Newspace parameters
Level: | \( N \) | \(=\) | \( 17 \) |
Weight: | \( k \) | \(=\) | \( 44 \) |
Character orbit: | \([\chi]\) | \(=\) | 17.d (of order \(8\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(199.087672088\) |
Analytic rank: | \(0\) |
Dimension: | \(252\) |
Relative dimension: | \(63\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −4.09676e6 | − | 4.09676e6i | −3.15385e10 | + | 1.30637e10i | 2.47708e13i | −1.80315e14 | − | 4.35320e14i | 1.82724e17 | + | 7.56869e16i | −1.01629e18 | + | 2.45353e18i | 6.54443e19 | − | 6.54443e19i | 5.91905e20 | − | 5.91905e20i | −1.04469e21 | + | 2.52211e21i | ||
2.2 | −3.97442e6 | − | 3.97442e6i | −7.19330e9 | + | 2.97956e9i | 2.27960e13i | −1.19474e14 | − | 2.88437e14i | 4.04313e16 | + | 1.67472e16i | 4.77964e17 | − | 1.15391e18i | 5.56415e19 | − | 5.56415e19i | −1.89247e20 | + | 1.89247e20i | −6.71528e20 | + | 1.62121e21i | ||
2.3 | −3.96922e6 | − | 3.96922e6i | 9.09897e9 | − | 3.76891e9i | 2.27134e13i | 6.73776e14 | + | 1.62664e15i | −5.10755e16 | − | 2.11562e16i | −1.81557e16 | + | 4.38318e16i | 5.52408e19 | − | 5.52408e19i | −1.63526e20 | + | 1.63526e20i | 3.78213e21 | − | 9.13086e21i | ||
2.4 | −3.80683e6 | − | 3.80683e6i | 2.44978e10 | − | 1.01473e10i | 2.01878e13i | −5.36168e13 | − | 1.29442e14i | −1.31888e17 | − | 5.46298e16i | −6.31645e17 | + | 1.52492e18i | 4.33664e19 | − | 4.33664e19i | 2.65060e20 | − | 2.65060e20i | −2.88655e20 | + | 6.96875e20i | ||
2.5 | −3.60575e6 | − | 3.60575e6i | 1.23830e10 | − | 5.12919e9i | 1.72067e13i | −5.94068e14 | − | 1.43421e15i | −6.31444e16 | − | 2.61553e16i | −2.26819e17 | + | 5.47588e17i | 3.03267e19 | − | 3.03267e19i | −1.05084e20 | + | 1.05084e20i | −3.02933e21 | + | 7.31345e21i | ||
2.6 | −3.48662e6 | − | 3.48662e6i | 2.29447e10 | − | 9.50399e9i | 1.55169e13i | 2.88501e14 | + | 6.96503e14i | −1.13136e17 | − | 4.68624e16i | 9.32651e17 | − | 2.25162e18i | 2.34328e19 | − | 2.34328e19i | 2.04019e20 | − | 2.04019e20i | 1.42255e21 | − | 3.43433e21i | ||
2.7 | −3.45514e6 | − | 3.45514e6i | −6.95589e9 | + | 2.88122e9i | 1.50799e13i | −2.51273e14 | − | 6.06627e14i | 3.39886e16 | + | 1.40785e16i | −1.03940e17 | + | 2.50933e17i | 2.17115e19 | − | 2.17115e19i | −1.92030e20 | + | 1.92030e20i | −1.22780e21 | + | 2.96417e21i | ||
2.8 | −3.37788e6 | − | 3.37788e6i | −2.88895e10 | + | 1.19664e10i | 1.40240e13i | 4.65586e14 | + | 1.12402e15i | 1.38006e17 | + | 5.71640e16i | 1.00699e18 | − | 2.43109e18i | 1.76593e19 | − | 1.76593e19i | 4.59294e20 | − | 4.59294e20i | 2.22412e21 | − | 5.36951e21i | ||
2.9 | −3.30953e6 | − | 3.30953e6i | −1.25934e10 | + | 5.21635e9i | 1.31099e13i | 4.61615e14 | + | 1.11444e15i | 5.89418e16 | + | 2.44145e16i | −7.15817e17 | + | 1.72813e18i | 1.42765e19 | − | 1.42765e19i | −1.00730e20 | + | 1.00730e20i | 2.16054e21 | − | 5.21599e21i | ||
2.10 | −3.18305e6 | − | 3.18305e6i | −2.05920e10 | + | 8.52950e9i | 1.14675e13i | −7.09250e14 | − | 1.71228e15i | 9.26951e16 | + | 3.83956e16i | 6.03290e17 | − | 1.45647e18i | 8.50312e18 | − | 8.50312e18i | 1.19166e20 | − | 1.19166e20i | −3.19269e21 | + | 7.70785e21i | ||
