Properties

Label 16.2
Level 16
Weight 2
Dimension 2
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 32
Trace bound 0

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 16 = 2^{4} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(16))\).

Total New Old
Modular forms 15 7 8
Cusp forms 2 2 0
Eisenstein series 13 5 8

Trace form

\( 2q - 2q^{2} - 2q^{3} - 2q^{5} + 4q^{6} + 4q^{8} + O(q^{10}) \) \( 2q - 2q^{2} - 2q^{3} - 2q^{5} + 4q^{6} + 4q^{8} + 2q^{11} - 4q^{12} - 2q^{13} - 4q^{14} + 4q^{15} - 8q^{16} - 4q^{17} + 2q^{18} + 6q^{19} + 4q^{20} + 4q^{21} + 4q^{26} - 8q^{27} + 8q^{28} + 6q^{29} - 4q^{30} - 16q^{31} + 8q^{32} - 4q^{33} + 4q^{34} - 4q^{35} - 4q^{36} + 6q^{37} - 12q^{38} - 8q^{40} + 10q^{43} - 4q^{44} + 2q^{45} + 12q^{46} + 16q^{47} + 8q^{48} + 6q^{49} - 6q^{50} + 4q^{51} - 4q^{52} - 10q^{53} - 8q^{56} - 12q^{58} - 6q^{59} - 18q^{61} + 16q^{62} + 4q^{63} + 4q^{65} + 4q^{66} - 10q^{67} - 12q^{69} + 8q^{70} + 4q^{72} + 6q^{75} + 12q^{76} + 4q^{77} - 4q^{78} + 8q^{80} + 10q^{81} - 2q^{83} - 8q^{84} + 4q^{85} + 8q^{88} - 4q^{90} + 4q^{91} - 24q^{92} + 16q^{93} - 16q^{94} - 12q^{95} - 16q^{96} - 4q^{97} - 6q^{98} - 2q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
16.2.a \(\chi_{16}(1, \cdot)\) None 0 1
16.2.b \(\chi_{16}(9, \cdot)\) None 0 1
16.2.e \(\chi_{16}(5, \cdot)\) 16.2.e.a 2 2

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + 2 T + 2 T^{2} \)
$3$ \( 1 + 2 T + 2 T^{2} + 6 T^{3} + 9 T^{4} \)
$5$ \( ( 1 - 2 T + 5 T^{2} )( 1 + 4 T + 5 T^{2} ) \)
$7$ \( 1 - 10 T^{2} + 49 T^{4} \)
$11$ \( 1 - 2 T + 2 T^{2} - 22 T^{3} + 121 T^{4} \)
$13$ \( ( 1 - 4 T + 13 T^{2} )( 1 + 6 T + 13 T^{2} ) \)
$17$ \( ( 1 + 2 T + 17 T^{2} )^{2} \)
$19$ \( 1 - 6 T + 18 T^{2} - 114 T^{3} + 361 T^{4} \)
$23$ \( 1 - 10 T^{2} + 529 T^{4} \)
$29$ \( ( 1 - 10 T + 29 T^{2} )( 1 + 4 T + 29 T^{2} ) \)
$31$ \( ( 1 + 8 T + 31 T^{2} )^{2} \)
$37$ \( 1 - 6 T + 18 T^{2} - 222 T^{3} + 1369 T^{4} \)
$41$ \( ( 1 - 41 T^{2} )^{2} \)
$43$ \( 1 - 10 T + 50 T^{2} - 430 T^{3} + 1849 T^{4} \)
$47$ \( ( 1 - 8 T + 47 T^{2} )^{2} \)
$53$ \( ( 1 - 4 T + 53 T^{2} )( 1 + 14 T + 53 T^{2} ) \)
$59$ \( 1 + 6 T + 18 T^{2} + 354 T^{3} + 3481 T^{4} \)
$61$ \( 1 + 18 T + 162 T^{2} + 1098 T^{3} + 3721 T^{4} \)
$67$ \( 1 + 10 T + 50 T^{2} + 670 T^{3} + 4489 T^{4} \)
$71$ \( 1 - 42 T^{2} + 5041 T^{4} \)
$73$ \( 1 - 130 T^{2} + 5329 T^{4} \)
$79$ \( ( 1 + 79 T^{2} )^{2} \)
$83$ \( 1 + 2 T + 2 T^{2} + 166 T^{3} + 6889 T^{4} \)
$89$ \( 1 - 162 T^{2} + 7921 T^{4} \)
$97$ \( ( 1 + 2 T + 97 T^{2} )^{2} \)
show more
show less