Related objects

Learn more about

Show commands for: Magma / SageMath

Decomposition of \( S_{4}^{\mathrm{new}}(17) \) into irreducible Hecke orbits

magma: S := CuspForms(17,4);
magma: N := Newforms(S);
sage: N = Newforms(17,4,names="a")
Label Dimension Field $q$-expansion of eigenform
17.4.1.a 1 \(\Q\) \(q \) \(\mathstrut-\) \(3q^{2} \) \(\mathstrut-\) \(8q^{3} \) \(\mathstrut+\) \(q^{4} \) \(\mathstrut+\) \(6q^{5} \) \(\mathstrut+\) \(24q^{6} \) \(\mathstrut-\) \(28q^{7} \) \(\mathstrut+\) \(21q^{8} \) \(\mathstrut+\) \(37q^{9} \) \(\mathstrut+O(q^{10}) \)
17.4.1.b 3 $\Q(\alpha_{ 2 })$ \(q \) \(\mathstrut+\) \(\alpha_{2} q^{2} \) \(\mathstrut+\) \(\bigl(- \frac{1}{4} \alpha_{2} ^{2} \) \(\mathstrut- \frac{7}{4} \alpha_{2} \) \(\mathstrut+ 6\bigr)q^{3} \) \(\mathstrut+\) \(\bigl(\alpha_{2} ^{2} \) \(\mathstrut- 8\bigr)q^{4} \) \(\mathstrut+\) \(\bigl(- \frac{1}{2} \alpha_{2} ^{2} \) \(\mathstrut- \frac{3}{2} \alpha_{2} \) \(\mathstrut+ 6\bigr)q^{5} \) \(\mathstrut+\) \(\bigl(- 2 \alpha_{2} ^{2} \) \(\mathstrut+ 8\bigr)q^{6} \) \(\mathstrut+\) \(\bigl(\frac{5}{4} \alpha_{2} ^{2} \) \(\mathstrut+ \frac{11}{4} \alpha_{2} \) \(\mathstrut- 14\bigr)q^{7} \) \(\mathstrut+\) \(\bigl(\alpha_{2} ^{2} \) \(\mathstrut+ 8 \alpha_{2} \) \(\mathstrut- 32\bigr)q^{8} \) \(\mathstrut+\) \(\bigl(\frac{5}{2} \alpha_{2} ^{2} \) \(\mathstrut- \frac{1}{2} \alpha_{2} \) \(\mathstrut- 21\bigr)q^{9} \) \(\mathstrut+O(q^{10}) \)

The coefficient fields are:

Coefficient field Minimal polynomial of $\alpha_j$ over $\Q$
$\Q(\alpha_{ 2 })\cong$ 3.3.2636.1 \(x ^{3} \) \(\mathstrut -\mathstrut x ^{2} \) \(\mathstrut -\mathstrut 24 x \) \(\mathstrut +\mathstrut 32\)