.a.g 1 5.b even 2 1
850.2.c.c 2 5.c odd 4 2
1360.2.a.e 1 4.b odd 2 1
1530.2.a.l 1 3.b odd 2 1
2890.2.a.e 1 17.b even 2 1
2890.2.b.h 2 17.c even 4 2
5440.2.a.i 1 8.b even 2 1
5440.2.a.p 1 8.d odd 2 1
6800.2.a.s 1 20.d odd 2 1
7650.2.a.i 1 15.d odd 2 1
8330.2.a.d 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(170))\):

\( T_{3} - 1 \)
\( T_{7} - 2 \)
\( T_{13} - 5 \)