2.11 | −3.17742e6 | − | 3.17742e6i | 2.68747e10 | − | 1.11319e10i | 1.13958e13i | −5.29509e14 | − | 1.27835e15i | −1.20763e17 | − | 5.00216e16i | 8.49333e17 | − | 2.05047e18i | 8.26049e18 | − | 8.26049e18i | 3.66220e20 | − | 3.66220e20i | −2.37937e21 | + | 5.74432e21i | ||
2.12 | −3.13678e6 | − | 3.13678e6i | −1.51005e10 | + | 6.25485e9i | 1.08827e13i | 5.61563e14 | + | 1.35573e15i | 6.69872e16 | + | 2.77470e16i | −1.25921e17 | + | 3.04000e17i | 6.54523e18 | − | 6.54523e18i | −4.32097e19 | + | 4.32097e19i | 2.49114e21 | − | 6.01414e21i | ||
2.13 | −2.73867e6 | − | 2.73867e6i | 3.46866e9 | − | 1.43676e9i | 6.20458e12i | −1.03368e14 | − | 2.49552e14i | −1.34344e16 | − | 5.56469e15i | −9.66419e17 | + | 2.33314e18i | −7.09731e18 | + | 7.09731e18i | −2.22145e20 | + | 2.22145e20i | −4.00352e20 | + | 9.66534e20i | ||
2.14 | −2.58405e6 | − | 2.58405e6i | 2.39234e10 | − | 9.90941e9i | 4.55856e12i | 5.45301e14 | + | 1.31647e15i | −8.74259e16 | − | 3.62130e16i | −4.35755e17 | + | 1.05201e18i | −1.09500e19 | + | 1.09500e19i | 2.42022e20 | − | 2.42022e20i | 1.99275e21 | − | 4.81092e21i | ||
2.15 | −2.55044e6 | − | 2.55044e6i | −2.41593e10 | + | 1.00071e10i | 4.21338e12i | −1.28853e14 | − | 3.11079e14i | 8.71394e16 | + | 3.60943e16i | −2.61539e16 | + | 6.31412e16i | −1.16879e19 | + | 1.16879e19i | 2.51418e20 | − | 2.51418e20i | −4.64756e20 | + | 1.12202e21i | ||
2.16 | −2.53351e6 | − | 2.53351e6i | 6.01529e9 | − | 2.49162e9i | 4.04122e12i | 8.06913e13 | + | 1.94806e14i | −2.15523e16 | − | 8.92726e15i | 3.73543e17 | − | 9.01812e17i | −1.20465e19 | + | 1.20465e19i | −2.02137e20 | + | 2.02137e20i | 2.89110e20 | − | 6.97974e20i | ||
2.17 | −2.19852e6 | − | 2.19852e6i | −2.04695e10 | + | 8.47875e9i | 8.70890e11i | −5.58529e14 | − | 1.34841e15i | 6.36433e16 | + | 2.63619e16i | −6.66859e17 | + | 1.60994e18i | −1.74237e19 | + | 1.74237e19i | 1.14999e20 | − | 1.14999e20i | −1.73657e21 | + | 4.19244e21i | ||
2.18 | −2.10968e6 | − | 2.10968e6i | 6.34475e9 | − | 2.62808e9i | 1.05407e11i | 3.30196e14 | + | 7.97165e14i | −1.89298e16 | − | 7.84098e15i | 6.00667e17 | − | 1.45014e18i | −1.83346e19 | + | 1.83346e19i | −1.98764e20 | + | 1.98764e20i | 9.85153e20 | − | 2.37837e21i | ||
2.19 | −2.03028e6 | − | 2.03028e6i | 3.13117e10 | − | 1.29697e10i | − | 5.52058e11i | −1.81415e14 | − | 4.37975e14i | −8.99034e16 | − | 3.72392e16i | −2.07922e17 | + | 5.01968e17i | −1.89793e19 | + | 1.89793e19i | 5.80094e20 | − | 5.80094e20i | −5.20887e20 | + | 1.25753e21i | |
2.20 | −1.99866e6 | − | 1.99866e6i | 1.06333e10 | − | 4.40446e9i | − | 8.06823e11i | −5.67672e14 | − | 1.37048e15i | −3.00554e16 | − | 1.24493e16i | −6.22846e17 | + | 1.50368e18i | −1.91929e19 | + | 1.91929e19i | −1.38445e20 | + | 1.38445e20i | −1.60454e21 | + | 3.87371e21i | |
See next 80 embeddings (of 252 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.d | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 17.44.d.a | ✓ | 252 |
17.d | even | 8 | 1 | inner | 17.44.d.a | ✓ | 252 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
17.44.d.a | ✓ | 252 | 1.a | even | 1 | 1 | trivial |
17.44.d.a | ✓ | 252 | 17.d | even | 8 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{44}^{\mathrm{new}}(17, [\chi])\).