Properties

Label 162.2.g.b
Level 162
Weight 2
Character orbit 162.g
Analytic conductor 1.294
Analytic rank 0
Dimension 90
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 90q - 9q^{6} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 90q - 9q^{6} - 18q^{13} - 9q^{18} - 9q^{20} - 54q^{21} + 27q^{23} - 18q^{25} - 27q^{26} - 27q^{27} - 18q^{28} - 27q^{29} + 9q^{30} + 54q^{31} - 63q^{33} - 27q^{35} - 9q^{36} - 18q^{38} - 9q^{41} - 9q^{42} - 36q^{43} + 63q^{45} + 18q^{46} - 27q^{47} - 9q^{48} - 36q^{51} + 36q^{52} - 27q^{53} - 54q^{55} - 81q^{57} - 9q^{58} - 45q^{59} - 63q^{63} + 9q^{65} + 36q^{66} + 81q^{67} + 36q^{68} + 18q^{69} - 72q^{70} + 72q^{71} + 18q^{72} - 36q^{73} + 45q^{74} + 216q^{75} - 18q^{76} + 144q^{77} + 54q^{78} - 99q^{79} + 18q^{80} + 144q^{81} + 72q^{82} + 45q^{83} + 18q^{84} - 117q^{85} + 72q^{86} + 81q^{87} - 18q^{88} + 45q^{89} + 162q^{90} - 63q^{91} + 36q^{92} + 45q^{93} - 72q^{94} + 45q^{95} + 18q^{96} + 117q^{97} + 36q^{98} - 81q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1 0.597159 + 0.802123i −1.58049 + 0.708545i −0.286803 + 0.957990i −0.763144 + 0.501928i −1.51215 0.844638i −2.48772 + 2.63683i −0.939693 + 0.342020i 1.99593 2.23970i −0.858326 0.312405i
7.2 0.597159 + 0.802123i 0.156275 + 1.72499i −0.286803 + 0.957990i 3.59342 2.36343i −1.29033 + 1.15544i −0.0885835 + 0.0938930i −0.939693 + 0.342020i −2.95116 + 0.539145i 4.04160 + 1.47102i
7.3 0.597159 + 0.802123i 0.427379 1.67850i −0.286803 + 0.957990i 1.23282 0.810835i 1.60157 0.659517i 0.694984 0.736640i −0.939693 + 0.342020i −2.63469 1.43471i 1.38658 + 0.504672i
7.4 0.597159 + 0.802123i 0.497048 + 1.65920i −0.286803 + 0.957990i −3.09160 + 2.03338i −1.03407 + 1.38950i 2.90797 3.08226i −0.939693 + 0.342020i −2.50589 + 1.64940i −3.47720 1.26560i
7.5 0.597159 + 0.802123i 1.73136 0.0489119i −0.286803 + 0.957990i −0.660279 + 0.434273i 1.07313 + 1.35956i −2.31933 + 2.45835i −0.939693 + 0.342020i 2.99522 0.169368i −0.742632 0.270296i
13.1 0.893633 + 0.448799i −1.57770 0.714739i 0.597159 + 0.802123i 0.891212 + 2.97686i −1.08911 1.34679i 0.275210 + 0.638009i 0.173648 + 0.984808i 1.97830 + 2.25529i −0.539594 + 3.06019i
13.2 0.893633 + 0.448799i −0.977769 1.42967i 0.597159 + 0.802123i −1.15296 3.85116i −0.232129 1.71643i −0.663579 1.53835i 0.173648 + 0.984808i −1.08794 + 2.79578i 0.698073 3.95897i
13.3 0.893633 + 0.448799i −0.530234 + 1.64889i 0.597159 + 0.802123i −0.536865 1.79325i −1.21386 + 1.23554i 1.99514 + 4.62524i 0.173648 + 0.984808i −2.43770 1.74860i 0.325051 1.84346i
13.4 0.893633 + 0.448799i 1.02523 1.39603i 0.597159 + 0.802123i 0.664151 + 2.21842i 1.54272 0.787412i −0.590051 1.36789i 0.173648 + 0.984808i −0.897788 2.86251i −0.402118 + 2.28052i
