# Properties

 Label 150.2.c.a Level 150 Weight 2 Character orbit 150.c Analytic conductor 1.198 Analytic rank 0 Dimension 2 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$150 = 2 \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 150.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.19775603032$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 30) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{2} + i q^{3} - q^{4} - q^{6} + 4 i q^{7} -i q^{8} - q^{9} +O(q^{10})$$ $$q + i q^{2} + i q^{3} - q^{4} - q^{6} + 4 i q^{7} -i q^{8} - q^{9} -i q^{12} + 2 i q^{13} -4 q^{14} + q^{16} -6 i q^{17} -i q^{18} + 4 q^{19} -4 q^{21} + q^{24} -2 q^{26} -i q^{27} -4 i q^{28} + 6 q^{29} + 8 q^{31} + i q^{32} + 6 q^{34} + q^{36} -2 i q^{37} + 4 i q^{38} -2 q^{39} -6 q^{41} -4 i q^{42} -4 i q^{43} + i q^{48} -9 q^{49} + 6 q^{51} -2 i q^{52} -6 i q^{53} + q^{54} + 4 q^{56} + 4 i q^{57} + 6 i q^{58} -10 q^{61} + 8 i q^{62} -4 i q^{63} - q^{64} + 4 i q^{67} + 6 i q^{68} + i q^{72} + 2 i q^{73} + 2 q^{74} -4 q^{76} -2 i q^{78} -8 q^{79} + q^{81} -6 i q^{82} + 12 i q^{83} + 4 q^{84} + 4 q^{86} + 6 i q^{87} -18 q^{89} -8 q^{91} + 8 i q^{93} - q^{96} -2 i q^{97} -9 i q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} - 2q^{6} - 2q^{9} + O(q^{10})$$ $$2q - 2q^{4} - 2q^{6} - 2q^{9} - 8q^{14} + 2q^{16} + 8q^{19} - 8q^{21} + 2q^{24} - 4q^{26} + 12q^{29} + 16q^{31} + 12q^{34} + 2q^{36} - 4q^{39} - 12q^{41} - 18q^{49} + 12q^{51} + 2q^{54} + 8q^{56} - 20q^{61} - 2q^{64} + 4q^{74} - 8q^{76} - 16q^{79} + 2q^{81} + 8q^{84} + 8q^{86} - 36q^{89} - 16q^{91} - 2q^{96} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/150\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$127$$ $$\chi(n)$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
49.1
 − 1.00000i 1.00000i
1.00000i 1.00000i −1.00000 0 −1.00000 4.00000i 1.00000i −1.00000 0
49.2 1.00000i 1.00000i −1.00000 0 −1.00000 4.00000i 1.00000i −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.2.c.a 2
3.b odd 2 1 450.2.c.b 2
4.b odd 2 1 1200.2.f.e 2
5.b even 2 1 inner 150.2.c.a 2
5.c odd 4 1 30.2.a.a 1
5.c odd 4 1 150.2.a.b 1
8.b even 2 1 4800.2.f.p 2
8.d odd 2 1 4800.2.f.w 2
12.b even 2 1 3600.2.f.i 2
15.d odd 2 1 450.2.c.b 2
15.e even 4 1 90.2.a.c 1
15.e even 4 1 450.2.a.d 1
20.d odd 2 1 1200.2.f.e 2
20.e even 4 1 240.2.a.b 1
20.e even 4 1 1200.2.a.k 1
35.f even 4 1 1470.2.a.d 1
35.f even 4 1 7350.2.a.ct 1
35.k even 12 2 1470.2.i.q 2
35.l odd 12 2 1470.2.i.o 2
40.e odd 2 1 4800.2.f.w 2
40.f even 2 1 4800.2.f.p 2
40.i odd 4 1 960.2.a.e 1
40.i odd 4 1 4800.2.a.cq 1
40.k even 4 1 960.2.a.p 1
40.k even 4 1 4800.2.a.d 1
45.k odd 12 2 810.2.e.l 2
45.l even 12 2 810.2.e.b 2
55.e even 4 1 3630.2.a.w 1
60.h even 2 1 3600.2.f.i 2
60.l odd 4 1 720.2.a.j 1
60.l odd 4 1 3600.2.a.f 1
65.f even 4 1 5070.2.b.k 2
65.h odd 4 1 5070.2.a.w 1
65.k even 4 1 5070.2.b.k 2
80.i odd 4 1 3840.2.k.y 2
80.j even 4 1 3840.2.k.f 2
80.s even 4 1 3840.2.k.f 2
80.t odd 4 1 3840.2.k.y 2
85.g odd 4 1 8670.2.a.g 1
105.k odd 4 1 4410.2.a.z 1
120.q odd 4 1 2880.2.a.q 1
120.w even 4 1 2880.2.a.a 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.2.a.a 1 5.c odd 4 1
90.2.a.c 1 15.e even 4 1
150.2.a.b 1 5.c odd 4 1
150.2.c.a 2 1.a even 1 1 trivial
150.2.c.a 2 5.b even 2 1 inner
240.2.a.b 1 20.e even 4 1
450.2.a.d 1 15.e even 4 1
450.2.c.b 2 3.b odd 2 1
450.2.c.b 2 15.d odd 2 1
720.2.a.j 1 60.l odd 4 1
810.2.e.b 2 45.l even 12 2
810.2.e.l 2 45.k odd 12 2
960.2.a.e 1 40.i odd 4 1
960.2.a.p 1 40.k even 4 1
1200.2.a.k 1 20.e even 4 1
1200.2.f.e 2 4.b odd 2 1
1200.2.f.e 2 20.d odd 2 1
1470.2.a.d 1 35.f even 4 1
1470.2.i.o 2 35.l odd 12 2
1470.2.i.q 2 35.k even 12 2
2880.2.a.a 1 120.w even 4 1
2880.2.a.q 1 120.q odd 4 1
3600.2.a.f 1 60.l odd 4 1
3600.2.f.i 2 12.b even 2 1
3600.2.f.i 2 60.h even 2 1
3630.2.a.w 1 55.e even 4 1
3840.2.k.f 2 80.j even 4 1
3840.2.k.f 2 80.s even 4 1
3840.2.k.y 2 80.i odd 4 1
3840.2.k.y 2 80.t odd 4 1
4410.2.a.z 1 105.k odd 4 1
4800.2.a.d 1 40.k even 4 1
4800.2.a.cq 1 40.i odd 4 1
4800.2.f.p 2 8.b even 2 1
4800.2.f.p 2 40.f even 2 1
4800.2.f.w 2 8.d odd 2 1
4800.2.f.w 2 40.e odd 2 1
5070.2.a.w 1 65.h odd 4 1
5070.2.b.k 2 65.f even 4 1
5070.2.b.k 2 65.k even 4 1
7350.2.a.ct 1 35.f even 4 1
8670.2.a.g 1 85.g odd 4 1

## Hecke kernels

This newform subspace is the entire newspace $$S_{2}^{\mathrm{new}}(150, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T^{2}$$
$3$ $$1 + T^{2}$$
$5$ 1
$7$ $$1 + 2 T^{2} + 49 T^{4}$$
$11$ $$( 1 + 11 T^{2} )^{2}$$
$13$ $$1 - 22 T^{2} + 169 T^{4}$$
$17$ $$1 + 2 T^{2} + 289 T^{4}$$
$19$ $$( 1 - 4 T + 19 T^{2} )^{2}$$
$23$ $$( 1 - 23 T^{2} )^{2}$$
$29$ $$( 1 - 6 T + 29 T^{2} )^{2}$$
$31$ $$( 1 - 8 T + 31 T^{2} )^{2}$$
$37$ $$( 1 - 12 T + 37 T^{2} )( 1 + 12 T + 37 T^{2} )$$
$41$ $$( 1 + 6 T + 41 T^{2} )^{2}$$
$43$ $$1 - 70 T^{2} + 1849 T^{4}$$
$47$ $$( 1 - 47 T^{2} )^{2}$$
$53$ $$1 - 70 T^{2} + 2809 T^{4}$$
$59$ $$( 1 + 59 T^{2} )^{2}$$
$61$ $$( 1 + 10 T + 61 T^{2} )^{2}$$
$67$ $$1 - 118 T^{2} + 4489 T^{4}$$
$71$ $$( 1 + 71 T^{2} )^{2}$$
$73$ $$1 - 142 T^{2} + 5329 T^{4}$$
$79$ $$( 1 + 8 T + 79 T^{2} )^{2}$$
$83$ $$1 - 22 T^{2} + 6889 T^{4}$$
$89$ $$( 1 + 18 T + 89 T^{2} )^{2}$$
$97$ $$1 - 190 T^{2} + 9409 T^{4}$$