13.5 0.893633 + 0.448799i 1.51179 + 0.845280i 0.597159 + 0.802123i −0.379535 1.26773i 0.971622 + 1.43386i −0.768169 1.78082i 0.173648 + 0.984808i 1.57100 + 2.55577i 0.229793 1.30322i
25.1 0.893633 0.448799i −1.57770 + 0.714739i 0.597159 0.802123i 0.891212 2.97686i −1.08911 + 1.34679i 0.275210 0.638009i 0.173648 0.984808i 1.97830 2.25529i −0.539594 3.06019i
25.2 0.893633 0.448799i −0.977769 + 1.42967i 0.597159 0.802123i −1.15296 + 3.85116i −0.232129 + 1.71643i −0.663579 + 1.53835i 0.173648 0.984808i −1.08794 2.79578i 0.698073 + 3.95897i
25.3 0.893633 0.448799i −0.530234 1.64889i 0.597159 0.802123i −0.536865 + 1.79325i −1.21386 1.23554i 1.99514 4.62524i 0.173648 0.984808i −2.43770 + 1.74860i 0.325051 + 1.84346i
25.4 0.893633 0.448799i 1.02523 + 1.39603i 0.597159 0.802123i 0.664151 2.21842i 1.54272 + 0.787412i −0.590051 + 1.36789i 0.173648 0.984808i −0.897788 + 2.86251i −0.402118 2.28052i
25.5 0.893633 0.448799i 1.51179 0.845280i 0.597159 0.802123i −0.379535 + 1.26773i 0.971622 1.43386i −0.768169 + 1.78082i 0.173648 0.984808i 1.57100 2.55577i 0.229793 + 1.30322i
31.1 0.396080 + 0.918216i −1.62304 + 0.604777i −0.686242 + 0.727374i −0.102641 + 1.76229i −1.19817 1.25076i −1.24262 + 0.294506i −0.939693 0.342020i 2.26849 1.96315i −1.65881 + 0.603759i
31.2 0.396080 + 0.918216i −1.57515 0.720348i −0.686242 + 0.727374i 0.193287 3.31862i 0.0375499 1.73164i 2.86227 0.678371i −0.939693 0.342020i 1.96220 + 2.26931i 3.12376 1.13696i
31.3 0.396080 + 0.918216i 0.178274 1.72285i −0.686242 + 0.727374i −0.253242 + 4.34800i 1.65256 0.518693i 3.96081 0.938728i −0.939693 0.342020i −2.93644 0.614278i −4.09271 + 1.48962i
31.4 0.396080 + 0.918216i 0.360138 + 1.69420i −0.686242 + 0.727374i −0.0437737 + 0.751566i −1.41299 + 1.00172i −2.40536 + 0.570080i −0.939693 0.342020i −2.74060 + 1.22029i −0.707437 + 0.257486i
31.5 0.396080 + 0.918216i 1.72468 + 0.159609i −0.686242 + 0.727374i 0.0350699 0.602127i 0.536555 + 1.64685i 0.510080 0.120891i −0.939693 0.342020i 2.94905 + 0.550550i 0.566774 0.206289i
See all 90 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 157.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
81.g even 27 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.2.g.b 90
3.b odd 2 1 486.2.g.b 90
81.g even 27 1 inner 162.2.g.b 90
81.h odd 54 1 486.2.g.b 90
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
162.2.g.b 90 1.a even 1 1 trivial
162.2.g.b 90 81.g even 27 1 inner
486.2.g.b 90 3.b odd 2 1
486.2.g.b 90 81.h odd 54 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{5}^{90} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(162, [\chi])\).

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database